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Abstract 

Image captioning is a fundamental task in vision- language 

understanding, where the model predicts a tex- tual informative 

caption to a given input image. In this paper, we present a simple 

approach to address this task. We use CLIP encoding as a prefix 

to the caption, by em- ploying a simple mapping network, and then 

fine-tunes a language model to generate the image captions. The 

re- cently proposed CLIP model contains rich semantic fea- tures 

which were trained with textual context, making it best for vision-

language perception. Our key idea is that together with a pre-

trained language model (GPT2), we ob- tain a wide understanding 

of both visual and textual data. Hence, our approach only 

requires rather quick training to produce a competent captioning 

model. Without addi- tional annotations or pre-training, it 

efficiently generates 

 

 
A politician receives a gift 

from politician. 

 

 
Silhouette of a woman 

practicing yoga on the beach 

at sunset. 

 

 

A collage of different colored 

ties on a white background. 

 

Aerial view of a road in autumn. 

meaningful captions for large-scale and diverse datasets. 

Surprisingly, our method works well even when only the mapping 

network is trained, while both CLIP and the lan- guage model 

remain frozen, allowing a lighter architecture with less trainable 

parameters. Through quantitative eval- uation, we demonstrate 

our model achieves comparable re- sults to state-of-the-art methods 

on the challenging Concep- tual Captions and nocaps datasets, while 

it is simpler, faster, and lighter.  

 

1. Introduction 

In image captioning, the task is to provide a meaning- ful and 

valid caption for a given input image in a natural language. This 

task poses two main challenges. The first is semantic 

understanding. This aspect ranges from simple tasks such as 

detecting the main object, to more involved ones, such as 

understanding the relations between depicted parts of the image. 

For example, in the top-left image of Fig. 1, the model understands 

that the object is a gift. The second challenge is the large number 

of possible ways to describe a single image. In this aspect, the 

training dataset typically dictates the preferable option for a given 

image. 

  
*Equal contribution. 

Figure 1. Our ClipCap model produces captions depcting the re- 

spective images. Here, the results are of a model that was trained 

over the Conceptual Captions dataset. 

 

 

Many approaches have been proposed for image caption- ing [4, 

9, 13, 19, 34, 35, 42, 44, 47]. Typically, these works utilize an 

encoder for visual cues and a textual decoder to produce the final 

caption. Essentially, this induces the need to bridge the challenging 

gap between the visual and tex- tual representations. For this 

reason, such models are re- source hungry. They require extensive 

training time, a large number of trainable parameters, a massive 

dataset, and in some cases even additional annotations (such as 

detection results), which limit their practical applicability. 

Excessive training time is even more restrictive for ap- 

plications that require several training procedures. For in- stance, 

training multiple captioning models over various datasets could 

provide different users (or applications) with different captions for 

the same image. Additionally, given fresh samples, it is desirable 

to update the model routinely with the new data. Therefore, a 

lightweight captioning model is preferable. Specifically, a model 

with faster train- ing times and fewer trainable parameters would 

be benefi- cial, especially if it does not require additional 

supervision. 
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Const. "A cat is sleeping on top of a blanket on a bed." 

Figure 2. Overview of our transformer-based architecture, enabling the generation of meaningful captions while both CLIP and the 

language model, GPT-2, are frozen. To extract a fixed length prefix, we train a lightweight transformer-based mapping network from the 

CLIP embedding space and a learned constant to GPT-2. At inference, we employ GPT-2 to generate the caption given the prefix 

embeddings. We also suggest a MLP-based architecture, refer to Sec. 3 for more details. 

 

In this paper, we leverage powerful vision-language pre- trained 

models to simplify the captioning process. More specifically, we 

use the CLIP (Contrastive Language-Image Pre-Training) encoder, 

recently introduced by Radford et al. [29]. CLIP is designed to 

impose a shared representa- tion for both images and text 

prompts. It is trained over a vast number of images and textual 

descriptions using a contrastive loss. Hence, its visual and textual 

representa- tions are well correlated. As we demonstrate, this 

correla- tion saves training time and data requirements. 

As illustrated in Fig. 2, our method produces a prefix for each 

caption by applying a mapping network over the CLIP embedding. 

This prefix is a fixed size embeddings sequence, concatenated to 

the caption embeddings. These are fed to a language model, which 

is fine-tuned along with the mapping network training. At 

inference, the language model generates the caption word after 

word, starting from the CLIP prefix. This scheme narrows the 

aforementioned gap between the visual and textual worlds, 

allowing the em- ployment of a simple mapping network. To 

achieve even a lighter model, we introduce another variant of our 

method, where we train only the mapping network, while both 

CLIP and the language model are kept frozen. By utilizing the 

expressive transformer architecture, we successfully pro- duce 

meaningful captions, while imposing substantially less trainable 

parameters. Our approach is inspired by Li et al. [20], which 

demonstrates the ability to efficiently adapt a language model for 

new tasks by concatenating a learned prefix. We use GPT-2 [30] 

as our language model, which has been demonstrated to generate 

rich and diverse texts. 

As our approach exploits the rich visual-textual repre- 

sentation of CLIP, our model requires significantly lower training 

time. For instance, we train our model on a single Nvidia 

GTX1080 GPU for 80 hours over the three million samples of the 

massive Conceptual Captions dataset. Nev- ertheless, our model 

generalizes well to complex scenes, as 

can be seen in Fig. 1 (e.g., practicing yoga on the beach at sunset). 

We evaluate our method extensively, demonstrating successful 

realistic and meaningful captions. Even though our model requires 

less training time, it still achieves com- parable results to state-of-

the-art approaches over the chal- lenging Conceptual Captions [33] 

and nocaps [1] datasets, and marginally lower for the more restricted 

COCO [7, 22] benchmark. In addition, we provide a thorough 

analysis of the required prefix length and the effect of fine-tuning 

the language model, including interpretation of our produced 

prefixes. Overall, our main contributions are as follow: 

• A lightweight captioning approach that utilizes pre- trained 

frozen models for both visual and textual pro- cessing. 

• Even when the language model is fine-tuned, our ap- proach 

is simpler and faster to train, while demonstrat- ing 

comparable results to state-of-the-art over chal- lenging 

datasets. 

 

2. Related Works 

Recently, Radford et al. [29] presented a novel approach, known 

as CLIP, to jointly represent images and text de- scriptions. CLIP 

comprises two encoders, one for visual cues and one for text. It 

was trained over more than 400 million image-text pairs guided by 

unsupervised contrastive loss, resulting in rich semantic latent 

space shared by both visual and textual data. Many works have 

already used CLIP successfully for computer vision tasks that 

require the understanding of some auxiliary text, such as generat- 

ing or editing an image based on a natural language con- dition [5, 

14, 28]. In this paper, we utilize the powerful CLIP model for the 

task of image captioning. Note that our method does not employ 

the CLIP’s textual encoder, since there is no input text, and the 

output text is generated by a 
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max 
Σ 

log pθ(c , . . . , c | x ), (1) 

{ } 

1 A 

1 k 

{ } 

language model. 

Commonly, image captioning [34] models first encode the 

input pixels as feature vectors, which are then used to produce 

the final sequence of words. Early works uti- lize the features 

extracted from a pre-trained classification network [6, 9, 13, 42], 

while later works [4, 19, 47] exploit the more expressive features of 

an object detection net- work [31]. Though a pre-trained object 

detection network is available for the popular COCO benchmark [7, 

22], it is not necessarily true for other datasets. This implies that 

most methods would require additional object detection annota- 

tions to operate over new and diverse datasets. To further leverage 

the visual cues, an attention mechanism is usually utilized [4, 6, 42] 

to focus on specific visual features. More- over, recent models apply 

self-attention [16, 43] or use an expressive visual Transformer [12] 

as an encoder [23]. Our work uses the expressive embedding of 

CLIP for visual rep- resentation. Since CLIP was trained over an 

extremely large number of images, we can operate on any set of 

natural im- ages without additional annotations. 

To produce the caption itself, a textual decoder is em- ployed. 

Early works have used LSTM variants [8, 38, 39], 

3. Method 

We start with our problem statement. Given a dataset of paired 

images and captions xi, ci N   , our goal is to learn the generation 

of a meaningful caption for an unseen input image. We can refer 

to the captions as a sequence of to- kens ci = ci , . . . , ci, where we 

pad the tokens to a maximal length l. Our training objective is then 

the following: 

 

i i i 

θ 1 A 
i=1 

where θ denotes the model’s trainable parameters. Our key idea is 

to use the rich semantic embedding of CLIP, which contains, 

virtually, the essential visual data, as a condition. Following recent 

works [47], we consider the condition as a prefix to the caption. 

Since the required semantic informa- tion is encapsulated in the 

prefix, we can utilize an autore- gressive language model that 

predicts the next token with- out considering future tokens. Thus, 

our objective can be described as: 

N A 
while recent works [16, 26] adopted the improved trans- 

 

max 
Σ Σ 

log p (ci | xi, ci , . . . , ci ) (2) 

 
 

dominance of the newly introduced paradigm. With this paradigm, 

the language model is first pre-trained over a large data collection 

to solve an auxiliary task. Then, the model is fine-tuned for a 

specific task, where additional supervision is used. As our visual 

information resides in the prefix, we utilize a powerful auto-

regressive language model, GPT-2 [30]. Considering the training 

loss term, earlier works adopt the effective cross-entropy, while 

con- temporary methods also apply self-critical sequence train- ing 

[15, 32, 45]. That is, an additional training stage to op- timize the 

CIDEr metric. We deliberately refrain from this optimization to 

retain a quick training procedure. 

Most close to ours, are works that employ vision-and- language 

pre-training to create a shared latent space of both vision and text 

[19,25,35,46,47]. Zhou et al. [47] use visual 

3.1. Overview 

An illustration of our method is provided in Fig. 2. We use 

GPT-2 (large) as our language model, and utilize its to- kenizer to 

project the caption to a sequence of embeddings. To extract visual 

information from an image xi, we use the visual encoder of a pre-

trained CLIP [29] model. Next, we employ a light mapping 

network, denoted F , to map the CLIP embedding to k embedding 

vectors: 

pi , . . . , pi  = F (CLIP(xi)). (3) 

Where each vector pi has the same dimension as a word 

embedding. We then concatenate the obtained visual em- bedding 

to the caption ci embeddings: 

Zi = pi , . . . , pi , ci , . . . , ci. (4) 

tokens extracted from object detector as a prefix to caption tokens. 

The entire model is then pre-trained to perform pre- diction utilizing 

the BERT [11] architecture. Li et al. [19] and Zhang et al. [46] also 

utilize BERT, but require the addi- tional supervision of object tags. 

Hence, these methods are limited to datasets in which such object 

detectors or anno- tations are available. The approach of Wang et 

al. [40] mit- 

During training, we feed the language model with the prefix-

caption concatenation Zi N . Our training objec- tive is 

predicting the caption tokens conditioned on the pre- fix in an 

autoregressive fashion. To this purpose, we train the mapping 

component F using the simple, yet effective, cross-entropy loss: 

N A 
igate the need for supplementary annotations, but still per- 

 

L = − 
Σ Σ 

log p (ci | pi , . . . , pi , ci , . . . , ci ). (5) 

 
 

tive pre-training step is required to compensate for the lack of joint 

representation of language and vision, which we in- herently 

obtained by employing CLIP. 

We now turn to discuss two variants of our method regard- ing the 

additional fine-tuning of the language model and their 

implications. 

former architecture [36]. Built upon the transformer, one 

of the most notable works is BERT [11], demonstrating the 
i=1 j=1 

form an extensive pre-train process with millions of image- 

text pairs, resulting in a lengthy training time. This exhaus- i=1 j=1 

θ 

N 
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3.2. Language model fine-tuning 

Our main challenge during training is to translate be- tween the 

representations of CLIP and the language model. Even though both 

models develop a rich and diverse rep- resentation of text, their 

latent spaces are independent, as they were not jointly trained. 

Moreover, each captioning dataset incorporates a different style, 

which may not be nat- ural for the pre-trained language model. 

Hence, we propose fine-tuning the language model during the 

training of the mapping network. This provides additional 

flexibility for the networks and yields a more expressive outcome. 

However, fine-tuning the language model naturally in- creases 

the number of trainable parameters substantially. Thus, we present 

an additional variant of our approach, in which we keep the 

language model fixed during training. Our attempt to adjust a 

frozen language model is inspired by the work of Li and Liang 

[20]. In their work, they ac- commodate such a pre-trained model 

to an unfamiliar task by learning only a prefix. Such prefix is 

automatically op- timized to steer the language model towards the 

new objec- tive during a standard training procedure. Following 

this approach, we suggest avoiding the fine-tuning to realize an 

even lighter model, where only the mapping network is trained. 

As presented in Section 4, our model not only pro- duces realistic 

and meaningful captions, but also achieves superior results for 

some of the experiments without fine- tuning the language model. 

Note that fine-tuning CLIP does not benefit resulting quality, but 

does increase training time and complexity. We hence postulate 

that the CLIP space al- ready encapsulates the required 

information, and adapting it towards specific styles does not 

contribute to flexibility. 

3.3. Mapping Network Architecture 

Our key component is the mapping network, which translates 

the CLIP embedding to the GPT-2 space. When the language 

model is simultaneously fine-tuned, the map- ping is less 

challenging, as we easily control both networks. Therefore, in this 

case, we can employ a simple Multi-Layer Perceptron (MLP). We 

have achieved realistic and meaning- ful captions even when 

utilizing only a single hidden layer, as CLIP is pre-trained for a 

vision-language objective. 

Nevertheless, when the language model is frozen, we propose 

utilizing the more expressive transformer [36] ar- chitecture. The 

transformer enables global attention be- tween input tokens while 

reducing the number of param- eters for long sequences. This 

allows us to improve our results by increasing prefix size, as 

shown in Section. 4. We feed the transformer network with two 

inputs, the vi- sual encoding of CLIP and a learned constant input. 

The constant has a dual role, first, to retrieve meaningful infor- 

mation from CLIP embedding through the multi-head atten- tion. 

Second, it learns to adjust the fixed language model to the new 

data. This is demonstrated in Section. 4, where 

we offer interpretability for our generated prefix. As can be seen, 

when the language model is fixed, the transformer mapping 

network learns a meticulous set of embeddings without any textual 

meaning. These are optimized to tame the language model. 

3.4. Inference 

During inference, we extract the visual prefix of an input image 

x using the CLIP encoder and the mapping network F . We start 

generating the caption conditioned on the visual prefix, and predict 

the next tokens one by one, guided by the language model output. 

For each token, the language model outputs probabilities for all 

vocabulary tokens, which are used to determine the next one by 

employing a greedy approach or beam search. 

 

4. Results 

Datasets. We use the COCO-captions [7,22], nocaps [1] , and 

Conceptual Captions [33] datasets. We split the former according 

to the Karpathy et al. [17] split, where the train- ing set contains 

120, 000 images and 5 captions per image. Since COCO is limited 

to 80 classes, the nocaps dataset is designed to measure 

generalization to unseen classes and concepts. It contains only 

validation and test sets, with the training utilizing COCO itself. 

The nocaps dataset is di- vided to three parts — in-domain 

contains images portray- ing only COCO classes, near-domain 

contains both COCO and novel classes, and out-of-domain consists 

of only novel classes. As suggested by Li et al. [19], we evaluate 

the model using only the validation set. Though some meth- ods 

utilize object tags of the novel classes, we only con- sider the 

setting of no additional supervision, as we find it more applicable 

in practice. Therefore, we do not employ a constrained beam 

search [2]. The Conceptual Captions dataset consists of 3M pairs 

of images and captions, har- vested from the web and post-

processed. It is considered to be more challenging than COCO 

due to the larger va- riety of styles of both the images and the 

captions, while not limited to specific classes. To focus on the 

concepts, specific entities in this dataset are replaced with general 

no- tions. For example, in Fig. 1, the names are replaced with 

”politician”. For evaluation, we use the validation set, con- sisting 

of 12.5K images, as the test set is not publicly avail- able. 

Consequently, we did not use this set for validation. 

 

Baselines. We compare our method to the state-of-the-art works of 

Li et al. [19] (known as Oscar), Vision-Language Pre-training 

model (VLP) [47], and the eminent work of Anderson et al. [4], 

denoted BUTD. These models first pro- duce visual features using 

an object detection network [31]. BUTD then utilizes an LSTM to 

generate the captions, while VLP and Oscar employ a 

transformer, trained simi- 

http://www.ijsrem.com/
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(A) Conceptual Captions 

Model ROUGE-L ↑ CIDEr ↑ SPICE ↑ #Params (M) ↓ Training Time ↓ 

VLP 24.35 77.57 16.59 115 1200h (V100) 

Ours; MLP + GPT2 tuning 26.71 87.26 18.5 156 80h (GTX1080) 

Ours; Transformer 25.12 71.82 16.07 43 72h (GTX1080) 

(B) nocaps 

 
BUTD [4] 74.3 11.5 56.9 10.3 30.1 8.1 54.3 10.1 52 960h 

 

Oscar [19] 79.6 12.3 66.1 11.5 45.3 9.7 63.8 11.2 135 74h 

 

Ours; MLP + GPT2 

tuning 

79.73 12.2 67.69 11.26 49.35 9.7 65.7 11.1 156 7h 

 

Ours; Transformer 84.85 12.14 66.82 10.92 49.14 9.57 65.83 10.86 43 6h 

(C) COCO 

Model B@4 ↑ METEOR ↑ CIDEr ↑ SPICE ↑ #Params (M) ↓ Training Time ↓ 

BUTD [4] 36.2 27.0 113.5 20.3 52 960h (M40) 

VLP [47] 36.5 28.4 117.7 21.3 115 48h (V100) 

Oscar [19] 36.58 30.4 124.12 23.17 135 74h (V100) 

Ours; Transformer 33.53 27.45 113.08 21.05 43 6h (GTX1080) 

Ours; MLP + GPT2 tuning 32.15 27.1 108.35 20.12 156 7h (GTX1080) 

(D) Ablation 

Ours; Transformer + GPT2 tun- ing 32.22 27.79 109.83 20.63 167 7h (GTX1080) 

Ours; MLP 27.39 24.4 92.38 18.04 32 6h (GTX1080) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in-domain near-domain out-of-domain Overall 

Model CIDEr↑ SPICE ↑ CIDEr SPICE CIDEr SPICE CIDEr SPICE Params↓ Time↓ 
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Table 1. Quantitative evaluation. As can be seen, our method achieves comparable results for both nocaps and Conceptual Captions with 

much faster training time. 

 
Ground Truth   A man with a red 
helmet 

on a small moped 

on a dirt road 

A young   girl   
inhales 
with the intent of 

blow- ing out a 

candle. 

A man on a bicycle 

rid- ing next to a 

train. 

a wooden cutting 
board 
topped with sliced up 

food. 

A kitchen is shown 
with 
a variety of items on 

the counters. 

Oscar a man riding a 
motorcy- 

a woman sitting at a 
ta- 

a woman riding a 
bike 

a woman sitting at a 
ta- 

a kitchen with a 
sink, 

cle down a dirt road. ble with a plate of 
food. 

down a street next to 
a 

ble with a plate of 
food. 

dishwasher and a 
win- 

  train.  dow. 
Ours; MLP + 

a man riding a 

motorcy- 

a woman is eating 
a 

a man is standing next 
to 

a row of wooden 
cut- 

a kitchen with a 
sink, 

GPT2 tuning   
cle on a dirt road. piece of cake with a 

can- 
a train. ting boards with 

wooden 
stove, and window. 

 dle.  spoons.  
Ours; 

a man is riding a 

motor- 

a young girl sitting at 
a 

a man is standing next 
to 

a wooden table with 
a 

a kitchen with a 
sink 

Transformer 
bike on a dirt road. table with a cup of 

cake. 
a train. bunch of wood tools 

on 
and a window. 

   it.  

Figure 3. Uncurated results of the first five images in the COCO test set (Karpathy et al. [17] split). 

     
Ground Truth A life in 

photography – in 

pictures. 

Photograph of the 

sign being repaired 

by brave person. 

Globes : the green 3d 

person carrying in 

hands globe. 

The player staring in- 

tently at a computer 

screen. 

The - bedroom stone 

cottage can sleep 

peo- ple. 

VLP Actors in a scene 

from the movie. 

The sign at the entrance. Templates:   green 

car- 

toon character 

holding the earth 

globe. 

Person works on a 

video. 

The master bedroom 

has a king - sized bed 

with a queen size bed. 

Ours; MLP 

+ GPT2 

tuning 

Actor sits in a hotel 

room. 

The sign at the entrance. 3d render of a man 

hold- 

ing a globe. 

Person, a student, 

watches a video on 

his laptop. 

The property is on 

the market for £ 1. 

Ours; 

Transform

er 

person sitting on a 

chair in a room. 

a sign is seen at the 

en- trance to the 

store. 

stock image of a man 

holding the earth. 

portrait of a young 

boy playing video 

game. 

one of the   

bedrooms in the 

house has been 

converted into a 

living room. 

 

Figure 4. Uncurated results of the first five images in our test set for Conceptual Captions [33]. 
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A person standing in front 

of a rock formation in the 

desert. 

 

Two horned goats crossing a 

road in the desert. 

 

 

A man holding a banana in 

front of a river. 

 

A person sitting at a table 

with a tray of sushi. 

Evaluation metrics. Similar to Li et al. [19], we validate our 

results over the COCO dataset using the common met- rics BLEU 

[27], METEOR [10], CIDEr [37] and SPICE [3], 

and for the nocaps dataset using CIDEr and SPICE. For the 

Conceptual Captions, we report the ROUGE-L [21], CIDEr, and 

SPICE, as suggested by the authors [33]. 

Furthermore, we measure the training time and the num- ber of 

trainable parameters to validate the applicability of our method. 

Reducing the training time allows to quickly obtain a new model 

for new data, create an ensemble of models, and decrease energy 

consumption. Similar to other works, we report training time in 

GPU hours, and the GPU model used. The number of trainable 

parameters is a popu- lar measure to indicate model feasibility. 

Figure 5. Results over smartphone photos. Top: using our Concep- 

tual Captions model. Bottom: COCO model. As demonstrated, our 

approach generalizes well to newly photographed images. 

larly to BERT [11]. Both VLP and Oscar exploit an exten- sive pre-

trained procedure over millions of image-text pairs. Oscar [19] also 

uses additional supervision compared to our setting, in the form of 

object tags for each image. 

Our default configuration employs the transformer map- ping 

network, without fine-tuning the language model, de- noted Ours; 

Transformer. Additionally, we also eval- uate our variant that 

utilizes the MLP mapping network, and fine-tunes the language 

model, denoted Ours; MLP 

+ GPT2 tuning. Other configurations are evaluated in Tab. 1(D). 

Quantitative evaluation. Quantitative results for the challenging 

Conceptual Captions dataset are presented in Tab. 1(A). As can be 

seen, we surpass the results of VLP, while requiring orders of 

magnitude less training time. We note that our lightweight model, 

which does not fine-tune GPT-2, achieves an inferior result for this 

dataset. We hy- pothesize that due to the large variety of styles, a 

more ex- pressive model is required than our light model, which 

in- duces a significantly lower parameter count. We compare only 

to VLP, as the other baselines haven’t published results nor trained 

models for this dataset. 

Tab. 1(B) presents results for the nocaps dataset, where we 

achieve comparable results to the state-of-the-art method Oscar. 

As can be seen, Oscar achieves a slightly better SPICE score and 

we attain a slightly better CIDEr score. Still, our method uses a 

fraction of training time and trainable parameters with no additional 

object tags required, hence it is much more useful in practice. 

http://www.ijsrem.com/
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Caption a motorcycle is on 

display in a showroom. 

 

Prefix    com showcase 

motorcy- cle A ray 

motorcycle- posed 

what polished Ink 

Caption motorcycle that is on 

dis- play at a show. 
Prefix        oover eleph SniperÃ Â 
Ã Â 

a group of people 

sitting around a table. 

 

blond vegetarian 

dishes dining expects 

smiling friendships 

group almost a a group 

of people sitting at a 

table together. 
amic  Delicious  
eleph 

a living room filled 
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Â 
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Figure 6. Prefix Interpretability. We present both the generated 

caption and our prefix interpretation. Upper: Ours; MLP + 

GPT2 tuning. Bottom: Ours; Transformer. 

 

Tab. 1(C) present the results for the COCO dataset. Os- car 

reaches the best results, however, it uses additional in- put in the 

form of object tags. Our results are closed to VLP and BUTD which 

utilize considerably more parameters and training time. Note that 

the training time of VLP and Oscar does not include the pre-

training step. For instance, pre- training of VLP requires training 

over Conceptual Captions which consumes 1200 GPU hours. 

Both Conceptual Captions and nocaps are designed to model a 

larger variety of visual concepts than COCO. Therefore, we 

conclude our method is preferable for gen- eralizing to diverse 

data using a quick training procedure. This originates from 

utilizing the already rich semantic rep- resentations of both CLIP 

and GPT-2. 

 

Qualitative evaluation. Visual results of the uncurated first 

examples in our test sets of both Conceptual Cap- tions and 

COCO datasets are presented in Figs. 3 and 4 respectively. 

As can be seen, our generated captions are meaningful and 

depict the image successfully for both datasets. We present 

additional examples collected from the web in Fig. 1. As can be 

seen, our Conceptual Captions model generalizes well to 

arbitrary unseen images as it was trained over a sizable and 

diverse set of images. We also present in Fig. 5 results over 

smartphone images, to further demonstrate generalization to new 

scenarios. Moreover, our model successfully identifies uncommon 

objects even when trained only over COCO. For example, our 

method recog- nizes the wooden spoons or the cake with a 

candle better than Oscar in Fig. 3, since CLIP is pre-trained over 

a di- verse set of images. However, our method still fails in some 

cases, such as recognizing the bicycle next to the train in Fig. 3. 

This is inherited from the CLIP model, which does not perceive 

the bicycle in the first place. We conclude that our model would 

benefit from improving CLIP object de- tection ability, but leave 

this direction for future work. For Conceptual Captions, our 

method mostly produces accurate captions, such as perceiving the 

green 3d person in Fig. 4. As expected, our method still suffers 

from data bias. For in- stance, it depicts the bedroom image in Fig. 

4 as ”The prop- erty is on the market for £ 1” after witnessing such 

captions of property advertising during training. 

 

Language model fine-tuning. As described in Section. 3, fine-

tuning the language model results in a much more ex- pressive 

model, but that is also more susceptible to overfit- ting, as the 

amount of trainable parameters increases. As can be seen in Tab. 

1, the two variants — with and without the language model fine-

tuning — are comparable. Over the extremely complicated 

Conceptual Captions dataset, we get superior results with the fine-

tuning. While over the popu- lar COCO dataset, avoiding the fine-

tuning achieves better results. Regarding nocaps dataset, the results 

are roughly equal, thus the lighter model would be preferable. We 

thus hypothesize that extremely elaborated datasets or ones that 

present a unique style require more expressiveness, and hence the 

more likely it is to benefit from the fine-tuning. 

 

Prefix Interpretability. To further understand our method and 

results, we suggest interpreting the generated prefixes as a 

sequence of words. Since the prefix and word embeddings share 

the same latent space, they can be treated similarly. We define the 

interpretation of each of the k prefix embeddings as the closest 

vocabulary token, under cosine similarity. Fig. 6 shows examples 

of images, the generated captions, and their prefix 

interpretations. The 
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interpretation is meaningful when both the mapping net- 42 

work and GPT-2 are trained. In this case, the interpretation 

contains salient words that associate with the content of 38 
the image. For Instance, motorcycle and showcase in the 

first example. However, when we only train the mapping 34 
network, the interpretation becomes essentially unreadable 

since the network is also charged with maneuvering the 
30 

1 

fixed language model. Indeed, a considerable part of the 

140 
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120 

 
110 

 
100 

5 10 15 20 
Prefix length 

prefix embeddings is shared across different images for the same 

model, as it performs the same adjustment to GPT-2. 
(a) MLP mapping network with fine-tuning of the language model. 

 

Prefix length. Li and Liang [20] showed that increasing the size 

of the prefix length, up to a certain value, improves the performance 

of the model in an underlying task. More- over, the saturation 

length might differ between tasks. For the image captioning task, 

we conduct an ablation over the prefix lengths using the COCO 

dataset over two configura- tions of our method: Ours; 

Transformer and Ours; MLP 

42 

 
38 

 
34 

 
30 

 
26 

1   5   10 20 40
 80 
Prefix length 

140 

130 

120 

110 

100 

90 

+ GPT2 tuning. The results are summarized in Fig. 7. For each 

prefix size and configuration, we train the network for 5 epochs and 

report the BLEU@4 and CIDEr scores over the test and train sets. 

As can be seen in Fig. 7a, increasing the prefix size while 

allowing tuning of the language model results in overfitting to the 

training set, due to the large number of trainable pa- rameters. 

However, when the language model is frozen, we experience 

improvement for both the training and test evalu- ations, as can be 

seen in Fig. 7b. Naturally, extremely small prefix length yields 

inferior results as the model is not ex- pressive enough. In 

addition, we point out that the MLP architecture is inherently more 

limited as it is not scalable for a long prefix. For example, a prefix 

size of 40 implies a network with over 450M parameters, which is 

unfeasible for our single GPU setting. The transformer architecture 

al- lows increasing the prefix size with only marginal increment to the 

number of the parameters, but only up to 80 — due to the quadratic 

memory cost of the attention mechanism. 

 

Mapping network. An ablation study for the mapping network 

architecture is shown in Tab. 1(C),(D). As can be seen, with 

language model fine-tuning, the MLP achieves better results. 

However, the transformer is superior when the language model is 

frozen. We conclude that when em- ploying the fine-tuning of the 

language model, the expres- sive power of the transformer 

architecture is unnecessary. 

 

Implementation details.  We used the prefix length of K = 10 
for the MLP mapping networks, where the MLP contains a 

single hidden layer. For the transformer map- ping network, we 

set the CLIP embedding to K = 10 con- stants tokens and use 8 
multi-head self-attention layers with 8 heads each. We train for 10 
epochs using a batch size of 40. For optimization, we use 

AdamW [18] with weight 

(b) Transformer mapping network with frozen language model. 

 

Figure 7. Effect of the prefix length on the captioning performance 

over the COCO-captions dataset. For each prefix length, we report 

the BLEU@4 (red) and CIDERr (blue) scores over the test and 

train (dashed line) sets. 

 

decay fix as introduced by Loshchilov et al. [24], with a learning 

rate of 2e−5 and 5000 warm-up steps. For GPT-2 we employ the 

implementation of Wolf et al. [41]. 

5. Conclusion 

Overall, our CLIP-based image-captioning method is simple to 

use, doesn’t require any additional annotations, and is faster to 

train. Even though we propose a simpler model, it demonstrates 

more merit as the dataset becomes richer and more diverse. We 

consider our approach as part of a new image captioning 

paradigm, concentrating on leveraging existing models, while only 

training a minimal mapping network. This approach essentially 

learns to adapt existing semantic understanding of the pre-trained 

models to the style of the target dataset, instead of learning new se- 

mantic entities. We believe the utilization of these powerful pre-

trained models would gain traction in the near future. Therefore, 

the understanding of how to harness these com- ponents is of great 

interest. For future work, we plan to incorporate pre-trained 

models (e.g., CLIP), to other chal- lenging tasks, such as visual 

question answering or image to 3D translation, through the 

utilization of mapping networks. 
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