
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 11 | November - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 1

IMPLEMENTATION OF DEVICE DRIVER FOR DDR3 IN OPEN

POWER A20 PROCESSOR

V.Jemina jyothi 1,

M.Tech1, CSE Dept1, JNTUACEA1, ANANTHAPURAMU1 A.P1, India1

Abstract— Advanced microcontroller bus architecture (AMBA) protocol family provides metric-driven

verification of protocol compliance, enabling comprehensive testing of interface intellectual property (IP)

blocks and system-on-chip (SoC) designs. DDR3 SDRAM or double-data-rate three synchronous dynamic

random access memories is a random access memory interface technology used for high bandwidth storage of

the working data of a computer or other digital electronic devices. DDR# is a part of the SDRAM family of

technologies and is one of the many DRAM(Dynamic Random Access Memory) implementations. DDr3

SDRAM is the 3rd generation of DDR memories, featuring higher performances and lower power

consumption. Device drivers are software interfaces between software applications and hardware devices. As

part of complex operating system, device, drivers are considered extremely difficult to develop. They are

usually developed in low-level programming languages, such as C. The device driver developers must have

an in-depth understanding of given hardware and software platforms. Code written in C language will be

converted into binary which is fed into processor to perform operations with desired module. This project

Proposes to design and develop driver for DDR3 which is connected to A2O core through AMBA AXI4 bus

interface. Tools required for design and development of driver is GCC compiler and C language will be used

to develop drivers.

Keywords- Advanced microcontroller bus architecture (AMBA) System-on-chip(SoC), Intellactual

Property (IP), AMBA, AXI, VCS, Verilog

I. INTRODUCTION

In recent years due to the miniaturization of

semiconductor process technology and computation

for survival in the current market conditions

constant customization is required. The

semiconductor process technology is changing at a

faster pace during 1971 semiconductor process

technology was 10µm, during 2010 the technology

is reduced to 32nm and future is promising for a

process technology with 10nm. Intel, Toshiba and

Samsung have reported that the process technology

would be further reduced to 10nm in the future. So

with decreasing process technology and increasing

consumer design constraints SoC has evolved,

where all the functional units of a system are

modelled on a single chip. SoC buses [1] are used

to interconnect an Intellectual Property (IP) core to

the surrounding

interface. These are not real buses, but they

reside in Field Programmable Gate Array (FPGA).

The AMBA [2] data bus width can be 32, 64, 128 or

256 byte, address bus width will be 32bits wide. The

AMBA AXI4 [3] specification to interconnect

different modules in a SoC was released in March

2010. A. AMBA AXI4 architecture AMBA AXI4

[3] supports data transfers up to 256 beats and

unaligned data transfers using byte strobes. In

AMBA AXI4 system 16 masters and 16 slaves are

interfaced. Each master and slave has their own 4

bit ID tags. AMBA AXI4 system consists of master,

slave and bus (arbiters and decoders). The system

consists of five channels namely write address

channel, write data channel, read data channel, read

address channel, and write response channel. The

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 11 | November - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 2

AXI4 protocol supports the following mechanisms:

• Unaligned data transfers and up-dated write

response requirements. • Variable-length bursts,

from 1 to 16 data transfers per burst. • A burst with

a transfer size of 8, 16, 32, 64, 128, 256, 512 or 1024

bits wide is supported. • Updated AWCACHE and

ARCACHE signalling details. Each transaction is

burst-based which has address and control

information on the address channel that describes

the nature of the data to be transferred. The data is

transferred between master and slave using a write

data channel to the slave or a read data channel to

the master. Table 1[3] gives the information of

signals used in the complete design of the protocol.

The write operation process starts when the master

sends an address and control information on the

write address channel as shown in fig. 1. The master

then sends each item of write data over the write

data channel. The master keeps the VALID signal

low until the write data is available. The master

sends the last data item, the WLAST signal goes

HIGH. When the slave has accepted all the data

items, it drives a write response signal BRESP[1:0]

back to the master to indicate that the write

transaction is complete. This signal indicates the

status of the write transaction. The allowable

responses are OKAY, EXOKAY, SLVERR, and

DECERR. After the read address appears on the

address bus, the data transfer occurs on the read data

channel as shown in fig. 2. The slave keeps the

VALID signal LOW until the read data is available.

For the final data transfer of the burst, the slave

asserts the RLAST signal to show that the last data

item is being transferred. The RRESP[1:0] signal

indicates the status of the read transfer. The

allowable responses are OKAY, EXOKAY,

SLVERR, and DECERR

The protocol supports 16 outstanding

transactions, so each read and write transactions

have ARID[3:0] and AWID [3:0] tags respectively.

Once the read and write operation gets completed

the module produces a RID[3:0] and BID[3:0] tags.

If both the ID tags match, it indicates that the

module has responded to right operation of ID tags.

ID tags are needed for any operation because for

each transaction concatenated input values are

passed to module.

II. AMBA AXI4 PROTOCOL

 AMBA AXI3 protocol has separate

address/control and data phases, but AXI4 has

updated write response requirements and updated

AWCACHE and ARCACHE signaling details.

AMBA AXI4 protocol supports for burst lengths

up to 256 beats and Quality of Service (QoS)

signaling. AXI4 has additional information on

Ordering requirements and details of optional user

signaling. AXI3 has the ability to issue multiple

outstanding addresses and out-oforder transaction

completion, but AXI4 has the ability of removal of

locked transactions and write interleaving. One

major up-dation seen in AXI4 is that, it includes

information on the use of default signaling and

discusses the interoperability of components which

can’t be seen in AXI3

A. AMBA AXI4 master

To perform write address and data operation the

transaction is initiated with concatenated input of

[awaddr, awid, awcache, awlock, awprot, awburst].

On the same lines for read address and data

operations the concatenated input is [araddr, arid,

arcache, arlock, arprot, arburst]. The addresses of

read and write operations are validated by VALID

signals and sent to interface unit.

B. AMBA AXI4 Interconnect

The interconnect block consists of arbiter

and decoder. When two masters initiate a

transaction simultaneously, the arbiter gives

priority to access the bus. The decoder decodes the

address sent by master and the control goes to one

slave out of 16. The AMBA AXI interface decoder

is centralized digital block. The decoder decodes

the address sent by master and goes to one slave out

of 16. 0-150 locations are meant for slave-1, next

151-300 addressable locations are meant for slave-

and so on till slave-16.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 11 | November - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 3

C. AMBA AXI4 slave read/write block diagram

The AXI4 slave consists of common read/ write

buffer which stores the read/ write address and data

as shown in fig. 4. Pending read address register

stores the remaining read addresses to be sent;

pending write address register which stores the

remaining write addresses to be sent and pending

write data register which stores the remaining write

data to be sent. The read/write state machines

receive internal inputs from the read/ write buffer.

The AXI4 slave test bench initiates the read or write

transaction and the output from the AXI4 slave are

standard read/write channel signals. The AXI4

slave receives the write data in the same order as

address. Signals used to design slave module is

shown in fig. 5. The test layer shown in the fig. 5

has 2 test cases.

III. RELATED WORK

In a SoC, it houses many components and

electronic modules, to interconnect these a bus is

necessary. There are many buses introduced in the

due course some of them being AMBA [2]

developed by ARM, CORE CONNECT [4]

developed by IBM, WISHBONE [5] developed by

Silicore Corporation, etc. Different buses have

their own properties the designer selects the bus

best suited for his application. The AMBA bus was

introduced by ARM Ltd in 1996 which is a

registered trademark of ARM Ltd. Later advanced

system bus (ASB) and advanced peripheral bus

(APB) were released in 1995, AHB in 1999, and

AXI in 2003[6]. AMBA bus finds application in

wide area. AMBA AXI bus is used to reduce the

precharge time using dynamic SDRAM access

scheduler (DSAS) [7]. Here the memory controller

is capable of predicting future operations thus

throughput is improved. Efficient Bus Interface

(EBI) [8] is designed for mobile systems to reduce

the required memory to be transferred to the IP,

through AMBA3 AXI. The advantages of

introducing Network-on-chip (NoC) within SoC

such as quality of signal, dynamic routing, and

communication links was discussed in [9]. To

verify on-chip communication properties rule

based synthesizable AMBA AXI protocol checker

[10] is used.

IV PROPOSED WORK

AMBA AXI4 is the fourth generation of the

AMBA interface specification from ARM. AXI is

a Parallel high performance, synchronous, high

frequency, multi-master multi-slave

communication interface. AXI is a burst-based

protocol that means there may be multiple data

transfers (or beats) for a single request. It supports

for burst lengths up to 256 beats. AMBA AXI4 is

the bus that performs best in terms of Throughput

latency and utilization for single or multiple

channels AXI defines the protocol for the interface

but not the interconnect. The interconnect does all

kinds of protocol conversions and other features

like bit mapping, width mapping and so forth. It is

extendable for which open-ended to support future

needs Device drivers are software interfaces

between software applications and hardware

devices. As part of complex operating

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 11 | November - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 4

system,device,drivers are considered extremely

difficult to develop. They are usually developed in

low-level programming languages, such as C. The

device driver developers must have an in-depth

understanding of given hardware and software

platforms. Code written in C language will be

converted into binary which is fed into processor to

perform operations with desired module.

This project Proposes to design and develop driver

for DDR3 which is connected to A2O core through

AMBA AXI4 bus interface. Tools required for

design and development of driver is GCC compiler

and C language will be used to develop drivers.

V RESULTS

 Simulation is carried out in VCS tool and Verilog

is used as programming language.

A. Simulation result for write operation

 The AResetn signal is active low. Master drives

the address, and the slave accepts it one cycle

later. The write address values passed to module

are 40, 12, 35, 42 and 102 as shown in fig. 8 and

the simulated result for single write data

operation is shown in fig. 9. Input AWID[3:0]

value is 11 for 40 address location, which is same

as the BID[3:0] signal for 40 address location

which is identification tag of the write response.

The BID[3:0] value is matching with the

AWID[3:0] value of the write transaction which

indicates the slave is responding correctly.

BRESP[1:0] signal that is write response signal

from slave is 0 which indicates OKAY

B. Simulation result for read operation

The read address values passed to module are 45,

12, 67, 98 as shown in fig. 11 and the simulated

result for single read data operation is shown in

fig. 12. Design of AMBA AXI4 protocol for

System-on-Chip communication 42 Simulation

result of slave for read address operation. Input

ARID[3:0] value is 3 for 12 address location,

which is same as the RID[3:0] signal for 12

address location which is identification tag of the

write response. The RID[3:0] and ARID[3:0]

values are matching, which indicates slave has

responded properly. RLAST signal from slave

indicates the last transfer in a read burst.

Simulation result of slave for multiple read data

operation is shown in fig. 13.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 11 | November - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 5

VI. CONCLUSION AND FUTURE SCOPE

DDR3 SDRAM or double-data-rate three

synchronous dynamic random access memories is

a random access memory interface technology used

for high bandwidth storage of the working data of

a computer or other digital electronic devices.

DDR# is a part of the SDRAM family of

technologies and is one of the many

DRAM(Dynamic Random Access Memory)

implementations. DDr3 SDRAM is the 3rd

generation of DDR memories,featuring higher

performances and lower power consumption

Device drivers are software interfaces between

software applications and hardware devices. As

part of complex operating system, device, drivers

are considered extremely difficult to develop. They

are usually developed in low-level programming

languages, such as C. The device driver developers

must have an in-depth understanding of given

hardware and software platforms. Code written in

C language will be converted into binary which is

fed into processor to perform operations with

desired module.

This project Proposes to design and develop driver

for DDR3 which is connected to A2O core through

AMBA AXI4 bus interface. Tools required for

design and development of driver is GCC compiler

and C language will be used to develop drivers.

References :

1.https://japan.xilinx.com/support/documentation/i

p_documentation/axi_iic/v2_0/pg090-axi-iic.pdf

2.https://www.researchgate.net/publication/2575

32859_Design_and_Analysis_of_Master_modul

e_for_AMBA_AXI-4

3.https://www.interscience.in/ijcns/vol1/iss3/8/#:

~:text=AMBA%20AXI4%20protocol%20syste

m%20supports,compiler%20simulator%20(VCS

)%20tool.

http://www.ijsrem.com/

