
          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 06 Issue: 06 | June - 2022                         Impact Factor: 7.185                           ISSN: 2582-3930                                                                                                                                               

 

© 2022, IJSREM      | www.ijsrem.com                                                                                        |        Page 1 
 

IDENTIFING SOFTWARE BUGS OR NOT USING SMLT MODEL 

Mr. G. Rajasekaran
1
, Abdur Rahman

2
, Abishek M

3
, Abubucker Siddique

4 

1Associate Professor, Dept of AI&DS, Dhaanish Ahmed College of Engineering, Chennai. 

2,3,4Final year student, Dept of CSE, Dhaanish Ahmed College of Engineering, Chennai. 

----------------------------------------------------------------*****---------------------------------------------------------------- 

ABSTRACT-Defect classifiers are widely used by 

many large software corporations. Defect 

classifiers are commonly interpreted to uncover 

insights to improve software quality. Such insights 

help practitioners formulate strategies for effective 

testing, defect avoidance, and quality assurance [8, 

9]. Therefore, it is pivotal that these generated 

insights are reliable. When interpreting classifiers, 

prior studies typically employ a feature importance 

method to compute a ranking of feature 

importance (a.k.a., feature importance ranks). 

These feature importance ranks reflect the order in 

which the studied features contribute to the 

predictive capability of the studied classifier. These 

feature importance methods can be divided in two 

categories: classifier-specific (CS) and classifier-

agnostic (CA) methods. The objective is to propose 

an improvement to the existing study on the 

importance of feature ranking in terms of defect 

classifiers.. 

Key words : Identification of Software Defects or not 

using SMLT Model 

INTRODUCTION 

Data science is an interdisciplinary field that uses 

scientific methods, processes, algorithms and 

systems to extract knowledge and insights from 

structured and unstructured data, and apply 

knowledge and actionable insights from data 

across a broad range of application domains. The 

term "data science" has been traced back to 1974, 

when Peter Naur proposed it as an alternative 

name for computer science. In 1996, the 

International Federation of Classification Societies 

became the first conference to specifically feature 

data science as a topic. However, the definition 

was still in flux. The term “data science” was first 

coined in 2008 by D.J. Patil, and Jeff 

Hammerbacher, the pioneer leads of data and 

analytics efforts at LinkedIn and Facebook. In less 

than a decade, it has become one of the hottest 

and most trending professions in the market. Data 

science is the field of study that combines domain 

expertise, programming skills, and knowledge of 

mathematics and statistics to extract meaningful 

insights from data. Data science can be defined as 

a blend of mathematics, business acumen, tools, 

algorithms and machine learning techniques, all of 

which help us in finding out the hidden insights or 

patterns from raw data which can be of major use 

in the formation of big business decisions. 

OBJECTIVE 

The goal is the comparison of different defect 

classifiers while taking into note the agreeableness 

of the Classifier Agnostic and Classifier Specific 

feature importance ranking methods while 

improving upon the existing study. 

LITERATURE SURVEY 

 Title : A Systematic Literature Review of Software 

Defect Prediction: Research Trends, Datasets, 

Methods and Frameworks 11 Author: Romi Satria 

Wahono  

Year : 2015  

Recent studies of software defect prediction 

typically produce datasets, methods and 

frameworks which allow software engineers to 

focus on development activities in terms of defect-

prone code, thereby improving software quality 

and making better use of resources. Many 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 06 Issue: 06 | June - 2022                         Impact Factor: 7.185                           ISSN: 2582-3930                                                                                                                                               

 

© 2022, IJSREM      | www.ijsrem.com                                                                                        |        Page 2 
 

software defect prediction datasets, methods and 

frameworks are published disparate and complex, 

thus a comprehensive picture of the current state 

of defect prediction research that exists is missing. 

This literature review aims to identify and analyse 

the research trends, datasets, methods and 

frameworks used in software defect prediction 

research between 2000 and 201377.46% of the 

research studies are related to classification 

methods, 14.08% of the studies focused on 

estimation methods, and 1.41% of the studies 

concerned on clustering and association methods. 

In addition, 64.79% of the research studies used 

public datasets and 35.21% of the research studies 

used private datasets. Nineteen different methods 

have been applied to predict software defects. 

From the nineteen methods, seven most applied 

methods in software defect prediction are 

identified. Researchers proposed some techniques 

for improving the accuracy of machine learning 

classifier for software defect prediction by 

ensembling some machine learning methods, by 

using boosting algorithm, by adding feature 

selection and by using parameter optimization for 

some classifiers. The results of this research also 

identified three frameworks that are highly cited 

and therefore influential in the software defect 

prediction field. They are Menzies et al. 

Framework, Lessmann et al. Framework, and Song 

et al. Framework. 

Title : Anomaly-Based Bug Prediction, Isolation, 

and Validation: An Automated Approach for 

Software Debugging  

Author Martin Dimitrov and Huiyang Zhou Year : 

2009  

Software defects, commonly known as bugs, 

present a serious challenge for system reliability 

and dependability. Once a program failure is 

observed, the debugging activities to locate the 

defects are typically nontrivial and time 

consuming. In this paper, we propose a novel 

automated approach to pin-point the root-causes 

of software failures. Our proposed approach 

consists of three steps. The first step is bug 

prediction, which leverages the existing work on 

anomaly-based bug detection as exceptional 

behaviour during program execution has been 

shown to frequently point to the root cause of a 

software failure. The second step is bug isolation, 

which eliminates false-positive bug predictions by 

checking whether the dynamic forward slices of 

bug predictions lead to the observed program 

failure. The last step is bug validation, in which the 

isolated anomalies are validated by dynamically 

nullifying their effects and observing if the program 

still fails. The whole bug prediction, isolation and 

validation process is fully automated and can be 

implemented with efficient architectural support. 

Our experiments with 6 programs and 7 bugs, 

including a real bug in the gcc 2.95.2 compiler, 

show that our approach is highly effective at 

isolating only the relevant anomalies. Compared to 

state-of-art debugging techniques, our proposed 

approach pinpoints the defect locations more 

accurately and presents the user with a much 

smaller code set to analyze. 

Title : An Empirical Study on the Use of Defect 

Prediction for Test Case Prioritization  

Author: David Paterson, Jose Campos, Rui Abreu  

Year : 2019  

Test case prioritization has been extensively 

researched as a means for reducing the time taken 

to discover regressions in software. While many 

different strategies have been developed and 

evaluated, prior experiments have shown them to 

not be effective at prioritizing test suites to find 

real faults. This paper presents a test case 

prioritization strategy based on defect prediction, a 

technique that analyses code features – such as 

the number of revisions and authors — to estimate 

the likelihood that any given Java class will contain 

a bug. Intuitively, if defect prediction can 

accurately predict the class that is most likely to be 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 06 Issue: 06 | June - 2022                         Impact Factor: 7.185                           ISSN: 2582-3930                                                                                                                                               

 

© 2022, IJSREM      | www.ijsrem.com                                                                                        |        Page 3 
 

buggy, a tool can prioritize tests to rapidly detect 

the defects in that class. We investigated how to 

configure a defect prediction tool, called Schwa, to 

maximize the likelihood of an accurate prediction, 

surfacing the link between perfect defect 

prediction and test case prioritization 

effectiveness. Using 6 realworld Java programs 

containing 395 real faults, we conducted an 

empirical evaluation comparing this paper’s 

strategy, called G-clef, against eight existing test 

case prioritization strategies. The experiments 

reveal that using defect prediction to prioritize test 

cases reduces the number of test cases required to 

find a fault by on average 9.48% when compared 

with existing coverage-based strategies, and 10.5% 

when compared with existing history-based 

strategies. 

Title: Gram-Schmidt Orthogonalization for feature 

ranking and selection - A case study of claim 

prediction  

Author: Yuni Rosita Dewi, Hendri Murfi, Yudi 

Satria  

Year : 2020   

              Claim prediction is an important process in 

the insurance industry to prepare the right type of 

insurance policy for each potential policyholder. 

The frequency of claim predictions is highly 

increasing that head the problem of big data in 

terms of both the number of features and the 

number of policyholders. One of machine learning 

paradigms to handle the problem of the big data is 

dimensionality reduction by using a feature 

selection method. In this paper, we examine a new 

feature selection method for claim prediction using 

GramSchmidt Orthogonalization. In this method, 

the next features are iteratively selected based on 

the farthest distance to space spanned by the 

current features. Therefore, the advantage of the 

Gram-Schmidt Orthogonalization method is that it 

can provide a subset of the feature ranking without 

ordering all features. Our simulation shows that by 

using only about 26% of features, the predictor can 

reach comparable accuracy when it uses all 

features. It means that the GramSchmidt 

Orthogonalization-based feature selection method 

may need memory usage of about 26%, which is 

very significant in the context of the Big Data 

problem. 

 EXISTING SYSTEM: 

Thought: 

Insights are generated from the feature 

importance ranks that are computed by either CS 

or CA methods. However, the choice between the 

CS and CA methods to derive those insights 

remains arbitrary, even for the same classifier. In 

addition, the choice of the exact feature 

importance method is seldom justified.. 

Technique: CS or CA Methods 

Damage: Correlation based Feature selection is not 

suitable if the features are mutually correlated. 

PROPOSED SYSTEM: 

Thought: 

The usage of advanced feature interaction removal 

method, GramSchmidt is taken into account for the 

identification and removal of feature interactions in 

order to increase the agreeableness of CS and CA 

feature rankings. 

Technique:Naive-Bayes Algorthim,Random Forest  

Algorithm 

Advantage: Performance metrics of different 

algorithms are compared and the better prediction is 

done. 

SYSTEM IMPLEMENTATION 

ALGORITHM USED: 

1.Random Forest Classifier 

Random forests or random decision forests 

are an ensemble learning method for classification, 

regression and other tasks, that operate by 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 06 Issue: 06 | June - 2022                         Impact Factor: 7.185                           ISSN: 2582-3930                                                                                                                                               

 

© 2022, IJSREM      | www.ijsrem.com                                                                                        |        Page 4 
 

constructing a multitude of decision trees at training 

time and outputting the class that is the mode of the 

classes (classification) or mean prediction 

(regression) of the individual trees. Random forest is 

a type of supervised machine learning algorithm 

based on ensemble learning. Ensemble learning is a 

type of learning where you join different types of 

algorithms or same algorithm multiple times to 

form a more powerful prediction model. 

The random forest algorithm combines multiple 

algorithms of the same type i.e., multiple 

decision trees, resulting in a forest of trees, hence 

the name "Random Forest". The random forest 

algorithm can be used for both regression and 

classification tasks. 

The following are the basic steps involved in 

performing the random forest algorithm: 

 Pick N random records from the dataset. 

 Build a decision tree based on these N 

records. 

 Choose the number of trees you want in 

your algorithm and repeat steps 1 and 2. 

In case of a regression problem, for a new record, 

each tree in the forest predicts a value for Y 

(output). The final value can be calculated by taking 

the average of all the values predicted by all the 

trees in forest. Or, in case of a classification 

problem, each tree in the forest predicts the 

category to which the new record belongs. Finally, 

the new record is assigned to the category that wins 

the majority vote. 

 

 

MODULE DIAGRAM 

 

 

2. Naïve Bayes Classifier Algorithm 

 

➢ Naïve Bayes algorithm is a supervised learning 

algorithm, which is based on Bayes theorem and 

used for solving classification problems.  

➢ It is mainly used in text classification that 

includes a high-dimensional training dataset.  

➢ Naïve Bayes Classifier is one of the simple and 

most effective Classification algorithms which 

helps in building the fast machine learning models 

that can make quick predictions.  

➢ It is a probabilistic classifier, which means it 

predicts on the basis of the probability of an object.  

➢ Some popular examples of Naïve Bayes 

Algorithm are spam filtration, Sentimental analysis, 

and classifying articles.  

         This process is continued on the training set 

until meeting a termination condition. It is 

constructed in a top-down recursive divide-and-

conquer manner. All the attributes should be 

categorical. Otherwise, they should be discretized in 

advance. Attributes in the top of the tree have more 

impact towards in the classification and they are 

identified using the information gain concept. A 

decision tree can be easily over-fitted generating 

too many branches and may reflect anomalies due 

to noise or outliers 

 

 

 

http://www.ijsrem.com/
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Random_forest


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 06 Issue: 06 | June - 2022                         Impact Factor: 7.185                           ISSN: 2582-3930                                                                                                                                               

 

© 2022, IJSREM      | www.ijsrem.com                                                                                        |        Page 5 
 

MODULE DIAGRAM 

 

3. Gram- Schmidt orthogonalization 

 

           Gram- Schmidt orthogonalization method is 

used to rank features (inputs) based on the 

relevance of each of them versus the output (or how 

predictive those features are...

 

           xk is the vector of the N measures of the 

kth input variable. yp is the vector of the N 

measurements of the output (quantity to be 

predicted). The Gram-Schmidt method consists 

in ranking the inputs by decreasing relevance 

level following an iterative orthogonalization 

method. Inputs are called descriptors. First, we 

choose the most correlated input with the 

output (by cosine calculation). Then, project 

the output and all others descriptors on the 

subspace orthogonal to the descriptor you’ve 

just selected (the most correlated with the 

output). Finally, to iterate the same approach 

from this subspace 

 

                 The following function (implemented in 

Matlab) classifies input variables P by a Gram-

Schmidt orthogonalization process to explain an 

output vector Z : function [index ro] = 

Gram_Schmidt(Z,P,nb) This function returns the 

vector index containing the ranking of your 

variables from the most to the least relevant. Z is a 

column vector with as many lines as examples, P is 

the observation matrix MxN, M columns for M 

variables, N lines for N examples. nb (optional) 

indicates the number of vectors to order. 

4. “SHapley Additive exPlanations: 

SHAP stands for “SHapley Additive exPlanations.” 

Shapley values are a widely used approach from 

cooperative game theory. The essence of Shapley 

value is to measure the contributions to the final 

outcome from each player separately among the 

coalition, while preserving the sum of 

contributions being equal to the final outcome. 

When using SHAP values in model explanation, we 

can measure the input features’ contribution to 

individual predictions.  

Deployment  

Flask (Web Framework):  

Flask is a micro web framework written in Python.It 

is classified as a micro-framework because it does 

not require particular tools or libraries.It has no 

database abstraction layer, form validation, or any 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 06 Issue: 06 | June - 2022                         Impact Factor: 7.185                           ISSN: 2582-3930                                                                                                                                               

 

© 2022, IJSREM      | www.ijsrem.com                                                                                        |        Page 6 
 

other components where pre-existing third-party 

libraries provide common functions. However, 

Flask supports extensions that can add application 

features as if they were implemented in Flask itself. 

Extensions exist for object-relational mappers, 

form validation, upload handling, various open 

authentication technologies and several common 

framework related tools. 

MODULE DIAGRAM 

 

• Flask has a lightweight and modular 

design, so it easy to transform it to the 

web framework you need with a few 

extensions without weighing it down  

• ORM-agnostic: you can plug in your 

favourite ORM e.g. SQLAlchemy.  

• Basic foundation API is nicely shaped and 

coherent.  

• Flask documentation is comprehensive, 

full of examples and well structured. You 

can even try out some sample application 

to really get a feel of Flask.  

• It is super easy to deploy Flask in 

production (Flask is 100% WSGI 1.0 

compliant”) 40  

• HTTP request handling functionality • 

High Flexibility  

The configuration is even more flexible than that of 

Django, giving you plenty of solution for every 

production need 

SYSTEM SPECIFICATION   

ENVIRONMENTAL REQUIREMENTS  

1.Software Requirements:  

Operating System : Windows 

  

Tool : Anaconda with Jupyter Notebook  

2.Hardware requirements:  

Processor : Pentium IV/III  

Hard disk : minimum 80 GB 

 RAM : minimum 2 GB 

 

MODULES 

 

The system module is categorized into six sub-

modules namely, 

 

Module 1: Pre-Processing 

 

Module 2: Visualization 

 

Module 3: Logistic Regression 

 

Module 4: Random Forest Algorithm 

 

Module 5: Naive Bayes Algorithm 

 

Module 6: K-Nearest Neighbor    Algorithm 

 

 

 

 

Architecture Diagram 

 

 

 
 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 06 Issue: 06 | June - 2022                         Impact Factor: 7.185                           ISSN: 2582-3930                                                                                                                                               

 

© 2022, IJSREM      | www.ijsrem.com                                                                                        |        Page 7 
 

SCREENNSHOTS 

 

 
 

 

CONCLUSION 

The analytical process started from data cleaning 

and processing, missing value, exploratory analysis 

and finally model building and evaluation. The best 

accuracy on public test set is higher accuracy score 

will be found out.The use of Gram-Schmidt did 

indeed bring about a negligible improvement on 

the agreeableness of CS and CA methods . It was 

found that there were no notable differences in 

between the use of sHap and Permutation 

algorithms for classifier interpretation although it is 

still subjectable to be not the same. 

 

FUTURE ENHANCEMENT 

1.Software bugs prediction to connect with AI 

model.  

2.More diversified feature interaction removal 

mechanisms must be tested. 

  

3.Further testing on the interchangeability of sHap 

and Permutation methods must be looked upon. 
 

 REFERENCES 

 

[1]  Romi Satria Wahono (2015), “A Systematic 
Literature Review of Software Defect Prediction: 
Research Trends, Datasets, Methods and 
Frameworks”, in Journal of Software Engineer Vol I 
 
 [2]  Huiyang Zhou, Martin Dimitrov, (2009), 
“Anomaly-Based Bug Prediction, Isolation, and 
Validation: An Automated Approach for Software 
Debugging”, in ASPLOS’09 March 7-11 2009 
 

[3]  David Paterson, Gordon Fraser ,Gregory M. 
Kapfhammer, Jose Campos, Phil McMinn, Rui 
Abreu, (2019), “An Empirical Study on the Use of 
Defect Prediction for Test Case Prioritization”, 12th 
IEEE Conference on Software Testing, Validation 
and Verification (ICST) 
 
[4]  Yuni Rosita Dewi, Hendri Murfi, Yudi Satria, 
(2020) “Gram Schmidt Orthogonalization for 
Feature Ranking and selection – A case study of 
claim prediction”, in International Journal of 
Machine Learning and Computing. 
 

[5]  F. Zhang, A. E. Hassan, S. McIntosh, and Y. Zou, 
“The use of summation to aggregate software 
metrics hinders the performance of defect 
prediction models,” IEEE Transactions on Software 
Engineering, vol. 43, no. 5, pp. 476–491, 2016. 
  
[6]  E. Shihab, A. Mockus, Y. Kamei, B. Adams, and 
A. E. Hassan, “High-impact defects: a study of 
breakage and surprise defects,” in Proceedings of 
the 19th ACM SIGSOFT symposium and the 13th 
European conference on Foundations of software 
engineering. ACM, 2011, pp. 300–310.  
[7]  D. Chen, W. Fu, R. Krishna, and T. Menzies, 
“Applications of psychological science for 
actionable analytics,” in Proceedings of the 2018 
26th ACM Joint Meeting on European Software 
Engineering Conference and Symposium on the 
Foundations of Software Engineering. ACM, 2018, 
pp. 456–467. 
  
[8] J. Jiarpakdee, C. Tantithamthavorn, and A. E. 

Hassan, “The impact of correlated metrics on the 

interpretation of defect models,” IEEE Transactions 

on Software Engineering, 2019. 

 [9]  C. Theisen, K. Herzig, P. Morrison, B. Murphy, 
and L. Williams, “Approximating attack surfaces 
with stack traces,” in Proceedings of the 37th 
International Conference on Software Engineering-
Volume 2. IEEE Press, 2015, pp. 199–208.  
 
[10]  K. Herzig, S. Just, and A. Zeller, “The impact of 
tangled code changes on defect prediction 
models,” Empirical Software Engineering, vol. 21, 
no. 2, pp. 303–336, 2016.. 
 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                      Volume: 06 Issue: 06 | June - 2022                         Impact Factor: 7.185                           ISSN: 2582-3930                                                                                                                                               

 

© 2022, IJSREM      | www.ijsrem.com                                                                                        |        Page 8 
 

[11]  L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust 
prediction of faultproneness by random forests,” in 
15th international symposium on software 
reliability engineering. IEEE, 2004, pp. 417–428. 
 
 [12]  H. Jahanshahi, D. Jothimani, A. Bas¸ar, and M. 
Cevik, “Does chronology matter in jit defect 
prediction?: A partial replication study,” in 
Proceedings of the Fifteenth International 
Conference on Predictive Models and Data 
Analytics in Software Engineering. ACM, 2019, pp. 
90–99. 14 
  
[13] T. Mori and N. Uchihira, “Balancing the trade-
off between accuracy and interpretability in 
software defect prediction,” Empirical Software 
Engineering, vol. 24, no. 2, pp. 779–825, 2019.  
 
[14] S. Hooker, D. Erhan, P.-J. Kindermans, and B. 

Kim, “A benchmark for interpretability methods in 

deep neural networks,” in Advances in Neural 

Information Processing Systems, 2019, pp. 9737–

9748. 

[15] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. 
Hassan, “The impact of using regression models to 
build defect classifiers,” in 2017 IEEE/ACM 
14th International Conference on Mining Software 
Repositories (MSR). 
IEEE, 2017, pp. 135–145. 
 
[16] C. Tantithamthavorn, A. E. Hassan, and K. 
Matsumoto, “The impact of class rebalancing 
techniques on the performance and interpretation 
of 
defect prediction models,” IEEE Transactions on 
Software Engineering, 
2018. 
 
[17] T. Menzies and M. Shepperd, “Special issue on 
repeatable results in 
software engineering prediction,” 2012. 
 
[18] J. Jiarpakdee, C. Tantithamthavorn, H. K. Dam, 
and J. Grundy, “An 
empirical study of model-agnostic techniques for 
defect prediction 
models,” IEEE Transactions on Software 
Engineering, 2020 
 

[19] K Z Mao, “Fast orthogonal forward selection 
algorithm for feature subset selection”,2002. 
 
[20] T. Yu, W. Wen, X. Han, and J. Hayes, 
“Conpredictor: Concurrency defect prediction in 
real-world applications,” IEEE Transactions on 
Software Engineering, 2018. 

http://www.ijsrem.com/

