
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40938 | Page 1

 Image Processing using VITIS Model Composer

Ms. Aruna Dore1, K.H.N.M.Ramakrishna2, L.premanandareddy3, pritham ashok rudrapur4

1Assistant Professor, Electronics and Communication Engineering, Presidency University

2Student, Electronics and Communication Engineering, Presidency University

3Student, Electronics and Communication Engineering, Presidency University

4Student, Electronics and Communication Engineering, Presidency University

---***---

Abstract -

This study outlines a method for image processing utilizing the

Vitis Model Composer. AMD's Vitis Model Composer

includes comprehensive libraries that support a variety of

algorithms. In this work, it is integrated within the MATLAB

Simulink environment. A model-based design approach is

employed to implement various image processing algorithms.

To ensure accuracy, hardware co-simulation is conducted for

result verification. The study covers several image processing

algorithms, including those for converting RGB images to

grayscale, creating image negatives, enhancing images,

subtracting backgrounds, applying thresholding, and

performing morphological operations such as erosion, dilation,

and masking, using AMD's provided blocks.

Key Words: optics, photonics, light, lasers, templates,

journals

1.INTRODUCTION

Growing demand for efficient and scalable systems for image

processing. This project focuses on the software-based

implementation of image processing algorithms using AMD

Vitis Model Composer, a robust platform integ The rapid

advancement in digital imaging and real-time processing

technologies has led to a rated with MATLAB Simulink. The

project aims to model and validate core image processing

algorithms in a simulated environment, without transitioning

to hardware implementation. The use of Vitis Model

Composer provides a modern, high-level abstraction for

designing, testing, and optimizing algorithms for FPGA

applications, even in a software-only workflow.In this process,

an image serves as the input, while the output may consist of

key parameters, characteristic features, or an improved version

of the image itself. Digital images convey critical information,

including object boundaries, orientation, dimensions, and

color. To accurately determine an object’s shape and structural

attributes, identifying its edges is a fundamental step.

Additionally, this paper outlines the architecture of an image

processing application Using Vitis Model Composer, an

extension of MATLAB-Simulink. The tool offers a specialized

Block library, "Blocks AMD," which includes mapped

entities, ports, signals, architectures, and attributes. These

elements enable the generation of synthesis for FPGAs, HDL

simulations, and development tools. When converted into

VHDL, the design retains the hierarchical structure of the

Simulink model. The final implementation of the design on an

FPGA is achieved using Vitis Model Composer,demonstrating

its effectiveness in real-time image processing.

 1.1 AMD Vitis Model Composer

AMD Vitis Model Composer is an advanced design tool

tailored for system developers to create, simulate,and deploy

signal processing, image processing, and machine learning

algorithms on FPGAs and adaptive SoCs. Seamlessly

integrated with MATLAB and Simulink, it offers a

streamlined workflow for converting high-level algorithmic

models into hardware-ready implementations using a model-

based design approach.AMD Vitis Model Composer is a

powerful tool for designing and implementing high

performance FPGA-based systems. Its integration with

MATLAB and Simulink allows engineers tostreamline their

workflow, from algorithm development to hardware

deployment. With features like model-based design, automatic

code generation, and hardware-in-the-loop testing, it is an ideal

choicefor applications in image processing, signal processing,

and machine learning. By simplifying complex design tasks

and optimizing for FPGA resources, it helps accelerate

development and ensures scalable,efficient solutions.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40938 | Page 2

1.2 Design Flow for Image Processing Using AMD Vitis

Model Composer

The process of designing image processing systems with AMD

Vitis Model Composer starts by analyzing the project

requirements and identifying key tasks like grayscale

conversion and image enhancement. The next step involves

building the model in MATLAB Simulink, utilizing Vitis

Model Composer blocks. Once the model is ready, simulations

are performed to confirm its functionality. Hardware co-

simulation is then conducted to test the design's real-time

performance on an FPGA. After ensuring the accuracy of the

results, the model is fine-tuned for optimal resource usage and

performance. Subsequently, HDL code is generated and

synthesized using tools such as Vivado, leading to

comprehensive hardware testing. The final phase involves

documenting the entire process and deploying the FPGA-

based image processing solution.

will be built Taking aid from the framework which is being

discussed in this section alongside its key components.The key

components to the framework include: Image Viewer Unit,

Image Pre Processing Unit, Image Source Unit, Post Image

Processing Unit, and finally the Hardware Algorithm Unit.

With the pipeline being designed in a modular fashion it can

then be deployed on AMD FPGA with relative.

Fig – 1 : General Flow of Image Processing

2 Interfacing with AMD Vitis Model Composer

The Simulink environment treats each number in a

simulation as a double which is essentially a real number and

In Simulink a double is fairly represented as a 64 bit 2’s

complement floating point number. Unfortunately, this number

system consumes a lot of resources, which is inefficient on

FPGAs.

Thus, the AMD blocksets make use of n-bit fixedpoint
numbers n, which means that there has to be a translation when
AMD- blocks interacts with Simulink blocks .Gateway In,
Gateway Out, and Sampling are utilized during this transition

3. Design Framework for Image Processing in AMD Vitis

Model Composer

 While using the AMD Vortis model composer the Image

Processing pipeline will be built Taking aid from the

framework which is being discussed in this section alongside

its key components.The key components to the framework

include: Image Viewer Unit, Image Pre Processing Unit,

Image Source Unit, Post Image Processing Unit, and finally

the Hardware Algorithm Unit. With the pipeline being

designed in a modular fashion it can then be deployed on AMD

FPGA with relative.

 Fig -2 : Design flow of implementation
 of image processing

weight, followed by red and blue.

4 . Image Pre-Processing Unit

There are tasks that take place beforedata is sent out from an

FPGA. The location where These tasks take place is known

as image pre-processing unit and its basic aim is to prepare

data prior to performing any algorithms. It is also part of

image processing and helps in adjusting images otherwise

making them fit for the Software.

Input
Image

AMD Vitis
Model

Composer

Image/Video

Viewer

Source
Image File

Image
pre_processi

ng

Image
processing
Algorithm

Image post
processing

image
viewer

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40938 | Page 3

 Fig - 3 : Image Pre-Processing Unit

 5 . Image Post-Processing Unit

 The Image Post-Processing Unit is a critical stage in the image
processing pipeline implemented in AMD Vitis Model
Composer. Its primary purpose is to transform the processed
data, typically in a one-dimensional (1-D) array or pixel stream
format, back into a two-dimensional (2-D) image matrix that
can be displayed, analyzed, or stored. This stage ensures that
the processed image can be visualized correctly, providing
insight into the effectiveness of the preceding hardware
algorithms.The post-processing unit comprises four main
blocks: Data Type Conversion, Buffer, 1-D to 2-D Conversion,
and Video Viewer. Each block plays a vital role in ensuring
smooth conversion and reconstruction of the processed
image for display.

 Fig-4: Image Post-Processing Unit

6. Converting RGB Image to Grayscale with AMD Vitis

Model Composer

The conversion of RGB images to grayscale is a critical step

in many image processing applications.

It reduces computational complexity by transforming a three-

channel image into a single-channelrepresentation. AMD Vitis

Model Composer provides a robust and efficient platform to

implement this process on FPGA hardware, leveraging its

integration with MATLAB and Simulink.

6.1 Grayscale Conversion Formula

An RGB image consists of three separate color components:

Red (R), Green (G), and Blue (B). The grayscale intensity for

each pixel is calculated as a weighted sum of these

channels:This formula accounts for the human eye's varying

sensitivity to different wavelengths, giving the green channel

the highest become light. This technique is used in various

applications like image enhancement, feature extraction, and

artistic transformations.

 Fig - 5 : Algorithm for RGB Image to Grayscale Image

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40938 | Page 4

 Fig - 6 : Output for RGB Image to

GrayscaleImage

7 . Grayscale Image Negative

Creating a negative of a grayscale image

involves inverting the pixel intensity values,

7.1. Concept of Image Negation

The negative of a grayscale image is created by subtracting the

intensity of eachpixel from the highest possible value.. For an

8-bit grayscale image, where pixel intensity ranges from 0 to

255, the negative image is computed a

I(negative)=255−I(original)

Here, 𝐼(original) denotes the original intensity of the

pixel,and 𝐼(negative) is the pixel value in the resulting negative

Image.

Fig – 7 : Algorithm for Image Negative for grayscale

Fig – 8 : Output for Image Negative for grayscale

8 . Image Thresholding Using AMD Vitis Model Composer

8.1 Overview of Image Thresholding

 Image thresholding is a fundamental technique in image

processing used to simplify a grayscale or color image

into a binary representation. By comparing pixel intensity

values to a predefined threshold, each pixel is classified as

either black (below the threshold) or white (above the

threshold). This process reduces an image to two intensity

levels, making it easier to isolate and analyze objects of

interest.

 Fig-9: Algorithm for Image Thresholding

Fig-10 : Output Image Thresholding

 9 . CONCLUSION

 The project showcases the effective implementation of

crucial image processing techniques, such as grayscale

conversion, image negativity, and thresholding, using AMD

Vitis Model Composer on FPGA.

• Grayscale Conversion: This method simplifies color images

into grayscale, reducing data complexity and making

subsequent processing more efficient.

• Image Negativity: By inverting the pixel values, this

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40938 | Page 5

technique enhances image features, particularly useful in low-

contrast settings.

• Thresholding: This process divides images based on intensity,

aiding in real-time applications like object detection and

feature extraction.

Leveraging the parallel processing capabilities and speed of

FPGA, the project demonstrates its suitability for real-time

image processing needs. The accuracy and efficiency of these

algorithms have been confirmed through hardware co-

simulation, underscoring their reliability for real-world use.

REFERENCES

1. DSP System Generator User guide release 10.1, March

2008.

2. Xilinx System Generator, User's Guide, www.xilinx.com

3. White paper: Using System Generator for Systematic HDL

Design, Verification and

4. Validation.WP283 (v1.0) January 17, 2008.

5. R.G.R. Woods, “Digital Image Processing”, New Jersey;

Prentice-Hall, 2008

6. Sofia Mosesson. Using MATLAB® and Simulink® for

Image and Video Processing, Application Engineer; 2007.

7.] Zhang, Li Tao, Ming-Jung Seow and Vijayan K. Asari Ming

Z., "Degign of Efficeient Flexible Architecture for Color Image

Enhancement," Lecture Notes in Computer Science,

Advances in Computer System Architecture Vol.4186,

PP.323-336, 2006.

8. S. Hasan, A. Yakovlev, and S. Boussakta, "Performance

efficient FPGA implementation of parallel 2-D MRI image

filtering algorithms using Xilinx system generator" IEEE

International Conference on Communication Systems

Networks and Digital Signal Processing (CSNDSP), pp. 765-

769, July 2010.

9. Fatemeh Taherian, Davud Asemani, Elham Kermani,

"Design and Implementation of Edge Detection and Contrast

Enhancement Algorithms Using Pulse-Domain Techniques",

The Fourth International Conference on Mobile Ubiquitous

Computing, Systems, Services and Technologies, pp.495-

499, 201 O

10. Matthew Own by, Dr Wagdy.H. mhmoud, “A design

methodology for implementing DSP with xilinx system

generator for Matlab”, processdings of 35th south eastern

symposium, Vol 15, page 2226-2238, 2006.

11. Alain Merigot, “Revisiting image splitting”, Proc of 12th

international conference on image analysis and processing,

page 314-319, 2003

12. “Edge-forming methods for image zooming,” by Y. Cha and S.

Kim J.Math. Imag. Vis., vol. 25, no. 3, pp. 353– 364, 2006.

http://www.ijsrem.com/
http://www.xilinx.com/

