Volume: 09 Issue: 08 | Aug - 2025

International Journal of Scientific Research in Engineering and Management (I]SREM)
SJIF Rating: 8.586

ISSN: 2582-3930

TAC-Based Serverless Image Processor with AWS & Terraform

Nidhin K E!, Prof. K Sharath?

! Student, Department of MCA, Bangalore Institute of Technology, Karnataka, India
2Professor, Department of MCA, Bangalore Institute of Technology, Karnataka, India

Abstract

The rapid growth of digital content has increased the demand
for efficient, scalable, and secure systems to manage image
processing tasks. Traditional server-based solutions often
suffer from high operational costs, limited flexibility, and
complex maintenance requirements. This work presents a
“Serverless Image Processing Pipeline”, designed as a cloud-
native, event-driven framework leveraging Amazon Web
Services (AWS). The system integrates Amazon S3 for storage,
AWS Lambda for computation, and API Gateway for secure
interaction with external applications. Images uploaded to a
raw storage bucket automatically trigger serverless functions
that perform resizing, format conversion, optimization, and
other transformations. The processed outputs are stored
separately to ensure organized management and secure
retrieval. Monitoring and error tracking are facilitated through
AWS CloudWatch, while IAM roles enforce role-based access
control. The architecture demonstrates elasticity, cost-
efficiency, and extensibility, making it adaptable for advanced
use cases such as Al-driven classification, watermarking, or
real-time analytics. The implementation validates the
feasibility of serverless computing in automating image
workflows while maintaining performance, reliability, and
enterprise-grade security.

Keywords- Serverless Computing, Image Processing, AWS
Lambda, Amazon S3, Event-Driven Architecture, Cloud-
Native Applications, Cost-Efficient Pipeline, Elastic
Scalability, Secure Data Management, API Integration.

I. INTRODUCTION

The growing reliance on digital platforms has created an ever-
increasing demand for efficient and reliable systems capable of
handling large volumes of image data. Industries such as e-
commerce, healthcare, digital marketing, and social media
require real-time processing of images for tasks like resizing,
format conversion, optimization, and secure storage.
Conventional server-based architectures often struggle to meet
these requirements because they involve high maintenance,
limited flexibility, and rising operational expenses. To
overcome these limitations, cloud-native and event-driven
approaches have emerged as practical alternatives.

This project introduces a Serverless Image Processing Pipeline
that leverages Amazon Web Services (AWS) to provide a cost-
effective, scalable, and fully automated solution. The pipeline
integrates Amazon S3 for storage, AWS Lambda for
computation, and API Gateway for seamless interactions with

© 2025,IJSREM | www.ijsrem.com

external applications. By adopting a serverless paradigm, the
system eliminates the overhead of managing infrastructure
and ensures that resources are consumed only when triggered
by events.

The workflow begins when an image is uploaded to a raw
storage bucket, which automatically invokes Lambda
functions to carry out transformations such as resizing,
compression, and format conversion. Processed images are
then placed into a separate output bucket for organized
storage and retrieval. Security is reinforced through IAM-
based access control, while monitoring and debugging are
handled using AWS CloudWatch.

Beyond its current functionality, the architecture is extensible
to support advanced features such as watermarking, Al-
powered classification, or integration with mobile and web
applications. The result is a flexible, reliable, and enterprise-
ready pipeline that demonstrates the practical value of
serverless technologies in modern image processing.

II. LITERATURE SURVEY

The rapid rise of cloud-native applications has motivated
extensive research into serverless computing and its role in
data pipelines. Traditional infrastructures, while powerful,
often suffer from high maintenance costs, rigid scaling, and
significant management overhead. Recent studies highlight
serverless computing as a paradigm capable of addressing
these challenges by providing elasticity, reduced operational
burden, and fine-grained cost efficiency. Researchers across
domains have explored its potential in diverse areas including
image analytics, video processing, deep learning, healthcare,
and Internet of Things (IoT).
Mathew et al. [1] proposed a pattern-based orchestration
model for serverless pipelines, focusing on function
composition and workflow reliability. Their work
emphasized how orchestration patterns can enhance
performance while mitigating the complexity of managing
multiple cloud functions. Similarly, San Juan [2] presented an
early framework for image processing using serverless
functions, demonstrating the feasibility of resizing and
transforming images without dedicated infrastructure. This
study set a foundation for applying Function-as-a-Service
(FaaS) in multimedia applications.
Yang et al. [3] extended the serverless paradigm into remote
sensing, introducing FaasRS, a system that processed satellite
imagery through serverless functions. Their findings
underscored scalability and reduced operational costs,
highlighting potential applications in geospatial monitoring.
Complementing this, Rad and Ghobaci-Arani [4] provided a
taxonomy and comprehensive review of data pipelines in
serverless computing, classifying different design approaches
and identifying research trends. Their analysis helped frame

| Page 1

http://www.ijsrem.com/

Volume: 09 Issue: 08 | Aug - 2025

International Journal of Scientific Research in Engineering and Management (I]SREM)

SJIF Rating: 8.586 ISSN: 2582-3930

the broader context for serverless architectures in big data
workflows.

In the domain of machine learning and Al-driven pipelines,
Arrak et al. Study [5] explored the role of serverless platforms
in machine learning, mapping out existing applications and
identifying emerging directions in the field.. They noted the
potential for on-demand training and inference while
recognizing challenges such as cold starts and resource
limitations. Dubey et al. [6] further contributed by
demonstrating a deep learning-based serverless image handler
implemented on AWS, showing how pre-trained models could
be embedded into serverless workflows for efficient image
classification and transformation. Similarly, Liu et al. [11]
proposed FuncPipe, a serverless solution focused on efficient
and low-cost training of deep learning models.. Their results
revealed how pipeline parallelism could accelerate workloads
while maintaining financial sustainability.
Serverless pipelines have also been explored in IoT and fog
computing environments. Poojara et al. [7] investigated
serverless data pipelines for [oT data streams, showing how
hybrid cloud-fog models can handle latency-sensitive tasks.
Dehury et al. [8] proposed a general-purpose pipeline
architecture for serverless platforms, outlining methods for
optimizing execution flow and reducing redundant data
movement. Mirampalli et al. [13] compared NiFi and MQTT-
based pipelines in fog environments, highlighting trade-offs
between throughput and resource efficiency.
A parallel stream of research has concentrated on video
processing pipelines. Zhang et al. [9] introduced CharmSeeker,
an automated configuration system for serverless video
workflows that improved efficiency in high-demand
multimedia environments. Ao et al. [10] presented Sprocket, a
framework for serverless video processing, focusing on
resource allocation and scalability under varying workloads.
The findings proved that serverless approaches can scale from
image processing to real-time multimedia workflows.
Healthcare applications of serverless data pipelines have also
gained momentum. Singh et al. [12] explored a serverless
framework for disease prediction using chest X-ray images,
achieving efficient processing and analysis through Lambda-
based pipelines. Their study highlighted the potential of
serverless computing in diagnostic systems where scalability
and timely execution are critical.
From an operational standpoint, the adoption of serverless
pipelines requires strong integration with modern software
engineering practices. Ivanov and Smolander [14] examined
the implementation of DevOps pipelines for serverless
applications, focusing on continuous integration and delivery
(CI/CD). Their findings emphasized how automation and
iterative deployment cycles can improve reliability and
accelerate innovation in serverless systems.
Collectively, these works establish a rich body of knowledge
demonstrating the adaptability of serverless data pipelines
across domains. From foundational image processing [2,6],
geospatial applications [3], and IoT workflows [7,13] to Al-
driven deep learning [5,11] and video streaming [9,10],
serverless computing has emerged as a unifying paradigm. Key
themes across the literature include scalability, cost-efficiency,
flexibility, and ease of integration with existing services. At the
same time, recurring challenges such as cold starts, latency in
real-time tasks, and limitations in resource-bound functions
remain active areas of research.
In summary, the literature highlights the promise of serverless
pipelines as a robust framework for data-intensive tasks while
also stressing the need for ongoing innovations in orchestration,

© 2025,IJSREM | www.ijsrem.com

optimization, and cross-domain integration. This project
builds upon these foundations by developing a Serverless
Image Processing Pipeline that combines event-driven
automation with scalability, extensibility, and security to
address practical needs in image transformation and storage.
II. EXISTING SYSTEM

In traditional image processing systems, applications
typically rely on dedicated servers or virtual machines to
handle tasks such as uploading, transforming, and storing
images. These systems operate on a fixed infrastructure where
servers must be provisioned in advance, configured for peak
demand, and continuously maintained regardless of workload
variations. The workflow generally begins with an image
uploaded by the user through a web interface or directly into
a centralized server. The application then processes the image
by performing operations such as resizing, compression, or
format conversion. Once processed, the image is stored in a
database or file system for retrieval by end users or external
applications.

While this approach has been widely used in content
management platforms, e-commerce systems, and healthcare
applications, it has several drawbacks. Most notably, the
infrastructure is tightly coupled, requiring continuous
monitoring and scaling adjustments by system administrators.
Additionally, servers must remain online at all times, leading
to unnecessary energy and resource consumption even during
low activity. As the demand for real-time image processing
grows, traditional server-based systems struggle to provide
elasticity and cost-efficiency, resulting in higher expenses and
longer deployment cycles. These limitations make
conventional systems less suitable for modern, high-volume,
and dynamic workloads.

Disadvantages

e High Operational Cost — Servers must remain
active 24/7, leading to wasted resources even
during idle periods.

e Limited Scalability — Traditional systems struggle to
handle sudden spikes in image processing
workloads.

e Maintenance Overhead — Requires constant
monitoring, updates, and manual scaling by
administrators.

e Security Concerns — Centralized storage and
processing increase the risk of breaches.

e Inefficient Resource Utilization — Underuse of
infrastructure during low demand increases
inefficiency.

IV. PROPOSED SYSTEM

The proposed system introduces a Serverless Image
Processing Pipeline that eliminates the need for conventional
server management while providing a fully automated and
event-driven solution. Images uploaded to an Amazon S3
bucket automatically trigger AWS Lambda functions, which
handle tasks such as resizing, compression, format
conversion, and optional watermarking. The processed
images are then stored in a separate output S3 bucket,
ensuring proper segregation of raw and processed files for
better organization and security.

The system is built to harness the strengths of cloud-native
services, allowing it to scale easily while remaining adaptable.
Since resources are provisioned only when needed, it

| Page 2

http://www.ijsrem.com/

Volume: 09 Issue: 08 | Aug - 2025

International Journal of Scientific Research in Engineering and Management (I]SREM)

SJIF Rating: 8.586 ISSN: 2582-3930

significantly reduces operational costs compared to traditional
infrastructures. The event-driven model ensures that the
pipeline scales seamlessly with incoming workloads, allowing
it to handle concurrent image processing without degradation
in performance.

Security is enforced through IAM roles and fine-grained
policies, ensuring that access to storage and processing
functions is strictly controlled. In addition, CloudWatch
monitoring and logging are integrated to provide visibility,
error detection, and system health insights. APIs exposed via
Amazon API Gateway further extend the solution’s usability,
enabling external systems and applications—such as e-
commerce platforms or content management systems—to
interact securely with the pipeline.

This approach creates a robust, cost-effective, and enterprise-
ready framework that can evolve to incorporate future
enhancements such as Al-driven image tagging, content
moderation, and real-time analytics.

Advantages:

e Automation — Eliminates manual intervention by
processing images instantly upon upload.

e Scalability — Handles varying workloads dynamically
without performance loss.

e Cost-Efficiency — Pay-per-use billing minimizes
infrastructure expenses.

e Security - is maintained by encrypting all data both
during transfer and while stored, reinforced with strict
IAM role and policy controls

e Separation of Concerns — Raw and processed images
are stored in separate buckets for clear organization.

e Monitoring & Reliability — CloudWatch enables
proactive error tracking and system health checks.

e Extensibility — Easily adaptable to include advanced
Al, analytics, or multi-cloud deployments.

........
’ Lrag

Fate® Pructeswd Peauita

Fig 1: Proposed Model

© 2025,IJSREM | www.ijsrem.com

V. IMPLEMENTATIONS

System Architecture:

The system architecture is built on AWS serverless services,
primarily Amazon S3, AWS Lambda, and API Gateway. Raw
images are uploaded into the input bucket, automatically
triggering Lambda functions for processing. The processed
files are then stored in the output bucket, ensuring separation,
scalability, and seamless integration with other applications.
Authentication and User Management:

User access is governed by IAM roles and policies. Each role,
such as Admin, Client, or End User, has controlled privileges,
ensuring strict access boundaries and secure operations across
all pipeline components.

Input Handling:

The system accepts image uploads via the web interface or
directly into S3. Validation ensures supported formats (JPEG,
PNG, WebP) are accepted before processing begins,
maintaining efficiency and reliability.

Prompt Construction and LLM Interaction:

Although primarily designed for image processing, the
architecture can support API-based interactions with LLMs for
metadata tagging or automated annotations. Input prompts are
structured, enabling Lambda functions to generate meaningful
insights alongside traditional image transformations.

Dialogue Extraction and Post-processing:

In advanced use cases, extracted metadata or contextual
annotations from processed images can be refined through
post-processing steps. This involves cleaning irrelevant details,
formatting results, and structuring outputs for external
applications like content management systems or e-commerce
platforms.

Error Handling and Security:

CloudWatch monitors all executions, enabling quick
identification of failures. Automatic retries handle transient
issues, while encryption and IAM policies ensure data integrity,
confidentiality, and compliance with regulatory security
standards.

VI. CONCLUSIONS

The Serverless Image Processing Pipeline illustrates how
modern cloud-native technologies can streamline image
management without the burden of traditional server
infrastructure. By combining AWS services such as S3 for
storage, Lambda for computation, API Gateway for
communication, and CloudWatch for monitoring, the system
creates an efficient flow for uploading, processing, and
retrieving images. The design not only scales automatically-
allowing Lambda to handle many requests in parallel-but also
reduces costs through a usage-based billing approach.

A significant achievement of the work is the complete
removal of manual steps, resulting in an automated and
dependable pipeline. The separation of raw and processed
images ensures data clarity, while IAM-based permissions
and encryption provide strong safeguards for secure access.
Early challenges, including role misconfigurations and
function timeout limits, shaped valuable lessons that
ultimately improved the system’s reliability and performance.
Beyond the current implementation, the architecture leaves
room for growth. Features such as Al-powered tagging,
automated moderation, or video handling can be added

| Page 3

http://www.ijsrem.com/

Volume: 09 Issue: 08 | Aug - 2025

International Journal of Scientific Research in Engineering and Management (I]SREM)

SJIF Rating: 8.586 ISSN: 2582-3930

without disrupting the core workflow, making it suitable for
industries ranging from healthcare to digital marketing and
online retail.

In summary, the project highlights how event-driven and
serverless architectures can transform conventional workflows
into adaptive, resilient, and cost-conscious solutions that meet
today’s needs while remaining open to tomorrow’s
innovations.

VII. FUTURE ENHANCEMENTS

While the current implementation of the Serverless Image
Processing Pipeline successfully addresses automation,
scalability, and cost efficiency, there are several opportunities
to strengthen its capabilities and broaden its applicability in
real-world environments.

One promising enhancement is the integration of artificial
intelligence and machine learning models into the pipeline.
Beyond basic transformations such as resizing or format
conversion, advanced features like object detection, face
recognition, and automated image classification can be
embedded to deliver intelligent analytics. This would open up
new possibilities for applications in healthcare, security, and
digital media. Similarly, incorporating content moderation
capabilities could ensure compliance and safe usage in public-
facing systems.

Expanding the pipeline to handle video processing is another
natural step forward. Features like video transcoding, frame
extraction, and automated thumbnail generation could be
implemented using services such as AWS Elastic Transcoder
or Rekognition Video, thereby enhancing versatility for
industries like e-learning, media streaming, and surveillance.
From an operational standpoint, adding a custom dashboard
would provide real-time monitoring of processed images, error
rates, and performance metrics, offering transparency to both
administrators and users. Strengthening security through end-
to-end encryption, compliance with data regulations, and
multi-factor authentication could further reinforce trust in the
system.

Finally, enabling multi-cloud deployment and supporting
integration with third-party applications would increase
flexibility and adoption. These enhancements would
collectively ensure that the pipeline remains future-ready,
intelligent, and adaptable to evolving digital needs.

VIII. REFERENCES

[11 A. Mathew, et al.,, “Pattern-based Serverless Data
Processing Pipelines for Function-as-a-Service
Orchestration Systems,” Future Generation Computer
Systems, vol. 154, pp. 87-100, Jan. 2024.

[2] J. D. Q. San Juan, Image Processing Using Serverless
Functions. Department of Computer Science and
Engineering, University of Waterloo, Apr. 2020.

[3] G. Yang, et al., “FaasRS: Remote Sensing Image
Processing System on Serverless Platform,” in Proc.

© 2025,IJSREM | www.ijsrem.com

IEEE 46th Annual Computers, Software, and
Applications Conf. (COMPSAC), pp. 258-267, July
2021.

[4] Z. S. Rad and M. Ghobaei-Arani, “Data Pipeline
Approaches in Serverless Computing: A Taxonomy,
Review, and Research Trends,” Journal of Big Data,
vol. 11, no. 1, June 2024.

[5] A. Arrak, et al., “Serverless on Machine Learning: A
Systematic Mapping Study,” IEEE Access, vol. 10, pp.
99337-99352, Jan. 2022.

[6] P. Dubey, et al.,, “Deep Learning-Based Serverless
Image Handler Using Amazon Web Services,”
Routledge eBooks, pp. 25-41, 2023.

[71 S. R. Poojara, et al, “Serverless Data Pipeline
Approaches for loT Data in Fog and Cloud
Computing,” Future Generation Computer Systems,
vol. 130, pp. 91-105, Dec. 2021.

[8] C. Dehury, et al., “Data Pipeline Architecture for
Serverless Platform,” Communications in Computer
and Information Science, pp. 241-246, 2020.

[91 M. Zhang, et al., “CharmSeeker: Automated Pipeline
Configuration for Serverless Video Processing,”
IEEE/ACM Transactions on Networking, vol. 30, no.
6, pp. 27302743, June 2022.

[10]L. Ao, etal., “Sprocket: A Serverless Video Processing
Framework,” in Proc. ACM Symposium, Sept. 2018.

[T17Y. Liu, et al., “FuncPipe: A Pipelined Serverless
Framework for Fast and Cost-Efficient Training of
Deep Learning Models,” Proc. ACM on Measurement
and Analysis of Computing Systems, vol. 6, no. 3, pp.
1-30, Dec. 2022.

[12] V. Singh, et al., “Disease Prediction using Chest X-ray
Images in Serverless Data Pipeline Framework,” in
Proc. IEEE CCGRID Workshops, pp. 184-191, May
2023.

[13]S. Mirampalli, et al., “Evaluating NiFi and MQTT
Based Serverless Data Pipelines in Fog Computing
Environments,” Future Generation Computer Systems,
vol. 150, pp. 341-353, Sept. 2023.

[14]V. Ivanov and K. Smolander, “Implementation of a
DevOps Pipeline for Serverless Applications,” Lecture
Notes in Computer Science, pp. 48—64, 2018.

| Page 4

http://www.ijsrem.com/

