

Impact of Sedentary Work, Ergonomics, and Physiotherapy Interventions on Musculoskeletal Health of Engineering Professionals

Dr. Siva Bali Reddy Katasani

Head of the Department, Dept. of Rehabilitation, Seven Hills Multispecialty Hospital, Nandyal, Andhra Pradesh, India.

ORCID: <https://orcid.org/0009-0009-8282-8250>

Email: ksbreddy2522@gmail.com

Abstract

Background: Engineering professionals are increasingly exposed to prolonged sedentary work, extensive digital device usage, and suboptimal workplace ergonomics, which contribute significantly to work-related musculoskeletal disorders (WMSDs). These conditions negatively affect physical function, productivity, and quality of life. Despite the growing burden, limited evidence exists on the combined impact of sedentary behavior, ergonomic practices, and structured physiotherapy interventions among engineers.

Objective: This study aimed to evaluate the impact of sedentary work patterns and ergonomic risk factors on musculoskeletal health and to determine the effectiveness of targeted physiotherapy interventions in engineering professionals.

Methods: A quasi-experimental study was conducted among 120 engineering professionals aged 22–45 years. Baseline assessments included ergonomic workstation analysis, physical activity levels, posture evaluation, pain intensity using the Visual Analog Scale (VAS), and functional disability using standardized questionnaires. Participants underwent a 12-week physiotherapy-based intervention program consisting of postural correction exercises, stretching, strengthening, ergonomic education, and micro-break strategies. Post-intervention outcomes were compared with baseline values.

Results: At baseline, 68.3% of participants reported neck, shoulder, and low back pain. Poor workstation ergonomics and prolonged sitting duration showed a significant association with pain severity ($p < 0.05$). Following the intervention, significant reductions were observed in pain intensity, postural deviations, and functional disability scores ($p < 0.001$), along with improved ergonomic awareness and physical activity levels.

Conclusion: Sedentary work and improper ergonomics significantly contribute to musculoskeletal problems among engineering professionals. Structured physiotherapy interventions effectively reduce symptoms and improve functional outcomes. Integrating physiotherapy-based wellness programs within corporate environments may enhance occupational health and long-term productivity.

Keywords: Sedentary lifestyle, Workplace ergonomics, Musculoskeletal disorders, Physiotherapy intervention, Engineering professionals, Occupational health

1. Introduction

The rapid advancement of information technology, automation, and digital engineering platforms has profoundly transformed modern workplaces. Engineering professionals, particularly those engaged in software development, design, data analysis, and technical support, increasingly rely on computer-based systems and prolonged screen exposure to perform their occupational duties. While these technological developments have enhanced productivity and operational efficiency, they have simultaneously contributed to a predominantly sedentary work culture. Extended periods of sitting, limited physical activity, and repetitive task performance have emerged as major occupational health concerns among engineers.

Sedentary behavior is characterized by low-energy activities such as prolonged sitting, desk-based work, and minimal postural variation. Engineers often spend six to ten hours daily in static sitting postures, frequently without adequate breaks or movement. Such prolonged inactivity leads to reduced muscle activation, impaired circulation, joint stiffness, and gradual musculoskeletal deconditioning. Over time, these physiological changes predispose individuals to the development of work-related musculoskeletal disorders (WMSDs), which commonly affect the neck, shoulders, lower back, and upper limbs.

In addition to sedentary work patterns, improper workplace ergonomics plays a critical role in musculoskeletal health deterioration. Ergonomics refers to the scientific discipline concerned with optimizing human interaction with work environments to enhance safety, comfort, and performance. In many corporate and home-office settings, engineers work with poorly designed workstations, inappropriate chair height, inadequate lumbar support, improper monitor positioning, and non-ergonomic keyboards and pointing devices. These factors contribute to sustained awkward postures, excessive muscular strain, and repetitive stress on soft tissues and joints. Forward head posture, rounded shoulders, thoracic kyphosis, and lumbar flattening are frequently observed postural deviations among computer-based professionals.

The increasing prevalence of WMSDs among engineering professionals represents a significant public health challenge. Musculoskeletal pain and discomfort not only impair physical function but also negatively influence concentration, work efficiency, and psychological well-being. Chronic pain conditions may lead to absenteeism, reduced job satisfaction, increased healthcare expenditure, and early occupational burnout. Furthermore, untreated musculoskeletal problems can progress into long-term disabilities, thereby affecting both individual careers and organizational productivity.

Lifestyle-related factors further exacerbate musculoskeletal vulnerability in engineers. Irregular working hours, high job demands, tight project deadlines, insufficient sleep, unhealthy dietary habits, and limited participation in recreational physical activities contribute to overall physical and mental fatigue. Increased dependence on digital devices during both professional and leisure time further intensifies mechanical stress on the musculoskeletal system. Consequently, engineers often experience a combination of physical inactivity, postural imbalance, and cumulative overload, which accelerates the onset of musculoskeletal dysfunction.

Physiotherapy plays a vital role in the prevention, assessment, and management of work-related musculoskeletal disorders. Through evidence-based interventions, physiotherapists address biomechanical dysfunctions, muscular imbalances, and movement impairments associated with sedentary occupations. Core components of physiotherapy management include postural correction exercises, stretching and strengthening programs, manual therapy techniques, ergonomic modification strategies, and patient education. Workplace physiotherapy programs also emphasize the importance of micro-breaks, task variation, and active work habits to minimize prolonged static loading.

Recent research highlights the effectiveness of workplace-based physiotherapy interventions in reducing pain intensity, improving functional capacity, and enhancing postural alignment among office workers. However, many studies focus on general office employees, with limited emphasis on engineering professionals who often face unique occupational demands, extended screen exposure, and complex technical workflows. Moreover, most existing studies examine isolated factors such as posture, physical activity, or ergonomics, rather than adopting a comprehensive, integrated approach.

There remains a significant gap in literature regarding the combined influence of sedentary behavior, ergonomic practices, and structured physiotherapy interventions on the musculoskeletal health of engineers. Understanding this multifactorial relationship is essential for developing targeted prevention strategies and sustainable occupational health policies. Integrating physiotherapy services within corporate wellness programs may serve as an effective model for early intervention, health promotion, and long-term disability prevention.

Therefore, the present study aims to investigate the impact of sedentary work patterns and ergonomic risk factors on musculoskeletal health and to evaluate the effectiveness of physiotherapy-based interventions among engineering professionals. By adopting a holistic approach, this research seeks to generate evidence-based recommendations for improving workplace design, promoting active lifestyles, and enhancing the overall well-being and productivity of engineers in modern work environments.

2. Objectives

2.1. General Objective

To evaluate the impact of sedentary work patterns, ergonomic practices, and physiotherapy interventions on the musculoskeletal health of engineering professionals.

2.2. Specific Objectives

1. To assess the prevalence and distribution of work-related musculoskeletal disorders among engineering professionals.
2. To analyse the relationship between sedentary behavior and musculoskeletal pain.
3. To evaluate ergonomic risk factors associated with computer-based engineering work.
4. To determine the effectiveness of structured physiotherapy interventions in reducing pain and disability.

5. To assess changes in postural alignment following physiotherapy-based exercise programs.
6. To examine awareness and adoption of ergonomic and preventive strategies among engineers.

3. Literature Review

Work-related musculoskeletal disorders (WMSDs) represent one of the most prevalent occupational health problems among sedentary workers worldwide. Engineering professionals, particularly those engaged in computer-based activities, are exposed to prolonged sitting, repetitive movements, and sustained static postures, which significantly increase the risk of musculoskeletal dysfunction. Several studies have demonstrated a strong association between sedentary occupational behavior and the development of neck, shoulder, and low back pain.

Previous research has identified prolonged sitting duration as a primary risk factor for musculoskeletal discomfort. Waersted et al. reported that continuous computer use exceeding six hours per day was significantly associated with increased prevalence of cervical and lumbar pain. Similarly, Gupta and Sharma observed a high incidence of neck and shoulder disorders among Indian software engineers, attributing these findings to limited physical activity and poor postural habits. Reduced trunk muscle activation during prolonged sitting has been shown to impair spinal stability, thereby increasing mechanical stress on passive structures.

Workplace ergonomics has been widely studied as a determinant of occupational health. Studies by Hedge and James emphasized that improper workstation configuration, including low monitor height, inadequate lumbar support, and inappropriate desk dimensions, contributes to sustained flexion postures and muscular overload. Improper keyboard and mouse placement has also been linked to upper limb disorders such as carpal tunnel syndrome and tendinitis. Research indicates that ergonomic interventions, including adjustable chairs, monitor elevation, and footrests, significantly reduce musculoskeletal symptoms when implemented appropriately.

Postural deviations are common among computer-based professionals. Forward head posture, rounded shoulders, and thoracic hyperkyphosis have been documented extensively in office workers. Lau et al. found a strong correlation between craniocervical angle reduction and increased neck pain intensity. Photogrammetric analysis has emerged as a reliable method for assessing postural alignment in occupational settings. Muscle imbalance patterns, characterized by tight pectoral and cervical extensors and weak deep neck flexors and scapular stabilizers, further contribute to postural dysfunction.

Physiotherapy interventions have demonstrated substantial effectiveness in managing WMSDs. Exercise-based programs focusing on stretching, strengthening, and postural retraining have been shown to reduce pain and improve functional outcomes. Andersen et al. reported significant improvements in neck and shoulder pain following a 10-week workplace exercise intervention. Similarly, Sihawong et al. demonstrated that targeted scapular stabilization exercises reduced upper limb symptoms in office workers.

Ergonomic education and behavioral modification form essential components of physiotherapy-based workplace programs. Training employees on optimal sitting posture, workstation adjustments, and micro-break scheduling has been associated with sustained symptom reduction. McLean et al. emphasized that combining physical exercises with ergonomic counseling yields superior outcomes compared to isolated interventions. However, despite growing evidence supporting integrated approaches, limited studies have focused specifically on engineering professionals.

Psychosocial factors such as job stress, workload pressure, and work satisfaction also influence musculoskeletal health. High job demands and low decision autonomy have been associated with increased pain perception and delayed recovery. Bongers et al. highlighted the interaction between physical and psychosocial risk factors in the development of WMSDs. Therefore, comprehensive occupational health models increasingly emphasize both physical and psychological dimensions.

Although extensive literature exists on sedentary work and ergonomics, few studies have adopted a multidimensional framework that simultaneously evaluates lifestyle behavior, ergonomic risk, and physiotherapy intervention outcomes. Furthermore, data from developing countries remain limited. Given the expanding engineering workforce and increasing digitalization, region-specific research is required to develop contextually appropriate preventive strategies.

4. Methodology

4.1. Study Design

A quasi-experimental pre-test and post-test study design was employed to evaluate the impact of sedentary behavior, ergonomic practices, and physiotherapy interventions on musculoskeletal health among engineering professionals.

4.2. Study Setting and Participants

The study was conducted in selected corporate offices and information technology firms. A total of 120 engineering professionals aged between 22 and 45 years were recruited through convenience sampling. Participants included software engineers, system analysts, and technical support professionals engaged in full-time desk-based work.

4.3. Inclusion Criteria

- Minimum of one year of professional experience
- Daily computer usage of at least six hours
- Presence of self-reported musculoskeletal discomfort
- Willingness to participate in the intervention program

4.4. Exclusion Criteria

- History of recent musculoskeletal surgery
- Neurological disorders
- Inflammatory joint diseases
- Acute traumatic injuries
- Pregnancy

4.5. Outcome Measures

Data were collected using standardized and validated assessment tools:

1. **Nordic Musculoskeletal Questionnaire (NMQ):** To assess the prevalence and distribution of musculoskeletal symptoms.
2. **Visual Analog Scale (VAS):** To measure pain intensity.
3. **Neck Disability Index (NDI) and Oswestry Disability Index (ODI):** To assess functional limitations.
4. **Ergonomic Workstation Assessment Checklist:** To evaluate workstation setup and postural risks.
5. **Postural Assessment:** Photogrammetry and craniocervbral angle measurement were used to assess forward head posture and spinal alignment.
6. **Physical Activity Questionnaire:** To assess lifestyle and activity patterns.

4.6. Intervention Protocol

Participants underwent a structured 12-week physiotherapy intervention program supervised by licensed physiotherapists. The program included:

- Postural correction exercises
- Cervical and lumbar stabilization training
- Stretching of tight muscle groups
- Strengthening of weak postural muscles
- Ergonomic education sessions
- Micro-break and activity scheduling

Sessions were conducted three times per week, each lasting 40–45 minutes. Home exercise programs were provided to encourage adherence.

4.7. Data Collection Procedure

Baseline assessments were performed prior to intervention. Follow-up assessments were conducted after completion of the 12-week program. Compliance was monitored through attendance records and self-reported exercise logs.

4.8. Ethical Considerations

Ethical approval was obtained from the Institutional Ethics Committee. Written informed consent was obtained from all participants. Confidentiality and anonymity were maintained throughout the study.

4.9. Statistical Analysis

Data were analyzed using SPSS version 26. Descriptive statistics were used to summarize demographic and clinical characteristics. Paired t-tests and Wilcoxon signed-rank tests were applied to compare pre- and post-intervention outcomes. Pearson correlation analysis was used to assess relationships between ergonomic risk factors and pain intensity. Statistical significance was set at $p < 0.05$.

5. Results

A total of 120 engineering professionals were enrolled in the study. Of these, 112 participants (93.3%) completed the 12-week physiotherapy intervention program, while eight participants were lost to follow-up due to relocation or work-related constraints. Data from the 112 participants were included in the final analysis.

5.1. Demographic Characteristics

The mean age of participants was 29.8 ± 5.6 years. Among the participants, 72 (64.3%) were male and 40 (35.7%) were female. The average duration of professional experience was 5.4 ± 3.1 years. Participants reported an average daily computer usage of 8.2 ± 1.6 hours. Nearly 78% of participants worked in software development, while the remaining were engaged in system analysis, testing, and technical support.

Variable	Category	Frequency (%) / Mean \pm SD
Age (years)	—	29.8 ± 5.6
Gender	Male	72 (64.3%)
	Female	40 (35.7%)
Professional Experience (years)	—	5.4 ± 3.1
Daily Computer Use (hours)	—	8.2 ± 1.6
Job Role	Software Engineer	87 (77.7%)
	System Analyst	15 (13.4%)
	Technical Support	10 (8.9%)

5.2. Baseline Musculoskeletal Symptoms

At baseline, 77 participants (68.8%) reported neck pain, 69 (61.6%) reported low back pain, and 58 (51.8%) reported shoulder discomfort. Upper limb symptoms, including wrist and forearm pain, were reported by 42 participants (37.5%). Multiple-site pain was observed in 54 participants (48.2%).

Based on the Nordic Musculoskeletal Questionnaire, the most frequently affected regions were the neck, lower back, and shoulders. The mean baseline pain score on the Visual Analog Scale (VAS) was 6.2 ± 1.1 , indicating moderate to severe pain levels. The mean Neck Disability Index (NDI) score was 26.4 ± 6.7 , reflecting moderate functional disability, while the mean Oswestry Disability Index (ODI) score was 28.1 ± 7.4 .

Body Region	Participants Affected (n)	Percentage (%)
Neck	77	68.8
Low Back	69	61.6
Shoulders	58	51.8
Wrist/Forearm	42	37.5
Multiple Sites	54	48.2

5.3. Ergonomic Risk Assessment

Workstation assessments revealed that 71% of participants had monitors positioned below eye level, 64% used non-adjustable chairs, and 58% lacked adequate lumbar support. Improper keyboard and mouse placement was observed in 46% of workstations. Approximately 62% of participants reported maintaining a static sitting posture for more than two consecutive hours without breaks.

Significant positive correlations were found between ergonomic risk scores and pain intensity ($r = 0.48$, $p < 0.01$), as well as between prolonged sitting duration and disability scores ($r = 0.42$, $p < 0.01$).

Outcome Measure	Baseline (Mean \pm SD)	Post-intervention (Mean \pm SD)	p-value
VAS (Pain)	6.2 \pm 1.1	2.4 \pm 0.9	< 0.001
NDI	26.4 \pm 6.7	12.8 \pm 4.9	< 0.001
ODI	28.1 \pm 7.4	13.6 \pm 5.2	< 0.001
Craniovertebral Angle (°)	43.6 \pm 4.2	49.8 \pm 3.9	< 0.001

5.4. Postural Assessment Findings

Photogrammetric analysis demonstrated reduced craniovertebral angle in 67% of participants, indicating forward head posture. Rounded shoulders and thoracic hyperkyphosis were observed in 59% and 44% of participants, respectively. Mean craniovertebral angle improved significantly from $43.6^\circ \pm 4.2^\circ$ at baseline to $49.8^\circ \pm 3.9^\circ$ post-intervention ($p < 0.001$).

5.5. Post-Intervention Outcomes

Following the 12-week physiotherapy program, significant improvements were observed across all outcome measures. The mean VAS score decreased from 6.2 ± 1.1 to 2.4 ± 0.9 ($p < 0.001$). NDI scores improved from 26.4 ± 6.7 to 12.8 ± 4.9 ($p < 0.001$), while ODI scores reduced from 28.1 ± 7.4 to 13.6 ± 5.2 ($p < 0.001$).

Ergonomic awareness scores increased significantly, with 84% of participants demonstrating correct workstation adjustments during follow-up assessments. Physical activity levels improved, with 62% of participants reporting regular engagement in moderate-intensity exercise post-intervention, compared to 28% at baseline.

Adherence to the intervention program was high, with a mean attendance rate of 89%. Participants who demonstrated higher compliance showed greater reductions in pain and disability scores.

6. Discussion

The present study investigated the combined impact of sedentary work patterns, workplace ergonomics, and physiotherapy-based interventions on the musculoskeletal health of engineering professionals. The findings indicate a high prevalence of work-related musculoskeletal disorders at baseline, followed by significant improvement after structured physiotherapy intervention, thereby supporting the effectiveness of integrated occupational health programs. The baseline prevalence of neck, low back, and shoulder pain observed in this study is consistent with previous research conducted among computer-based professionals. Prolonged sitting and sustained static postures were identified as major contributors to musculoskeletal discomfort. Reduced muscle activation and compromised spinal stability during extended sitting likely increased mechanical loading on passive structures, leading to pain and dysfunction. These findings reinforce the concept that sedentary occupational behavior represents a significant risk factor for musculoskeletal disorders.

Workstation assessments revealed widespread ergonomic deficiencies, particularly related to monitor height, seating support, and input device positioning. The significant correlation between ergonomic risk scores and pain intensity highlights the importance of proper workstation design in preventing musculoskeletal strain. Inadequate lumbar support and improper screen positioning promote forward head posture and trunk flexion, increasing cervical and lumbar spine stress. These results emphasize the need for organizational investment in ergonomic infrastructure and employee training.

Postural analysis demonstrated a high prevalence of forward head posture and rounded shoulders among participants. These deviations are commonly associated with prolonged visual display terminal use and poor sitting habits. The significant improvement in craniovertebral angle following intervention suggests that targeted postural exercises and ergonomic education can effectively reverse maladaptive postural patterns. Correction of muscle imbalances and enhancement of postural awareness likely contributed to improved spinal alignment.

The substantial reduction in pain and disability scores following the intervention indicates the clinical effectiveness of physiotherapy-based programs. The multimodal approach, incorporating stretching, strengthening, stabilization, and ergonomic counseling, addressed both symptomatic relief and underlying biomechanical dysfunctions. Strengthening of deep cervical flexors, scapular stabilizers, and core muscles enhanced postural endurance and spinal support, thereby reducing pain recurrence.

Improved ergonomic awareness observed among participants reflects the positive impact of educational components within the intervention. Behavioral modification and self-management strategies empowered participants to actively engage in preventive practices. Increased physical activity levels further contributed to musculoskeletal resilience by enhancing muscular strength, flexibility, and circulation. These findings align with previous studies suggesting that combined exercise and education interventions yield superior outcomes compared to isolated treatment approaches.

High adherence rates indicate the acceptability and feasibility of workplace-based physiotherapy programs. The flexibility of session scheduling and integration within work environments likely facilitated participation. Participants with higher compliance demonstrated greater functional improvement, underscoring the importance of sustained engagement for optimal therapeutic outcomes.

Psychosocial factors, although not directly measured, may have influenced treatment response. Reduced pain and improved physical functioning potentially enhanced work satisfaction and stress coping capacity. Future studies should incorporate psychosocial assessments to better understand their interaction with physical risk factors.

Despite its strengths, the study has certain limitations. The absence of a control group restricts causal inference. Convenience sampling may limit generalizability of findings. Self-reported measures may be subject to response bias. Additionally, long-term follow-up was not conducted, preventing evaluation of sustained intervention effects. Future randomized controlled trials with extended follow-up periods are recommended to validate these findings.

The practical implications of this study are substantial. Integrating physiotherapy services within corporate wellness frameworks can reduce healthcare costs, minimize absenteeism, and improve employee productivity. Employers should prioritize ergonomic assessments, regular movement breaks, and structured exercise programs as part of occupational health policies. Physiotherapists can play a pivotal role in designing and implementing sustainable workplace interventions tailored to engineering professionals.

7. Clinical Implications

The findings of the present study have important clinical implications for physiotherapists, occupational health professionals, employers, and policymakers involved in promoting workplace wellness among engineering professionals. The high prevalence of musculoskeletal disorders identified in this study highlights the urgent need for early screening, preventive interventions, and comprehensive rehabilitation strategies within sedentary occupational settings.

From a clinical perspective, physiotherapists play a central role in the identification and management of work-related musculoskeletal disorders among engineers. Routine musculoskeletal assessments, including posture analysis, ergonomic evaluation, and functional screening, should be incorporated into workplace health programs. Early detection of postural deviations, muscle imbalances, and movement dysfunctions enables timely intervention, thereby preventing progression to chronic pain and long-term disability. Regular workplace screening camps and on-site physiotherapy consultations can serve as effective platforms for early diagnosis and intervention.

The significant reduction in pain and disability following the physiotherapy intervention emphasizes the importance of structured, evidence-based exercise programs in clinical practice. Individualized rehabilitation plans focusing on cervical, thoracic, and lumbar stabilization, flexibility enhancement, and postural re-education should be prioritized. Clinicians should adopt a multimodal treatment approach that integrates therapeutic exercises, manual therapy when indicated, ergonomic modification, and patient education. This comprehensive strategy addresses both symptomatic relief and underlying biomechanical dysfunctions.

Ergonomic assessment and modification constitute another crucial clinical implication of this study. Physiotherapists should collaborate with employers and occupational health teams to design and implement ergonomically optimized workstations. Adjustments in chair height, lumbar support, monitor position, keyboard placement, and desk layout can significantly reduce mechanical stress on the musculoskeletal system. Training employees in proper workstation setup and dynamic sitting techniques can further enhance the effectiveness of ergonomic interventions.

Behavioral modification and self-management strategies are essential components of long-term musculoskeletal health. The improvement in ergonomic awareness and physical activity levels observed in this study demonstrates the value of educational interventions. Clinicians should emphasize the importance of micro-breaks, posture variation, and regular movement during work hours. Encouraging employees to adopt active work habits, such as standing meetings, stretching breaks, and walking intervals, can reduce prolonged static loading and improve circulation.

The integration of physiotherapy services into corporate wellness programs represents a cost-effective and sustainable model for occupational health management. On-site physiotherapy clinics, tele-rehabilitation platforms, and periodic wellness workshops can facilitate continuous access to preventive and rehabilitative care. Such initiatives may reduce healthcare expenditure, minimize absenteeism, and enhance overall organizational productivity. Employers should recognize physiotherapy as a strategic investment rather than a reactive healthcare measure.

This study also highlights the importance of interdisciplinary collaboration in workplace health promotion. Physiotherapists, ergonomists, occupational physicians, human resource managers, and organizational leaders should work collectively to create supportive work environments. Development of standardized workplace health policies, regular ergonomic audits, and employee feedback mechanisms can strengthen the implementation of preventive programs.

Furthermore, the findings underscore the need for incorporating occupational health education into engineering curricula and professional training programs. Early exposure to ergonomic principles, posture management, and self-care strategies can foster long-term healthy work behaviors. Professional bodies and regulatory authorities may consider developing guidelines and certification programs related to workplace wellness and ergonomics.

Finally, clinicians should recognize the psychosocial dimensions of musculoskeletal disorders in sedentary workers. Stress, workload pressure, and job dissatisfaction may influence pain perception and rehabilitation outcomes. Holistic management strategies incorporating stress management techniques, relaxation exercises, and lifestyle counseling can enhance treatment effectiveness and patient adherence.

8. Conclusion

The present study demonstrates that sedentary work patterns and suboptimal ergonomic practices significantly contribute to the development of musculoskeletal disorders among engineering professionals. Prolonged sitting, improper workstation design, and limited physical activity were identified as major risk factors associated with increased pain intensity, postural deviations, and functional disability.

The findings provide strong evidence supporting the effectiveness of structured physiotherapy-based interventions in improving musculoskeletal health in this population. The 12-week multimodal program, incorporating postural correction, strengthening, stretching, ergonomic education, and behavioral modification, resulted in significant reductions in pain and disability scores, along with improvements in postural alignment and physical activity levels. These outcomes highlight the value of adopting a comprehensive and preventive approach to occupational health management.

The study emphasizes that isolated interventions focusing solely on symptom management are insufficient for addressing work-related musculoskeletal disorders in sedentary professionals. Instead, an integrated framework combining physiotherapy services, ergonomic optimization, and lifestyle modification is essential for achieving sustainable health outcomes. Such a holistic model not only enhances individual well-being but also contributes to improved work performance and organizational efficiency.

Despite certain methodological limitations, including the absence of a control group and limited follow-up duration, the present research provides valuable insights into the multifactorial nature of musculoskeletal disorders among engineers. The findings offer practical guidance for clinicians, employers, and policymakers in designing effective workplace wellness programs.

Future research should focus on randomized controlled trials with larger sample sizes, long-term follow-up assessments, and inclusion of psychosocial variables to further strengthen the evidence base. Exploration of technology-based interventions, such as wearable posture monitors and digital exercise platforms, may also enhance program accessibility and adherence.

In conclusion, addressing sedentary behavior, improving workplace ergonomics, and implementing structured physiotherapy interventions are critical for promoting musculoskeletal health among engineering professionals. The integration of preventive physiotherapy services within corporate environments represents a promising strategy for

reducing occupational health burden, enhancing quality of life, and fostering sustainable workforce productivity in the modern digital era.

9. Limitations and Future Scope

9.1. Limitations

Despite the significant findings of the present study, certain limitations should be acknowledged.

First, the study employed a quasi-experimental design without a randomized control group. The absence of a comparison group restricts the ability to establish definitive causal relationships between physiotherapy interventions and observed improvements. Future studies adopting randomized controlled trial designs would strengthen the level of evidence.

Second, convenience sampling was used to recruit participants from selected corporate organizations. This sampling method may limit the generalizability of the findings to the broader population of engineering professionals working in diverse occupational settings, including remote work environments and small-scale enterprises.

Third, the study relied partially on self-reported outcome measures, such as pain intensity and physical activity levels. These instruments are subject to recall bias and social desirability bias, which may influence the accuracy of responses. Incorporation of objective measures, such as wearable activity trackers and posture monitoring devices, could enhance data reliability.

Fourth, the duration of follow-up was limited to 12 weeks. While short-term improvements were observed, the long-term sustainability of intervention effects remains unknown. Extended follow-up assessments are necessary to evaluate recurrence rates and maintenance of functional gains.

Fifth, psychosocial variables such as job stress, workload, emotional well-being, and organizational support were not formally assessed. These factors may influence pain perception, treatment adherence, and rehabilitation outcomes. Their exclusion limits the comprehensive understanding of biopsychosocial interactions in work-related musculoskeletal disorders.

Finally, variations in individual compliance with home exercise programs and ergonomic recommendations may have affected outcomes. Although adherence was monitored, precise quantification of home-based practice was challenging, potentially influencing treatment efficacy.

9.2. Future Scope

Future research in this field should focus on addressing the identified limitations and expanding the scope of investigation.

Large-scale randomized controlled trials with multi-center participation are recommended to validate the effectiveness of integrated physiotherapy and ergonomic interventions across diverse work environments. Such studies would improve external validity and facilitate the development of standardized clinical guidelines.

Longitudinal studies with follow-up periods extending beyond six months to one year are necessary to assess the long-term sustainability of intervention benefits. These studies may provide valuable insights into relapse prevention and maintenance strategies.

Incorporation of psychosocial assessments, including stress, job satisfaction, and mental health parameters, will enable a more comprehensive evaluation of the biopsychosocial model of musculoskeletal disorders. Future interventions may integrate stress management, mindfulness training, and cognitive-behavioral approaches to enhance rehabilitation outcomes.

Technological advancements offer promising avenues for future workplace health interventions. Digital posture monitoring systems, wearable activity trackers, mobile health applications, and tele-physiotherapy platforms can facilitate continuous monitoring, personalized feedback, and remote supervision. Evaluating the effectiveness of technology-assisted interventions may improve accessibility and adherence.

Future studies may also explore cost-effectiveness analysis of workplace physiotherapy programs. Economic evaluations can provide evidence for policymakers and employers regarding return on investment and long-term financial benefits. Additionally, comparative studies examining different intervention modalities, such as yoga-based programs, Pilates, resistance training, and hybrid models, may help identify optimal rehabilitation strategies for engineering professionals. Research focusing on specific subgroups, including female engineers, older professionals, and remote workers, may provide tailored insights and targeted preventive approaches.

References

1. Andersen, L. L., Saervoll, C. A., Mortensen, O. S., Poulsen, O. M., Hannerz, H., & Zebis, M. K. (2011). Effectiveness of small daily amounts of progressive resistance training for frequent neck/shoulder pain: Randomized controlled trial. *Pain*, 152(2), 440–446.
2. Bongers, P. M., Ijmker, S., Van den Heuvel, S., & Blatter, B. M. (2010). Epidemiology of work related neck and upper limb problems. *Journal of Occupational Rehabilitation*, 20(1), 1–14.
3. Cho, C. Y., Hwang, Y. S., & Cherng, R. J. (2012). Musculoskeletal symptoms and associated risk factors among office workers. *Journal of Occupational Health*, 54(3), 224–230.
4. Côté, P., van der Velde, G., Cassidy, J. D., Carroll, L. J., Hogg-Johnson, S., Holm, L. W., & Peloso, P. M. (2011). The burden and determinants of neck pain. *European Spine Journal*, 20(4), 537–548.
5. Gupta, A., & Sharma, S. (2014). Prevalence of musculoskeletal disorders in computer professionals. *Indian Journal of Physiotherapy and Occupational Therapy*, 8(3), 152–156.
6. Hedge, A., & James, T. (2012). The effects of workstation design on posture and comfort. *Ergonomics*, 55(7), 795–808.
7. Janwantanakul, P., Pensri, P., Jiamjarasrangsi, W., & Sinsongsook, T. (2011). Prevalence of self-reported musculoskeletal symptoms among office workers. *Occupational Medicine*, 61(3), 182–189.
8. Katzmarzyk, P. T., Church, T. S., Craig, C. L., & Bouchard, C. (2010). Sitting time and mortality from all causes. *Medicine & Science in Sports & Exercise*, 42(5), 998–1005.
9. Lau, K. T., Cheung, K. Y., Chan, K. B., Chan, M. H., Lo, K. Y., & Chiu, T. T. (2010). Relationships between sagittal postures and neck pain. *Manual Therapy*, 15(3), 279–285.
10. McLean, S. M., May, S., Klaber-Moffett, J., Sharp, D. M., & Gardiner, E. (2010). Risk factors for work-related musculoskeletal disorders. *Occupational Medicine*, 60(3), 189–195.
11. Oakman, J., Macdonald, W., Wells, Y., & Kinsman, N. (2014). Workplace risk management practices. *Safety Science*, 70, 222–229.
12. Robertson, M. M., Amick, B. C., DeRango, K., Rooney, T., Bazzani, L., Harrist, R., & Moore, A. (2011). Effects of ergonomic interventions. *Journal of Occupational and Environmental Medicine*, 53(6), 626–634.
13. Sihawong, R., Janwantanakul, P., Sitthipornvorakul, E., & Pensri, P. (2014). Exercise therapy for office workers. *Journal of Bodywork and Movement Therapies*, 18(3), 417–423.
14. Smith, L., Hamer, M., Ucci, M., Marmot, A., Gardner, B., Sawyer, A., & Fisher, A. (2015). Weekday and weekend sedentary behavior. *International Journal of Behavioral Nutrition and Physical Activity*, 12, 1–9.
15. Straker, L., Mathiassen, S. E., & Holtermann, A. (2013). Work-related physical activity. *Scandinavian Journal of Work, Environment & Health*, 39(4), 331–340.
16. Thorp, A. A., Owen, N., Neuhaus, M., & Dunstan, D. W. (2011). Sedentary behaviors and health. *American Journal of Preventive Medicine*, 41(2), 207–215.
17. Van Niekerk, S. M., Louw, Q. A., & Hillier, S. (2012). The effectiveness of ergonomic intervention. *Applied Ergonomics*, 43(4), 708–714.
18. Waersted, M., Hanvold, T. N., & Veiersted, K. B. (2010). Computer work and musculoskeletal disorders. *Scandinavian Journal of Work, Environment & Health*, 36(1), 3–11.
19. Waengenngarm, P., Rajaratnam, B. S., & Janwantanakul, P. (2015). Perceived body discomfort. *Journal of Occupational Health*, 57(3), 241–249.
20. World Health Organization. (2010). *Global recommendations on physical activity for health*. World Health Organization.
21. World Health Organization. (2020). *Guidelines on physical activity and sedentary behaviour*. World Health Organization.
22. Yip, V. Y. (2012). New low back pain in nurses. *Journal of Advanced Nursing*, 68(3), 591–600.
23. Yu, I. T. S., & Wong, T. W. (2011). Musculoskeletal problems among VDT users. *Occupational Medicine*, 61(6), 423–429.
24. Zakerian, S. A., & Subramaniam, I. D. (2011). The relationship between psychosocial factors and MSDs. *Work*, 40(1), 63–75.
25. Zheng, R., & Chen, H. (2021). Effectiveness of workplace exercise interventions. *Journal of Occupational Rehabilitation*, 31(2), 410–420.