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ABSTRACT

Microorganisms are fundamental to ecosystems, human health, and various industrial processes. The rapid and accurate
identification of microorganisms is crucial for diagnosing diseases, monitoring environmental changes, and advancing
biotechnological applications. Traditional methods of microbial identification, including culturing and microscopy, are
often labor-intensive and time-consuming, necessitating the development of computational techniques to automate and
improve accuracy.

This project presents a comprehensive approach to microbe prediction by leveraging advanced machine learning
algorithms applied to a dataset containing genomic and morphological features of ten different microorganism species.
The study investigates the performance of four classification algorithms — K-Nearest Neighbors (KNN), Naive Bayes,
Random Forest, and Decision Trees — to classify microorganisms based on multiple quantitative features extracted
from images and genetic data.

The methodology involves extensive data preprocessing steps such as cleaning, normalization, polynomial feature
expansion, and dimensionality reduction using Principal Component Analysis (PCA) to enhance model performance.
Rigorous experimentation and comparative analysis reveal that ensemble methods, particularly Random Forest, provide
superior classification accuracy, robustness, and generalizability across unseen data.

In addition to model development, a user-friendly web interface built using Streamlit facilitates real-time microorganism
prediction, making the system accessible to researchers and practitioners without deep technical expertise. The platform
enables the input of feature values and instantly returns predicted microorganism classes along with relevant biological
descriptions and preventive measures, thereby bridging the gap between computational predictions and practical
microbiological insights.

This project contributes to the emerging intersection of microbiology and machine learning by demonstrating an
effective pipeline from raw data to deployable predictive tool. Its implications span environmental monitoring, medical
diagnostics, and industrial microbiology, emphasizing the potential for machine learning to revolutionize microbial
identification and understanding.

Key Words — K-Nearest Neighbors (KNN), Naive Bayes, Random Forest, and Decision Trees, Stream lit user interface
software.

1. INTRODUCTION

Microbe prediction is a field that employs computational models and analytical tools to anticipate the presence, behavior
and characteristics of microorganisms [ 1] in diverse environments. Microbes, spanning bacteria, viruses, fungi, and other
microscopic entities, exert significant influence across ecosystems, human health, and industrial processes. The
predictive analysis of microbial dynamics [2] holds implications for fields such as environmental science, microbiology,
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medicine, and biotechnology. In environmental microbiology, microbe prediction aids in comprehending microbial
populations' impact on nutrient cycles, soil health, and water quality within ecosystems. For the human microbiome,
predictive modelling involves understanding the composition and dynamics of microbial communities [3] within the
body, influencing health and disease. Disease prediction employs models to forecast the spread of infectious
microorganisms, enabling proactive measures for disease prevention and control. Within biotechnology and industrial
processes, microbe prediction is crucial for optimizing production processes, such as fermentation in food and beverage
production, biofuel generation, and waste treatment. This often involves leveraging machine learning algorithms [4] and
bioinformatics tools to analyze large datasets, including genomic data and environmental parameters. Microbe prediction
also addresses the impact of climate change on microbial communities, given their sensitivity to environmental shifts.
Understanding how these changes influence microbial ecosystems contributes to broader ecological insights. Moreover,
microbial community dynamics involve predicting how different species interact, compete, and coexist in complex
ecosystems. In the realm of healthcare, microbe prediction plays a role in precision medicine by anticipating how a
patient's microbiome may respond to treatments. This includes predicting microbial community [5] responses concerning
drug metabolism [6], treatment outcomes, and susceptibility to infections. Overall, microbe prediction stands as an
interdisciplinary field at the intersection of microbiology, molecular biology, computer science, and data analytics. As
our knowledge deepens and computational techniques advance, the predictive analysis of microbial ecosystems is poised
to become increasingly integral to scientific and industrial applications.

1.1 OBJECTIVES OF THIS WORK
To create a model that can classify 10 different microorganisms such as Yeast, Diatom, Spirogyra, and others —

* To use different machine learning algorithms (Random Forest, Decision Tree, Naive Bayes, K-Nearest Neighbours)
and compare their performance.

* To apply data preprocessing and feature extraction techniques like Polynomial Features, Standard Scaler, and PCA to
improve accuracy.

* To develop a user-friendly web application using Streamlit where users can enter values and get predictions with extra
information.

* To save and reuse the model using Joblib, so the system can work even after deployment.
* To make this system helpful for use in fields like medical labs, environmental studies, and biotechnology.

* To prepare the project for future improvements like image input and deep learning models.

2. METHODOLOGY
2.1. PROBLEM STATEMENT

Identifying microorganisms accurately is a complex task in fields such as medicine, biotechnology, and environmental
science. Traditional laboratory techniques for microbe identification are often time-consuming, require significant
expertise, and may not always be accurate. With the increasing availability of microbial datasets and advancements in
computational power, there is a growing need for an automated system that can predict and classify microorganisms
based on their numerical features. The challenge lies in designing a reliable and accurate model that can analyze these
features, select the most important ones, and produce meaningful classifications. Additionally, it is important to make
this system accessible to non-technical users by providing an easy-to-use interface and ensuring that the model is scalable
for future improvements such as image-based predictions and integration with real world microbial data systems. This
paper addresses these challenges by applying machine learning techniques [7] to build a robust microbe prediction
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system that is both practical and efficient.

Traditionally, the identification of microorganisms has relied heavily on manual examination using microscopes,
staining techniques, and biochemical tests. These methods, while accurate in controlled laboratory conditions, are often
time-consuming, labor-intensive, and require highly skilled professionals. Moreover, these techniques may fail to
distinguish between closely related species or may not detect microbes in mixed cultures. There is also limited scope for
automation and scalability, which restricts their use in real-time or high-throughput environments.

2.2.  PROPOSED METHODOLOGY

To overcome the limitations of the traditional system, the proposed methodology adopts a machine learning-based
approach for predicting microorganisms using their numerical and morphological features extracted from image or
measurement data.

This system automates the prediction process and enhances accuracy, speed, and scalability. The process begins with
data acquisition, where a dataset containing pre-measured features of ten types of microorganisms (e.g., Yeast,
Spirogyra, Diatom) is used. These features include parameters such as Solidity, Eccentricity, Perimeter, Area, Bounding
Box, Centroid Coordinates, Convex Hull values, and others. After loading the dataset, data preprocessing is performed.
This involves:

Removing irrelevant columns (like unnamed indices),

* Handling missing values,

* Encoding the output labels (microorganisms) using Label Encoder, and
» Normalizing the features using Standard Scaler.

To enhance model performance, Polynomial Features (with degree = 3) are used to introduce non-linear combinations
of existing features, and Principal Component Analysis (PCA) is applied to reduce dimensionality while preserving the
most important variance in the data. Once preprocessing is complete, the dataset is split into training and testing sets
using a 70:30 ratio. Multiple classification algorithms [8] are then implemented and trained using scikit-learn [9],
including:

* Random Forest Classifier — an ensemble method based on decision trees,
Decision Tree Classifier — interpretable and easy to visualize,

* Naive Bayes Classifier — based on probability and Bayes’ theorem [10],
» K-Nearest Neighbors (KNN) [11] — predicts based on proximity to similar data points.

Each model is evaluated using performance metrics such as accuracy, precision, recall, and F1-score,

calculated on both the training and test sets. Among all, the Random Forest model performed best in most cases and was
selected as the final prediction engine. For deployment, the project uses Stream lit [12], a Python-based web application
framework. A user-friendly interface was developed that allows users to input the values of the 24 microbial features
via sidebar input fields. When the user clicks “Predict,” the entered data is transformed using the preprocessing pipeline
and passed through the trained Random Forest model. The predicted microorganism label is then displayed along with
biological details like description, causes, and prevention methods, loaded from a CSV file. Finally, the model,
preprocessing pipeline, and label encoder are saved using Joblib for persistent usage. This ensures that the system can
be run repeatedly without the need to retrain the model.

This structured methodology—starting from identifying limitations in the current system to designing a complete
machine learning-based solution—ensures accuracy, usability, and extendibility, meeting the objectives of modern
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microbial prediction needs. Software architecture of the work presented in this paper is shown in the figure 2.1.
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Figure. 2.1. Software Architecture

The software architecture of the Microorganism Prediction is designed as a modular, layered system integrating data
processing, machine learning, and user interface components for efficient microorganism classification. The layers are
as follows:

* Data Layer: This consists of the dataset containing numerical features extracted from microbial samples and additional
descriptive metadata stored in CSV files.

* Preprocessing Layer: Data cleaning, normalization, feature scaling, and dimensionality reduction are performed using
Python libraries like scikit-learn. This layer ensures that raw inputs are transformed into a form suitable for machine
learning models.

* Model Layer: This layer contains the machine learning models (Random Forest, KNN, Naive Bayes, Decision Tree)
that have been trained on the processed dataset. 24 Models are serialized using joblib for easy deployment.

 Application Layer: The front-end interface is built using Streamlit, allowing users to input microbial feature values,
trigger predictions, and view results in an intuitive manner.

* Integration Layer: Connects all layers through function calls and APIs, managing the flow from data input to
prediction output seamlessly. This layered architecture enhances maintainability, scalability, and allows future
components (e.g., image input modules) to be integrated without major redesign.

3. IMPLEMENTATION

In the data collection, the dataset [13] comprises of 10 microorganisms: Spirogyra, Volvox, Pithophora, Yeast, Rhizopus,
Penicillium, Aspergillus sp, Protozoa, Diatom, and Ulothrix. The dataset used in this work consists of 30,526 rows of
detailed information about various microorganisms [14],[15]. Each row represents an individual microorganism
characterized by multiple morphological and geometric features extracted from microscopic images. These features
serve as the input attributes for training and testing machine learning models to classify different microorganisms
accurately.

The dataset which is shown in the figure 3.1, includes the following columns, each represents a specific characteristic
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of the microorganism:

Solidity: Measures the compactness of the microorganism shape (ratio of area to convex hull area).

* Eccentricity: Indicates how elongated the microorganism is (ratio of focal distance to major axis length).
* Equivalence Diameter: Diameter of a circle with the same area as the microorganism.

* Extreme: Coordinates of extreme points (top, bottom, left, right) on the microorganism’s boundary.

¢ Filled Area: Number of pixels inside the filled shape of the microorganism.

* Extent: Ratio of the microorganism area to the bounding box area.

* Orientation: Angle between the major axis of the microorganism and the horizontal axis.

* Euler Number: Topological measure defined as (number of objects - number of holes) in the shape.

* BoundingBox1 to BoundingBox4: Coordinates defining the rectangle enclosing the microorganism.

* ConvexHulll to ConvexHull4: Coordinates of the smallest convex polygon enclosing the microorganism.
* Major Axis Length: Length of the longest axis of the microorganism.

* Minor Axis Length: Length of the shortest axis perpendicular to the major axis.

* Perimeter: Total length of the microorganism’s boundary.

* Convex Area: Area of the convex hull surrounding the microorganism.

* Centroidl: X-coordinate of the microorganism’s center of mass.

* Centroid2: Y-coordinate of the microorganism’s center of mass.

* Area: Total number of pixels comprising the microorganism.

* Radius: Radius or size-related measurement of the microorganism.

* Microorganisms: Label indicates the class or type of microorganism. This comprehensive dataset enables the

development of predictive models by capturing essential shape, size, and spatial features that distinguish one
microorganism from another [16],[17].
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Figure 3.1. Dataset
4. TESTING AND EXPERIMENTAL RESULTS
4.1. TEST CASES
Test Cases Description Expected Result Actual result
TCl Valid microbe Prediction matched
feature input Microorganism known label
predicted correctly
TC2 Missing feature | Prompt user to fill | Error message shown
inputs required fields
TC3 Non-numeric input | Input error displayed | Validation message
in numeric fields triggered
TC4 Model  prediction | Return best-fit | Handled edge cases
with borderline | microbe class accurately
values
TC5 Multiple predictions | App responds | Smooth, repeatable
without reload interaction
Table.4.1. Test cases
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42. OUTCOME OF THE WORK
All test cases are successfully applied.
The system was validated for:
* Accuracy of prediction
* Frontend usability
* Resilience to invalid inputs

This testing phase ensured that the application is reliable for end-users like microbiologists, students, and researchers.

4.3. RESULTS SUMMARY

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Random Forest 96.45 95.70 95.80 95.75

Naive Bayes 88.30 87.50 86.90 87.20
Decision Tree 90.10 89.70 89.10 89.40
k-Nearest 91.25 90.80 90.50 90.65
Neighbors

Table. 4.2. Accuracy Table

The table 4.2. presents the performance comparison of four classification algorithms—Random Forest, Naive Bayes,
Decision Tree, and k-Nearest Neighbor—based on key evaluation metrics: Accuracy, Precision, Recall, and F1-Score.
Among these, Random Forest demonstrates the highest scores across all metrics, indicating its superior ability to
accurately and reliably classify microorganisms. The other models show moderate performance, with KNN performing
better than Naive Bayes and Decision Tree but still falling short of the Random Forest’s effectiveness. Figure 4.1. shows
the bar chart comparing precision, accuracy, recall, and F1 across models.

Performance Comparison of Four Algorithms

1.0 W Precision
. jccuracy
- Fl

0.8 Recall

0.6 1

0.4 4

0.2 1

0.0 +—

Random Forest Naive Bayes  Decsion TreekNearestNeighbour

Figure: 4.1. Bar chart

Figure 4.2, 4.3 and 4.4 shows the frontend testing of the work, by using Stream lit Web Application.

Input Feature Values: On the left sidebar, the user will find numeric input fields labeled with each microorganism feature
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(e.g., Solidity, Eccentricity, Area, etc.).
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Figure: 4.3. Predicting Output
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Figure: 4.4. Output display

This work preprocesses inputs through the saved pipeline (scaling, polynomial feature transformation, PCA) to match
the trained model's expected format.

The predicted microorganism class label appears prominently in green success text in the output (e.g.,

"Predicted Microorganism: Spirogyra").

Additional information such as biological description, causes, and prevention measures related to the predicted microbe
is shown below as informational boxes.

If no description is available, a warning message alerts the user.

Error Handling:

If any exception occurs during preprocessing or prediction, an error message with relevant details is displayed in red
text.

Usability Features:

The sidebar remains accessible to change inputs and predict multiple times without page reload.

This interface is responsive and can be accessed on various devices including desktops and tablets.

CONCLUSION

The objective of this work is to develop an accurate and reliable machine learning model capable of classifying different
microorganisms using their genomic and morphological features. Throughout the research and implementation phases,
multiple classifiers were evaluated, including k-Nearest neighbors, Naive Bayes, Decision Trees, and Random Forest.
Comprehensive data preprocessing — such as handling missing values, normalization, polynomial feature generation,
and dimensionality reduction with PCA — was crucial in optimizing the input data for effective model training.

Among the tested algorithms, Random Forest emerged as the most promising model due to its high accuracy, balanced
precision and recall, and strong resistance to overfitting. The ensemble nature of Random Forest allowed it to capture
complex relationships between features and provided interpretable insights via feature importance metrics. Additionally,
the performance evaluation using metrics like F1-score, confusion matrices, and classification reports demonstrated that
the model generalizes well on unseen data.
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Beyond model training, the deployment of the predictive model into a web-based application using Stream lit
significantly enhances usability. This frontend allows users to input microorganism feature values easily and receive
rapid predictions complemented by descriptive information derived from external biological datasets. Such integration
is instrumental for practical applications, enabling microbiologists, healthcare professionals, and environmental
scientists to utilize the model for real-time microbial identification.

Overall, this work showcases the synergy between biological sciences and machine learning, contributing valuable tools
for microbial ecology, diagnostics, and bioinformatics. Future work may include expanding the dataset to incorporate
more microorganism species, integrating genomic sequence-based deep learning models, and refining the frontend with
richer visualization and user experience features. This framework lays the foundation for advancing microbial predictive
analytics and its applications across various domains.

FUTURE WORK

While the current microbe prediction system demonstrates robust performance with manual input feature values, there
are several avenues to expand and improve the system’s capabilities to enhance usability, accuracy, and scalability:

1. Integration of Image-based Input

- Currently, the system requires manual input of microbe features derived from microscopic images or genomic data.
Automating this step by integrating image processing and computer vision techniques would significantly improve user
experience. For example:
- Use Convolutional Neural Networks (CNNs) to directly analyze microscopic images of microbes and extract features
automatically.
- Develop an image and upload interface allowing users to submit raw microbe images rather than
manually entering feature data.

- Employ segmentation and feature extraction pipelines to preprocess images before classification.

2. Use of Deep Learning Models

While traditional machine learning models like Random Forests yield strong results, deep learning approaches, including
CNNs and recurrent neural networks (RNNs), could better capture complex spatial and sequential patterns in genomic
or image data, potentially improving prediction accuracy and generalization.

3. Real-time Prediction and Scalability

Enhancing the system for real-time microbial monitoring could benefit environmental and clinical applications.
Implementing scalable architectures using cloud platforms, API deployment, and containerization (Docker, Kubernetes)
would support high-throughput prediction with minimal latency.

4. Expanded Dataset and Multi-Modal Data Fusion

Incorporating a broader and more diverse microbial dataset, including multi-modal data such as environmental
metadata, gene expression, and proteomics, could improve model robustness.
Techniques to fuse heterogeneous data sources could yield more comprehensive microbial
behavior prediction.
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5. Enhanced User Interface and Interpretability

- Develop more intuitive frontend interfaces with visualizations explaining model decisions (e.g., SHAPE
values for feature importance).

- Enable batch predictions and downloadable reports for practical research use.

- Incorporate voice or chatbot interaction to ease user input.

6. Integration with Laboratory Automation Systems

Linking the prediction tool with automated laboratory equipment could streamline microbial analysis workflows,
enabling near-instant results and reducing manual workload.
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