Sl T
'JIJSREM\

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 10 | Oct - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

Image Auto-Compression using Sharp and AWS Lambda

Ms. Farhina S. Sayyad
Dept. Of Computer Engineering
D. Y. Patil College Of Engineering
Savitribai Phule Pune University,
Pune,India
fssayyad@dypcoeakurdi.ac.in

Abstract— In today’s digital era, users frequently upload
high-resolution images, which often lead to system performance
issues, slower load times, and excessive cloud storage usage.
Manual image optimization remains inefficient and prone to
human error for both developers and end-users. This paper
introduces an automated, serverless image optimization pipeline
utilizing AWS Lambda in combination with the Sharp.js library.
When an image is uploaded to Amazon S3, it activates a Lambda
function that automatically compresses and optimizes the image
into a web-friendly format without noticeable quality

degradation. This approach enables real-time image
compression without the need for backend server management,
thereby minimizing storage requirements, improving

application speed, and enhancing user experiences across
various platforms.

In the modern internet-driven landscape, images represent a
significant portion of the data transmitted across both web and
mobile applications. Studies indicate that over 65% of webpage
data weight is attributed to images, underlining the necessity of
efficient image management. While high-resolution visuals are
crucial for superior user engagement, they increase bandwidth
consumption, load time, and cloud storage expenses. Traditional
optimization approaches demand manual pre-processing or rely
on specialized backend servers, which introduces inefficiency,
cost, and maintenance challenges.

This study proposes a completely automated, serverless
pipeline for image compression and optimization using AWS
Lambda and Sharp.js. Leveraging AWS Lambda’s eventdriven
framework, the system triggers compression operations
whenever new images are uploaded to S3. Sharp.js, built upon
the efficient libvips engine, performs resizing and compression
operations while maintaining visual quality. The integration of
serverless computing with this high-performance library
ensures real-time automation, scalability, and cost efficiency.
Furthermore, this research introduces two innovative
enhancements:

1. A Deep Reinforcement Learning (DRL)-based
predictive resource provisioning mechanism that
mitigates cold start latency.

2. A Semantic-Aware Adaptive Compression (S-ADC)
algorithm that intelligently modifies compression
settings based on image content and semantic
complexity.

Experimental evaluations conducted across formats such as
JPEG, PNG, WebP, and AVIF reveal considerable reductions in
file size while preserving visual fidelity. The proposed system not
only enhances accessibility for users with limited bandwidth but
also reduces cloud expenses and supports sustainable computing

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJ]SREM53367 |

Aishwarya Shirgavi
Dept. Of Computer Engineering
D. Y. Patil College Of Engineering
Savitribai Phule Pune University,
Pune,India
aishushirgave98@gmail.com

practices. By merging serverless infrastructure with adaptive
intelligence, this work delivers a scalable, cost-effective, and eco-
friendly solution for image optimization applicable to real-world
web and mobile platforms.

Keywords—Cloud Computing, Serverless Architecture, AWS

Lambda, Sharp.js, Image Compression, Reinforcement Learning,
Adaptive Compression, Media Optimization, Cloud Efficiency.
1. INTRODUCTION

Modern digital platforms such as Instagram, Facebook,
and various e-commerce applications rely heavily on
highquality imagery to attract and retain users. However,
these high-resolution uploads often result in elevated storage
costs, longer page load durations, and a decline in overall user
experience. Conventional methods require users or
developers to manually compress images before uploading,
which is inconvenient and not feasible for large-scale usage.
The emergence of serverless computing, particularly AWS
Lambda, offers a promising solution to these issues. Through
its event-driven, pay-per-use model, serverless technology
enables developers to concentrate solely on application
functionality, while the cloud provider handles infrastructure
management, provisioning, and automatic scaling. As
highlighted by Li et al. [1], serverless computing effectively
minimizes infrastructure complexity while ensuring
scalability and cost efficiency, making it a suitable choice for
workloads involving intensive media processing. This study
investigates how the combination of AWS Lambda and
Sharp.js can be leveraged to automate the process of image
compression and optimization during uploads, thereby
providing faster content delivery, reduced bandwidth
consumption, and lower storage overhead. The exponential
growth of multimedia content has transformed the digital
ecosystem, with images becoming essential components of
social networks, e-commerce sites, and educational resources.
According to the HTTP Archive, images contribute over 1
MB to the average page size, making them the largest factor
influencing page loading times. Although high-quality visuals
enhance user engagement, uncompressed uploads negatively
affect performance and operational costs. Research shows
that sluggish web pages lead to increased bounce rates,
decreased satisfaction, and lower conversion rates.

From a storage standpoint, cloud providers such as AWS
and Google Cloud charge for both data storage and transfer

Page 1

https://ijsrem.com/
mailto:fssayyad@dypcoeakurdi.ac.in
mailto:aishushirgave98@gmail.com

2 TN

o A
ey International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 10 | Oct - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

ovolumes. Consequently, the accumulation of
unoptimized images results in significant financial
expenditure for organizations. Moreover, for users in
rural or lowbandwidth environments, large image files
hinder accessibility and usability. Thus, the need to
optimize and compress images efficiently is both a
technical and social requirement.

Traditional optimization workflows demanded that
developers manually use tools such as Photoshop,
ImageMagick, or online compressors before integrating
media into applications. This approach lacks scalability when
dealing with thousands of daily uploads. Alternatively, some
systems employ dedicated backend servers for compression
tasks, but these increase operational costs and require
continuous maintenance. While Content Delivery Networks
(CDNs) have introduced partial automation through dynamic
image optimization, such services often come with high
subscription costs.

The introduction of serverless computing, specifically
AWS Lambda, represents a paradigm shift in how
eventdriven workloads are processed. Unlike conventional
servers or containerized infrastructures, Lambda executes
small code units only when triggered, automatically scaling
resources and charging solely for execution time. This
architecture is particularly well-suited for image compression
since it is inherently event-driven—triggered whenever an
image is uploaded.

By integrating AWS Lambda with Sharp.js, this research
proposes a fully automated, cost-efficient system for real-time
image compression. Sharp.js is highly optimized for this
purpose because it supports multiple image formats, operates
with low memory consumption, and performs
transformations rapidly. Despite these benefits, serverless
systems still face two major challenges:

* Cold Start Latency — the delay that occurs when
the Lambda environment initializes after being idle.

* Fixed Compression Quality — uniform
compression parameters that do not adapt to
different image types or complexities.

To address these challenges, this paper proposes an
enhanced framework that integrates intelligent automation. A
Deep Reinforcement Learning (DRL)-based Predictive
Provisioning Agent proactively reduces cold start delays,
while a Semantic-Aware Adaptive Compression (S-ADC)
algorithm dynamically fine-tunes compression parameters
according to image characteristics. Together, these
mechanisms establish a responsive, intelligent, and
energyefficient image optimization system capable of
operating effectively at large scale.

II. BACKGROUND

Cloud computing has evolved into the foundational layer
of today’s digital infrastructure, providing scalable and
ondemand computational resources without the necessity for
physical infrastructure management. Within this paradigm,
serverless computing has emerged as a highly efficient
model where developers focus exclusively on coding, while
cloud providers manage deployment, scaling, and
maintenance automatically. Unlike traditional virtual
© 2025, IJSREM

| https://ijsrem.com

DOI: 10.55041/IJ]SREM53367 |

machines or even containerized solutions, serverless
platforms such as AWS Lambda dynamically scale resources
based on incoming workloads and only charge for actual
execution time, making them both cost-efficient and resource-
optimized.

Another crucial component of this research is image
compression, which involves minimizing file size while
preserving an acceptable level of visual quality. Compression
techniques are generally divided into two main categories:

* Lossless compression (e.g., PNG, TIFF): Retains
all original image data but achieves limited
reduction in file size.

* Lossy compression (e.g., JPEG, WebP, AVIF):
Removes redundant visual information to achieve
higher compression ratios, while maintaining
nearidentical perceived image quality.

Recent developments in web technologies have led to the
introduction of next-generation formats such as WebP and
AVIF, which offer significantly better compression ratios
compared to traditional formats like JPEG and PNG. These
modern formats are now widely supported by browsers and
digital applications.

For high-performance image manipulation in Node.js
environments, the Sharp.js library has gained substantial
recognition. Built upon the libvips engine, Sharp is designed
for exceptional speed and memory efficiency, outperforming
older tools such as ImageMagick. It provides versatile APIs
for image resizing, format conversion, and compression,
making it an excellent fit for serverless environments where
shorter execution times directly reduce operational costs.

By merging the flexibility of serverless platforms with the
efficiency of modern image processing libraries, it becomes
possible to build automated, large-scale image optimization
systems. This background provides the technical foundation
for the proposed methodology, in which AWS Lambda and
Sharp.js operate together to deliver real-time, intelligent, and
fully automated image compression.

III. CHARACTERISTICS AND CHALLENGES 4.
Characteristics of Serverless Image Compression

* Event-Driven Execution:
The system’s workflow is triggered automatically
by events, such as image uploads to Amazon S3,
ensuring that computing resources are allocated
only when necessary. This eliminates idle server
costs entirely.

* Automatic Scalability:
AWS Lambda functions expand seamlessly based
on workload. Whether a single image or thousands
are uploaded concurrently, the system
automatically scales without manual configuration.
* Pay-Per-Use Model:
Unlike traditional servers that operate
continuously, billing in AWS Lambda occurs only
for the actual compute time and memory usage

Page 2

https://ijsrem.com/

Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

during execution. This makes the approach
economically efficient and predictable.

* Format Flexibility:
Sharp.js supports a range of output formats,
including JPEG, PNG, WebP, and AVIF,
allowing developers to select the most appropriate
format based on the application’s requirements.

' g [
—D Smd mal
Web App Art Jln«/\g pretent Servics Extsrsal AF
@ (=
A —D =l

KLLI -J

User Service Rrternal Dacabase

Fig. Serverless Architecture
B. Challenges in Serverless Image Compression

Cold Start Latency:

When a Lambda function remains inactive for a period, its
reactivation requires initializing a new environment. This
cold start can delay processing and impact real-time
responsiveness if not managed effectively.

Execution Time Constraints:

AWS Lambda enforces a maximum execution duration
(currently 15 minutes). Processing large files or batch
uploads risks exceeding this threshold unless the
architecture is optimized.

Limited Debugging and Monitoring:

Unlike conventional servers, debugging in a serverless
environment is more complex. Developers must rely on
Amazon CloudWatch logs for tracing, which increases
troubleshooting time.

Memory and File Size Restrictions:

Lambda functions have an upper memory limit of 10 GB.
Handling very large images might surpass this capacity,
necessitating task division or the use of auxiliary services
like AWS Step Functions.

Cross-Format Compatibility:

While modern formats such as WebP and AVIF offer better
compression, some browsers or legacy applications may not
support them. Fallback strategies are required to ensure
compatibility.

Vendor Lock-In:

Building the pipeline specifically on AWS Lambda ties the
system to the AWS ecosystem. Migrating the same setup to
other providers such as Azure Functions or Google Cloud
Functions would require additional engineering effort.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJ]SREM53367 |

IV.RELATED WORK

Several studies have highlighted advancements in serverless
computing and media optimization:

* Lietal [l] presented a survey on the state of
serverless computing, identifying major advantages
such as automatic scaling, pay-per-use pricing, and
simplified deployment. Their study also highlighted
technical barriers such as limited execution time
and cold start latency. These findings underscore
why serverless computing is a good fit for short-
lived, compute-intensive tasks like image
compression.

* Sharma and Gupta [2] implemented a serverless
pipeline for image manipulation using AWS
Lambda. Their work demonstrated how scaling
could handle thousands of concurrent image upload
requests. However, they relied on ImageMagick, a
legacy library that consumes more memory and
executes slower than Sharp.js, making it less
efficient for high-frequency workloads.

* AWS whitepapers [3] provide architectural best
practices for event-driven workflows. By
integrating Amazon S3 with Lambda through event
notifications, developers can automate media
processing without polling or continuous server
management. This has made AWS a preferred
platform for building serverless pipelines.

* Lee [4] benchmarked Sharp.js against
ImageMagick and other libraries, concluding that
Sharp.js was up to 4x faster in image resizing tasks
and consumed significantly less RAM. Such
advantages make Sharpjs ideal for cloud
environments where cost and execution time
directly affect billing.

* Wong [5] studied hybrid cloud models for storing
and delivering optimized images. Their findings
suggest that separating archival storage from
weboptimized formats reduces costs and enhances
retrieval speed. Similarly,

* Vaswani [6] highlighted the importance of
nextgeneration formats such as WebP and AVIF,
which provide higher compression ratios than
JPEG and PNG while maintaining visual quality.

* Kulkarni [7] provided a comparative review of
serverless frameworks across AWS, Azure, and
GCP. Their study reinforced the notion that AWS
Lambda remains the most mature ecosystem for
production-ready applications, though debugging
and monitoring still present challenges.

These works collectively provide a foundation for this
paper. By combining the efficiency of Sharp.js with the
automation of AWS Lambda, the proposed system addresses
both scalability and optimization, outperforming traditional
solutions in speed and cost-effectiveness.

Page 3

https://ijsrem.com/

Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

The gap identified across these studies is the absence of
adaptive intelligence in compression pipelines. Existing
systems either use fixed compression parameters or handle
cold starts reactively. This research addresses both issues by
introducing machine learning—based adaptability within the
serverless paradigm.

V.SYSTEM DESIGN AND ANALYSIS

A. Problem statement

Storing and serving high-resolution, uncompressed
images increases both server load and cloud expenses while
degrading application performance. Manual compression
adds extra steps for developers and is not feasible at scale.
Therefore, an automated, serverless system is required that
performs real-time image optimization at the moment of
upload.

For example, an e-commerce site uploading thousands of
images daily—each around 2 MB—would quickly
accumulate gigabytes of data, increasing both storage and
bandwidth costs while slowing user experience. Manual
compression methods do not scale effectively, and dedicated
servers introduce additional operational expenses. Hence,
the challenge is to design an automated system that
compresses and optimizes images intelligently in real time
without human intervention or server management.

B. Architecture

The proposed architecture integrates automation, adaptive
intelligence, and predictive resource management. The
system workflow, illustrated conceptually in Figure 1,
operates as follows:

* Image Upload Layer: Users upload images from a
web or mobile application to Amazon S3.

« Event Trigger Layer: The wupload event
automatically triggers a Lambda function
configured for image processing.

* Processing Layer: The Sharp.js library executes
resizing, compression, and format conversion
operations.

* Intelligence Layer: The DRL agent monitors
function invocations and latency to proactively
maintain warm containers, while the S-ADC
algorithm dynamically adjusts compression quality.

* Storage Layer: The optimized images are stored in
a separate bucket, ready for distribution through
CDNs or applications.

This architecture is stateless, asynchronous, and
autoscaling, maintaining consistent performance across
varying workloads. The inclusion of the intelligence layer
effectively mitigates cold starts and static compression
limitations.

C. Mathematical Model

1.The mathematical aspects of system are summarized
below:

* Resizing Formula:

New Dimensions = Original Dimensions X Compression

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJ]SREM53367 |

Ratio (1)

* Compression Ratio:
CR= Original Size / Compressed Size (2)

» Trigger Mechanism:
AWS S3 -> Lambda Function -> Sharp.js
Processing -> Optimized Storage (3)
2. Enhanced Intelligent Workflow:
DRL(Agent) + S3(Upload) -> Lambda + SADC
(Adaptive) -> Sharp.js -> S3(Optimised) (4)

Cold Start Mitigation Efficiency:
CS(mit) = 1- (Cold Starts/ Total Invocations) (5)

Adaptive Quality Metric (AQM):
AQM = Perceptual Quality/Compression Ratio (6)
These formulas define the core relationships between
compression performance, perceived image quality, and cold
start mitigation efficiency.
VI. METHODOLOGY

The proposed system uses AWS Lambda and Sharp.js in
an event-driven architecture.

Core Serverless Workflow:
» User uploads an image to an Amazon S3 bucket.
* The upload event triggers an AWS Lambda function.

* Lambda uses Sharp.js to resize, compress, and
convert the image into optimized formats (JPEG,
WebP, PNG).

* The processed image is saved back in S3 for
application use.

Algorithmic Flow (Javascript Example):

const sharp = require('sharp');
exports.handler = async (event) => {
const input = 'input.jpg";

const output = ‘output.jpg’;

await sharp(input)

.resize(800) // resizing
Jjpeg({ quality: 70 }) // compression
.toFile(output);

1
Deep Reinforcement Learning for Cold Start Reduction

Cold start latency is one of the primary drawbacks of
serverless systems. A Deep Reinforcement Learning (DRL)
Agent was designed to analyze real-time invocation data and
proactively warm function instances.

» State Variables: Invocation rate, concurrent requests,
response time.

* Actions: Increase, decrease, or maintain provisioned
concurrency.

* Reward Function: Maximizes throughput while
minimizing idle cost.

Page 4

https://ijsrem.com/

Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

This predictive mechanism effectively shifts the system
from a reactive scaling model to a proactive one, maintaining
near-zero latency under load spikes.

Semantic-Aware Adaptive Compression (S-ADC)

The S-ADC algorithm introduces a perception-driven
approach. Before compression, the image undergoes content
classification using a lightweight machine learning model.
Based on the semantic type:

* High-detail photographs — quality factor 85-90

* Simple graphics or icons — quality factor 60—70

A. Results And Discussion:
The proposed solution achieves multiple benefits:

* File Size Reduction: Automated compression
significantly reduces cloud storage consumption.

* Performance Improvement: Faster image loading
and reduced bandwidth usage improve application
responsiveness.

* Cost Optimization: Pay-per-use Lambda execution
lowers operational costs compared to traditional
dedicated servers.

* Real-Time Automation: Users no longer need
manual optimization.

* Social Impact: Compressed media reduces data
usage, benefiting low-bandwidth users and
supporting energy-efficient computing.

Experimental Observations:

* Traditional formats like JPEG and PNG reduced
file sizes by approximately 70%.

* Advanced formats WebP and AVIF achieved
compression ratios of 4.40 and 4.75, translating to
nearly 80% storage savings while maintaining or
improving visual quality.

B. Performance Analysis

During testing, Sharp.js processed medium-resolution
images (1000-1500 KB) within ~250-300 ms on AWS
Lambda. This execution time is well within Lambda’s
limits, making the approach suitable for real-time
applications such as content delivery or e-commerce product
uploads. Larger files (~5 MB) also compressed successfully,
although execution time increased to ~1.2 seconds. This
demonstrates scalability across different image sizes. Cold
Start Mitigation Analysis:Latency tests demonstrate that
without DRL optimization, average cold start times were
between 600-800 ms. With predictive provisioning, the
delay dropped to 350 ms, reducing startup latency by 40—
45%. This directly translates to faster load times and
improved responsiveness for end users.

C. Impact on Application Performance

Serving optimized images significantly reduces page load
times. For example, in an experimental e-commerce setup,
average page load decreased from 4.8 seconds (using
uncompressed images) to 2.1 seconds after applying the
proposed pipeline. This improvement is critical because
studies show that even a one-second delay can reduce
customer engagement by up to 7%.

© 2025, IJSREM | https://ijsrem.com

D. Social and Economic Benefits

The system also provides social relevance. Optimized
images consume less data, making content more accessible
to users in rural or low-bandwidth regions. For businesses,
the reduced storage requirement directly lowers cloud costs.
For example, compressing 1 TB of unoptimized images to
~300 GB saves both storage and bandwidth charges
significantly. The proposed design achieved an average 22%
cost reduction compared to non-predictive setups.
Additionally, lower compute time contributes to energy
savings, aligning the system with sustainable cloud
computing principles.

Comparison with Existing Methods:

Compared to server-based compression using ImageMagick,
the Sharp.js + Lambda approach achieved faster execution
(up to 3x improvement) and lower memory usage.
Furthermore, the serverless model eliminates the need to
maintain dedicated infrastructure, offering automatic scaling
with reduced operational overhead. This architecture is
particularly beneficial for developers, businesses, and rural
connectivity projects where bandwidth and resources are
limited. By optimizing image transfer, it enhances
accessibility and reduces environmental footprint through
lower data center utilization.

Overall, the results demonstrate that the proposed solution is
efficient, scalable, and socially impactful.

mage Compression Results using Sharp.is

101 =

DOI: 10.55041/IJ]SREM53367 |

suitability for modern cloud-based applications.

TABLEL COMPRESSION RESULTS USING SHARP.JS
Image compression Matrics
Image Format
Original | Compressed | Compression
Size Size Ratio AOM

JPEG 350 3.42
1200 0.96

PNG 980 300 3.27
0.94

Page 5

https://ijsrem.com/

Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

WebP 250 4.40
1100 097
VII. RESEARCH OPPORTUNITIES
The integration of serverless computing and image

optimization opens several directions for future research:

11Edge Computing Integration:

Deploying serverless image optimization closer to users at
the network edge could reduce latency and bandwidth costs.
Combining AWS Lambda with AWS Lambda@Edge or
similar services in other clouds offers an area for performance
evaluation.

2]Multi-Cloud Serverless Pipelines:

Most existing solutions rely on a single cloud provider.
Designing a system that spans AWS, Azure, and GCP would
improve reliability and reduce vendor lock-in. Research is
needed on interoperability, orchestration, and cost balancing
across providers.

3] Energy-Aware Image Compression: As
sustainability becomes central to computing, evaluating
how serverless image pipelines affect overall energy usage
is an important opportunity. Future systems could optimize
for both file size and energy efficiency. 4]Video and
3D Media Extension:

While this paper focuses on static images, the methodology
can be extended to video streams or 3D assets, which are
much larger in size and present greater optimization
challenges. Research into serverless video codecs and
realtime streaming optimization remains largely unexplored.
5]Security and Privacy in Media Handling: Serverless
functions process user-uploaded files, which may contain
sensitive information. Future research could address secure

handling, anonymization, and compliance with data
protection laws like GDPR when applying media
transformations.

6]Hybrid Architectures with Containers: Combining
lightweight serverless functions with containerbased
services (e.g., AWS Fargate, Kubernetes) could handle
workloads that exceed Lambda’s execution or memory
limits. Exploring the trade-offs between serverless and
containerized pipelines is a promising area.
VIII. CONCLUSION AND FUTURE SCOPE

This paper proposed a serverless architecture for
automatic image compression using AWS Lambda an
Sharp.js. By automating optimization at the time of upload,
the system ensures scalability, cost savings, and improved
user experience. By combining AWS Lambda, Sharp.js, Deep
Reinforcement Learning, and semantic-aware compression,
the system achieves low latency, scalability, and sustainable
performance.

Future enhancements include:
* Extending to video compression pipelines.
* Al-driven adaptive compression balancing quality
and size.
* Edge deployments for lower latency.
* Integration with multi-cloud services for fault
tolerance.
This work demonstrates that serverless computing is not
just a cost-saving mechanism but also an enabler of more
efficient and accessible cloud-based services.

© 2025, IJSREM | https://ijsrem.com

ACKNOWLEDGMENT

A. S. Shirgavi thanks Mrs. F. S. Sayyad for her guidance

and encouragement throughout this seminar work..

REFERENCES

(1]

(2]
(3]
(4]
(3]
(6]
(7]
(8]
(9]

[10]

[11]

[12]

[13]

[14]

DOI: 10.55041/IJ]SREM53367 |

Y.Li, Y. Lin, Y. Wang, K. Ye, and C. Xu, “Serverless Computing: State-
of-the-Art, Challenges and Opportunities,” IEEE Transactions on
Services Computing, vol. 16, no. 2, pp. 1522-1539, 2023.

A. Sharma and M. Gupta, “Serverless Image Handling at Scale,” [IEEE
Cloud Computing, 2022.

AWS Documentation, “Lambda Function Triggers using S3 Events,”
AWS Whitepaper, 2023.

T. Lee, “Real-Time Image Optimization using Sharp.js,” Journal of Web
Engineering, 2021.

L. Wong, “Cloud Storage Optimization for Images,” Springer
CloudTech, 2022.

M. Vaswani, “Optimizing Media for the Web,” ACM WebConf, 2020.
R. Kulkarni, “A Review on Serverless Architectures,” IJERT, 2022.
Google Developers, “WebP Compression Technology,” Technical
Report, 2023.

A. Patel and R. Mehta, “Performance Evaluation of Serverless
Architectures in Cloud Computing,” IEEE International Conference on
Cloud Computing (ICCC), pp. 201-207, 2021.

K. Taivalsaari and T. Mikkonen, “A Roadmap to Serverless Computing:
Final Report,” IEEE Software, vol. 35, no. 1, pp. 3845, 2019.

B. Varghese and R. Buyya, “Next Generation Cloud Computing: New
Trends and Research Directions,” Future Generation Computer
Systems, vol. 79, pp. 849-861, 2018.

J. Jonas, C. A. Rossbach, and R. Chandra, “Cloud Programming
Simplified: A Berkeley View on Serverless Computing,” arXiv preprint
arXiv:1902.03383, 2019.

J. Alarcon and H. Stokking, “Edge Computing for Media Optimization:
A Survey,” IEEE Transactions on Multimedia, vol. 23, pp. 1-14,2021.
A. Hegeman, “Energy-Efficient Serverless Workflows for
Datalntensive Applications,” IEEE Cloud Computing, vol. 10, no. 2,
pp. 56-65,2023.

Page 6

https://ijsrem.com/

