

Identification of flood control measures for Kolhapur city

Tiware V.S., Mane V.V.¹, Mane A.S., Matkar A.V., Sangaonkar P.P., Botre R.R., Patil O.P.²

¹Assistant Professor Civil Dept, BVCoEK ²Student Civil Dept, BVCOEK

Abstract - During the month of July and August 2019 Kolhapur Districts in Krishna Sub- basin experienced extreme floods for long duration. According to reports 16.5 lakh cr economical losses had been reported. According to reports climatic changes is one of the factors for nature calamities over the years, indiscriminate pursuit of so-called development had reduced the capacity of catchment area to hold, store and absorb the rainwater. [1]

In this research, the area considered is around 10 sq.km (Appro.) which includes the villages as; Nigave Dumala, Vadanage, Kasaba Bawada. To come up with achievable adaptive measure with watershed management for this we did Topographical. Analysis for our sub-watershed by using Curve Number Method.

Completion of mathematical check of proposed hypothetical work and hydrological data and analysis of data pre-solution and post-solution. On the bases of the study we suggested some watershed structures like movable barrier, farm pond and percolation pond. Depending on capacity of the structure we can reduce 43% of total discharge from the subwater shed which is causing flood near Kolhapur city.

Key Words: flood control measures, Curve Number method.

1.INTRODUCTION

During the months of July and August 2019, Sangli and Kolhapur districts in Krishna sub basins experienced extreme floods for long durations. Heavy losses to life, property and crops etc. had been reported. Different opinions at various levels were put forth concerning these flood situations faced by Sangli and Kolhapur districts. Floods of 2005 and 2006 were also noteworthy. However, the 2019-2021 flood situations were comparatively much more severe which lasted more than a week and losses experienced were also on a higher scale. It is therefore necessary to find out different ways to counter flooding, in-depth analysis and other reasons behind the flood situation to prevent the repetition of such unfortunate events in future.

Flood devastation is increasing in this region due to rapid increase in the population and human activities. In 2005, 57 villages were heavily affected by flood and 27 villages were completely marooned by flood water. During that period 40,000 people were shifted to relief camps and 26 human casualties were reported. Agricultural area of 520 sq.km of

*** Kolhapur district was also inundated as perstate government's stract - During the month of July and August 2019 report. [2]

> In the 2019, India faced a series of floods that affected over thirteen states in late July and early August 2019 due to excessive rains. At least 200 people died and about a million people were displaced. Karnataka and Maharashtra were the most severely affected states. People died but many were rescued with the help of the Indian Navy. It was the heaviest monsoon in the last 25 years. More than 1600 people died between June to October 2019. Thirteen states of India were affected by floods due to heavy rains in July–September 2019. News reports later stated that there were 500 people missing and 1000 were killed with many people losing their homes.

According to preliminary estimates, losses to public and private properties are over RS.4,000 crore (RS.53,88,00,000). Losses due to flooding in Kolhapur and Sangli are 700 crore (RS.94,290,000). Electricity infrastructure worth 1,200 crore (RS.16,16,40,000) has been damaged, while damage to roads and bridges is over 1,500 crore (RS.202,050,000). Crops across 338,000 hectares have been damaged in western Maharashtra and Konkan. The state relief is expected to cover all affected elements by widening the scope of the set norms. Maharashtra is now dealing with twin disasters, i.e., the floods in the midst of the ongoing pandemic. The floods have posed a grave threat to the healthcare of patients who are being treated in hospitals. [1]

At present, 133 villages are prone to flooding. The problems related to flooding have greatly increased in the Panchganga basin and there is need ofeffective modelling to understand the problem and to mitigate its disastrous effects. The main limitation of flood risk analysis is the generation of accurate terrain information and identification of inundated areas during the event. Cartosat stereodata with 2.5 m resolution can only provide vertical accuracy up to 6 m. The main objective of the present study is to identify potential flood risk in the areas of Panchganga river using Curve Number Method.

According to reports climatic change is one of the factors for natural calamities, over the years indiscriminate pursuit of socalled development has reduced the capacity of catchment areas to hold, store and absorb rain water. Climatological Changes and Abnormal Rainfall Pattern Formation of severe cyclones over Arabian sea leading to persistent and simultaneous occurrence over large spatial areas, of heavy precipitation in short duration, in the catchments of river Krishna and its tributaries, both in dam and free catchments. Absence of flood absorption capacities in reservoir planning of existing dams. At the time of project planning, the reservoirs are never planned with the provision of

special cushion for flood absorption. The dead storage is designed to accommodate the silts and live storages are planned for complete utilization of the water stored. The Reservoir Operation Schedules are designed to assure for full storages by the end of the monsoon period. For ungated spillways or dams having fully automated gates, there is no manual control to moderate the incoming floods. We need to focus on creation of local water harvesting systems [3]

2. Problem Statement

In the present situation, we know about the flooding condition of Kolhapur city so we have to study watershed management of Kolhapur city and suggest Flood Coping Measures by Using Watershed Management Techniques in PANCHGANGA River Basin. In recent years Maharashtra state has witnessed flood situations in consecutive years. Reportedly the most affected regions of this flood situation are the districts of Raigad, Ratnagiri, Sindhudurg, Satara, Sangli and Kolhapur. Particularly for Kolhapur district the flood situation has caused quite a wreckage. It was reported the around 150,000 people from Kolhapur District were relocated and over 200,000 hectares of crops have been damaged in the floods. Besides the mentioned damages the damages there were a lot more damages in other sectors also. In the wake of this situation we must first study the geographical and climatic background of Kolhapur.

3. Significance of project problem:

Using morphometric analysis, we have done the flood coping measures using watershed management techniques in Panchganga river basin.

Using morphometric analysis, we have done with the help of this project we can reduce the flood by 40 to 45 %. We can apply this project in flood situation areas to avoid the serious flood situations.

4. Study Area: -

Study areas are geographic boundaries created in Business Analyst used to define the extent of your analysis. They are typically created when starting a project to ensure that your data is confined to a specified area. Study area means the land surface area which was mapped and quantitatively sampled during the baseline vegetation inventory. The study area generally coincides with the permit area (or amendment area) but may exceed those boundaries with prior approval from the Administrator.

SW1 : Nigave dhumala

SW2 : Vadnage

SW3 : D.Y Patil College Of Engineering Campus Area

SW4 : D.Y Patil Sugar Mill

Google map of study area

Topographical map (www.floodmap.net)

5. METHODOLOGY: -

Collection of primary and secondary data of 4 Dams [Tulshi, Radhanagari, Kumbhi, Kasari and Free-catchment area]. To collect data about peak discharge, average discharge, average precipitation in free-catchment area, water levels at that area during flood situations and also in normal conditions. International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 06 Issue: 07 | July - 2022

Impact Factor: 7.185

ISSN: 2582-3930

To accomplish this, we used 2 types of data: -

Primary Data 2) Secondary Data

Primary data was obtained from WRD department Kolhapur.

30-07-2019 to 10-08-2019 Rainfall & Discharge data - Panchaganga Basin												
Dam	R	adhanag	ari		Tulshi			Kumbhi			Kasari	
Date	10 Yrs. Avg. Rainfall mm	Rainfall 2019 mm	Dis. 2019 <u>Cus.</u>	10 Yrs. Avg. Rainfall mm	Rainfall 2019 mm	Dis. 2019 <u>Cus.</u>	10 Yrs. Avg. Rainfall mm	Rainfall 2019 mm	Dis. 2019 Cus.	10 Yrs. Avg. Rainfall mm	Rainfall 2019 mm	Dis. 2019 <u>Cus.</u>
30-07-19	46	165	1450	29	184	0	63	225	300	37	203	1960
31-07-19	65	204	4256	34	108	0	82	155	350	69	135	1960
01-08-19	61	170	7112	50	113	0	87	140	350	73	131	1960
02-08-19	67	162	4256	42	101	0	67	60	350	64	113	750
03-08-19	59	204	7512	50	168	0	82	180	350	76	173	1000
04-08-19	71	143	7512	33	110	0	77	135	350	74	234	1390
05-08-19	68	194	11368	41	191	1014	61	240	1550	68	364	2750
06-08-19	62	445	17400	38	335	3483	79	425	2550	55	210	2700
07-08-19	54	220	10256	32	324	4947	61	315	3950	35	134	2250
08-08-19	40	267	13112	27	219	2976	45	205	1600	50	164	0
09-08-19	38	178	7356	16	239	1962	35	191	1050	39	135	500
10-08-19	39	208	7112	13	279	2610	36	201	1250	28	108	600
Total	670	2560		405	2371		775	2472		668	2104	
Avg.	56	213		34	198		65	206		56	175	
		3.82	Times		5.85	Times	3.18	Times			3.18	Times

Statement showing Dam discharges & Free catchment discharges Panchaganga Basin

Date	Ra	jaram K.T.We	air	Dam disc Panchaga	harges in nga Basin	Discharges in free catchment area of Panchaganga Basin		
	Rainfall at	Level	Discharge	Cusescs	TMC	Cusescs	TMC	
	Radhanagari	(Ft.)	(Cusecs)					
	Dam (mm)	1/39+						
1	2	3	4	5	6	7	8	
30-07-19	165.00	34"2"	35014	3710	0.321	31304	2.705	
31-07-19	204.00	39'1"	53985	6566	0.567	47419	4.097	
01-08-19	170.00	41'6"	61209	9422	0.814	51787	4.474	
02-08-19	162.00	42'8"	62398	5356	0.463	57042	4.928	
03-08-19	204.00	43'8"	63269	8862	0.731	54407	4.701	
04-08-19	143.00	44'8"	64201	9252	0.765	54949	4.748	
05-08-19	194.00	47'3"	66164	16682	1.320	49482	4.275	
06-08-19	445.00	51'3"	69751	26133	2.254	43618	3.769	
07-08-19	220.00	55'7"	75352	21403	1.849	53949	4.661	
08-08-19	267.00	54'8"	74008	17688	1.528	56320	4.866	
09-08-19	178.00	52'11"	71679	10868	0.939	60811	5.254	
10-08-19	208.00	52'2"	70776	11572	1.000	59204	5.115	
	ТМС	12.55		53.593				
					81.03%			

Secondary data was obtained from Krishna sub basin report [Vadanere Committee Report]

6. RUNOFF ESTIMATION

We have putting Rainfall in average of month July 2019 in Kasaba Bawada (Kolhapur) (W.R.D)

 $Q = (P-0.2S)^2 \div (P+0.8S)$

where, P = RainfallO = Runoff

Q = RunonS = Potential maximum retention after

runoff

P = 148.5mm (Maximum rainfall on 6 August 2019)

 $S = 1000 \div CN - 10$ (CN = Curve Number)

 $= 1000 \div 85 - 10$ (CN = 85... Curve Number for Hydrologic Soil group D)

$$-176$$

= 1.76Q = (148.5-0.2×1.76)² ÷ (148.5+0.8×1.76) = 146.40 mm

City Area = 3920000 m² (Kasaba Bawada Total Area at Survey of India 2009 Published by 2010)

Volume of Water in City = $Q \times Area$ = 146.40 × 3920000 = 5,73,888 litres

7. SUGGESTION OF STRUCTURAL MEASURES

Sr. No.	Farm Pond	Percolation Tank	Movable Barrier	Total
SW1	10*10*3 =300 m^3 600 m^3	10*10*2 =200 m^3 400 m^3	3m ht. 200 m^3 400 m^3	1400 m^3
SW2	10*10*2 =200 m^3 400 m^3	10*10*2 =200 m^3 200 m^3	2m ht. 200 m^3 400 m^3	1000 m^3
SW3	7.5*10*2 =150 m^3 450 m^3	10*7.5*2 =150 m^3	2m ht. 200 m^3	800 m^3
SW4	10*10*2 =200*4 =800 m^3	7.5*10*3 =225*3 =675 m^3	3m ht. 208 m^3 625 m^3	2100 m^3

Sub Watersheds	Before Implementation Of Structural Measures	After Implementation Of Structural Measures	Difference	Structural Measures
SW1	2905.68 m3	1505.68 m3	1400 m3	Movable Barrier =2 Farm Pond =2 Percolation Tank =2
SW2	2260.39 m3	1260.39 m3	1000 m3	Movable Barrier =2 Farm Pond =2 Percolation Tank =2
SW3	1688 m3	888 m3	800 m3	Movable Barrier =2 Farm Pond =2 Percolation Tank =2
SW4	5223 m3	3123 m3	2100 m3	Movable Barrier =2 Farm Pond =2 Percolation Tank =2
Total	12077.07 m3	6777.07 m3	5300m3	Reduction % =43 %

Result and Discussion:

On the basis of Research papers and books we found that Curve Number (CN) method is most effective and appropriate method for calculating rainfall-runoff.

From the Curve Number Method, we have calculated maximum and minimum rainfall and from this data Average rainfall is calculated.

Using Curve Number Method we have calculated Discharge from K.T.Weir. On the basis of this data we have suggested these structures for maximum flood level and which we have discussed above we can reduce 43% of total discharge from the sub watershed that causing flood situation in Kolhapur city.

REFERENCES

- [1] Down to earth (website) and DTE News
- [2] India Flood Situation report (27 SEP 2005)
- [3] Times Of India (news)
- [4] Flood Disaster Management Department, Kolhapur
- [5] <u>www.floodmap.net</u>
- [6] Watershed Management book (Madan Mohan Das)
- [7] Irrigation Engineering & Hydraulic Structure book (Santosh Kumar Garg)
- [8] A.S.Padmavathy, M.G.Chandrasekhar 1993. Checkdam site

Volume: 06 Issue: 07 | July - 2022

Impact Factor: 7.185

ISSN: 2582-3930

selection using GIS approach 123-127.

- [9] Arnold, J.G., R. Srinivasan, R.S. Muttiah and J.R. Williams, 1998. large area hydrologic modelingand assessment: Part I. Model development. Journal of the American Water Resources Association, 34(1): 73-89.
- [10] Carver, S. J., Integrating multicriteria evaluation with geographi- cal information systems. Int. J.Geogra. Inf. Syst., 1991, 5(3), 321–339.
- [11] Chang, H.K.; Tan, Y.C.; Lai, J.S.; Pan, T.Y.; Liu, T.M.; Tung, C.P. Improvement of a drainage system for flood management with assessment of the potential effects of climate change. Hydrol.Sci. J.2013,58, 1581–1597.
- [12] Deepanshu Agarwal, Kunal Tongaria, Anurag Ohri, Siddhartha Pathak 2016. SOIL EROSIONMAPPING OF WATERSHED IN MIRZAPUR DISTRICT USING RUSLE MODEL IN GISENVIRONMENT 567-589.
- [13] Haggag, M., Kalisa, J. C., & Abdeldayem, A. W. (2016). Projections of precipitation, air temperature and potential evapotranspiration in Rwanda under changing cli- mate conditions. African Journal of Environmental Science and Technology, 10(1), 18–33.
- [14] J.Mwenge Kahindaa, R.J.Borotob 2009. A GIS-based decision support system for rainwaterharvesting (RHADESS).767-775
- [15] Otsubo, Y., Ito, T. and Iida, H., Time-series inundation mapping using RADARSAT-SAR. Jpn.Remote Sens. J., 2000, 20(4), 80–88.
- [16] Ohta, K., Kobashi, G., Takato, S. Kagaya, S., Yamada, H., Mina- kami, H. and Yamamura, E., Analysis of the geographical accessi- bility of neurosurgical emergency hospitals in Sapporo cityusing GIS and AHP. Int. J. Geogr. Inf. Sci., 2007, 21(6), 687–698.
- [17] Vamsi Krishna Vema, K. P. Sudheer, I. Chaubey 2020. Uncertainty of hydrologic simulation, andits impact on the design and the effectiveness of water conservation structures .973 -991
- [18] S. S. Panhalkar and Amol P. Jarag 2017. Flood risk assessment of Panchganga River (Kolhapurdistrict, Maharashtra) using GIS-based multicriteria decision technique.785-793
- [19] Silva, C.V.F.; Oliveira, C.P.M.; Garcia, J.I.B.; Yazaki, L.F.O.L.; Natale, O.; Brites, A.P.Z. ScenarioEvaluation of Alternatives for Flood Control in the Anhangabaú Watershed, Brazil. In Proceedings of the 6th International Conference on Flood Management, São Paulo, Brazil, 16–18 September 2014; ABRH: Nashville, TN, USA, 2014.
- [20] Sen, D., Flood hazards in India and management strategies. In Natural and Anthropogenic Hazards(ed. Jha, M.), Springer, the Netherlands, 2010, pp. 126–146.
- [21] Sharma, S. S. V., Srinivasa, Rao, G. and Bhanumurthy, V., Development of village–wise flood riskindex map using mutitemporal satellite data: a study of Nagaon district, Assam, India. Curr. Sci.,2012, 103(6), 705–711.
- [22] Sinha, R., Bapalu, G. V., Singh, B. and Rath, B., Flood risk analy- sis in the Kosi River Basin, North Bhiar using multiparametric apporch of AHP. J. Indian Society Remote Sensing, 2008, 36,293–307.
- [23] Vamsi Krishna Vema, K. P. Sudheer, I. Chaubey 2020. Uncertainty of hydrologic simulation, andits impact on the design and the effectiveness of water conservation structures .973 -991

I