
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52579 | Page 1

Implimentation Of Table_Track_Sort() Algorithm Which Classifies the

Elements of an Array in Known Order. Further Examining the Time

Complexity and Space Complexity of an Algorithm and Analysing the

Efficacy of the Algorithm - A Case Study.

6674 – Cadet P AKILESHWER1, 6677 – M R SANJAY2

Class- XII 2025-26, Sainik School Amaravathinagar

Post: Amaravathinagar,Udumalpet Taluka,Tirupur Dt,Tamilnadu State

ABSTRACT

 In the field of computer science, the efficiency of a program solely depends on the time factor of

processing a statement or block of statements. Further, the amount of memory it uses for processing also

matters in calculating the space complexity of the program.

 There are numerous sorting techniques that exist; each one has pros and cons, and these sorting

techniques are used in the development of software. The table_track sorting algorithm is a unique method

to sort the elements of a given list of numbers.

This manuscript implements the function table_track_sort(), which uses a matrix table to sort a list of

numbers further. It examines the execution of the methodology with respect to time complexity and space

complexity of the algorithm.

Keywords: Table Track Sort (TTS), Matrix Table(MT), Number (N), Compared Number

Position(CNP), Original Number Position (ONP), Original And Compared Number Result (OCR).

1. INTRODUCTION

The Sorting is the process of arranging items into a

sequence according to a specific order, such as text

from A to Z, numbers from smallest to largest or

from largest to smallest, or dates from oldest to

newest or newest to oldest. It helps in organizing

and understanding data, making it easier to

visualize, find, and make decisions. While sorting

can refer to simple categorization or organizing

physical objects, in the context of computing, it

specifically involves using sorting algorithms to

reorder elements in an array or list

Some of the most popular sorting techniques are

Bubble Sort, Merge Sort, Quick Sort, Counting Sort,

Heap Sort, Insertion Sort, etc. Here we will see the

comparison between the most popular bubble_sort()

and table_track_sort(). The Bubble_sort() is a

comparison-based sorting algorithm that repeatedly

steps through the list, compares adjacent elements,

and swaps them if they are in the wrong order.

Here, table_track_sort() is an algorithm that sorts

series in a specific order using table formation and

iteration in a table with the given parameters.

https://ijsrem.com/
https://www.google.com/search?sca_esv=bfcc81ce666b91db&sxsrf=AE3TifPP3tsAJ3rwragj5UBauzTwMSelVw%3A1756882620862&q=sorting+algorithms&sa=X&ved=2ahUKEwi2hp3kgbyPAxW2SGcHHbMQCCcQxccNegQIOBAB&mstk=AUtExfDqcOw7bcicW-70PHAyyZEwV78TTY5CmF-w2oD6P20EGBGmhdE1qvfrRxwecWmzcf5McLMCAEdih2_tAx0RofOndWZgWD8oQjh4pA_7INPysgp-_Vy_Q5MSv7-HzZZfPEPAd4HAqyWlWRgT5H8_IvWlOFBqFTKQCeBLqxp0QbGDz1k&csui=3

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52579 | Page 2

2. RELATED WORK:

Related work on sorting techniques by

researchers focuses on categorizing algorithms by

their method (e.g., comparison-based, non-

comparison-based), evaluating their performance in

terms of time and space complexity (e.g., O(n²), O(n

log n)), and exploring their efficiency for different

data sizes and types. Key areas of research include

understanding fundamental algorithms like Bubble

Sort, Insertion Sort, Merge Sort, Heap Sort,

and Radix Sort, as well as developing novel, more

efficient sorting algorithms to handle increasingly

large datasets.

3. METHODOLOGY

The Table_Track_Sort (TTS) is a comparison-

driven sorting algorithm that integrates relational

tracking with the help of tabular computation.

Unlike traditional algorithms such as Merge_Sort

and Quick_sort, which rely on the dividing and

conquering archetype, Table_Track_Sort(TTS)

constructs an auxiliary comparison table, which is

called the MATRIX TABLE (MT), that precisely

determines pairwise ordering relationships. This

Matrix table forms the foundation for deriving the

final sorted sequence. The methodology emphasizes

transparency of intermediate decisions by explicitly

recording and ordering comparisons in a structured

tabular form.

The execution process of the algorithm is, once the

user provides the required inputs, the

Table_Track_Sort(TTS) will generate the

comparison table called the MATRIX TABLE

(MT) as described above. This very table consists

of the elements with their position, which have been

processed by the comparison methodology. The

Matrix Table will become the blueprint to generate

the list of

numbers

as per the

order

(ascending or descending) provided by the user.

Further, the Table_Track_Sort() algorithm is

implemented using one of the existing languages to

check the efficacy of the algorithm.

4. STRUCTURE OF THE MATRIX TABLE:

Enter elements separated by spaces: 77 62 74 24

Enter order (asc/desc): desc

5. FUNCTIONING OF MATRIX TABLE

 The system accepts four elements and the

order of arranging the elements

(ascending/descending). The algorithm generates a

total of 12 rows in the matrix form, which contains

the element, Original Number Position (ONP),

Compared Number Position (CNP), and the last

column, original and compared number result

(OCR).

 The first element will be picked by the

Table_Track_Sort (TTS) algorithm, and it records

n onp cnp ocr

77 0 1 1

77 0 2 1

77 0 3 1

62 1 0 -1

62 1 2 -1

62 1 3 1

74 2 0 -1

74 2 1 1

74 2 3 1

24 3 0 -1

24 3 1 -1

24 3 2 -1

https://ijsrem.com/
https://www.google.com/search?sca_esv=bfcc81ce666b91db&cs=1&sxsrf=AE3TifM5q5f7VBsozM6GalYGff7U2BA8Xg%3A1756884287286&q=Radix+Sort&sa=X&ved=2ahUKEwjWo8T-h7yPAxWDR2wGHdEZA-gQxccNegQICBAB&mstk=AUtExfBAGxkEcW_ZV85DvU9A5VIY1eAnupzOm2ckza_oyJdcn4dmy265H7jpg1WbHH4I8fry1FzJyXOD7jBHgWLBtrYSXnaM-IQHUcuilOKsvvt0bUmXTiYDCtHZ1ZL_rLG4lCxipxqPbiWFefP_Hs4m9PIetsfqYLAgEOmoUUdS93G8vL_AooPW4knlQx587RgDqrDrEYAmrBDB6X_HGnZM2Bo0RGQCdcqX15dPhMDrmpotJP1v6mzw_SRWxFJizVliUyAqB3b9YlphxrF-lNP0mLxu&csui=3

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52579 | Page 3

the Original Number Position (ONP). It compares

the successive elements present in the given list,

and the final result of the comparison, the index is

recorded as shown in the Matrix Table (MT). once

the Matrix table is generated, the algorithm

identifies the exact position of the element and

generates the sorted list in some known order.

6. ALGORITHM: Table_Track_Sort()

STEP 01: START

STEP 02: INITIALIZE AN EMPTY

COMPARISON TABLE.

STEP 03:LOOP OVER EACH ELEMENT N

IN THE LIST

STEP 04: FOR EACH N, COMPARE IT WITH

EVERY OTHER ELEMENT COMPARED_N

STEP 05: SKIP COMPARISON WHEN AN

ELEMENT IS COMPARED WITH ITSELF.

STEP 06: DETERMINE THE COMPARISON

RESULT (OCR):

STEP 07: RECORD A ROW IN THE TABLE

STEP 08: REPEAT STEPS 4–7 UNTIL ALL

POSSIBLE PAIRS ARE COMPARED.

STEP 09: INITIALIZE A DICTIONARY

COUNTS TO STORE WIN COUNTS FOR

EACH ELEMENT.

STEP 10: TRAVERSE THE TABLE

STEP 11: INITIALIZE AN EMPTY RESULT

LIST AND A USED SET.

STEP 12: WHILE THE RESULT LIST IS NOT

COMPLETE, SELECT THE NEXT

CANDIDATE ELEMENT:

STEP 13: APPEND THE CHOSEN ELEMENT

TO THE RESULT LIST.

STEP 14: MARK THAT ELEMENT AS USED,

SO IT IS NOT SELECTED AGAIN.

STEP 15: MARK THAT ELEMENT AS USED,

SO IT IS NOT SELECTED AGAIN.

STEP 16: OUTPUT

7. PROGRAM: Table_Track_Sort (TTS):

Table_Track_Sort () function definition:

def Table_Track_Sort(arr, order='asc'):

 table = []

 for i in range(len(arr)):

 for j in range(len(arr)):

 if i == j:

 continue

 n = arr[i]

 compared_n = arr[j]

 ocr = 1 if n > compared_n else (-1 if n <

compared_n else 0)

 table.append({

 'n': n,

 'onp': i,

 'cnp': j,

 'ocr': ocr

 })

 counts = {}

 for row in table:

 n = row['n']

 if n not in counts:

 counts[n] = 0

 if row['ocr'] == 1:

 counts[n] += 1

 result = []

 used = set()

 while len(result) < len(arr):

 candidate = None

 for n in arr:

 if n in used:

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52579 | Page 4

 continue

 if candidate is None:

 candidate = n

 else:

 if order == 'asc':

 if counts[n] < counts[candidate]:

 candidate = n

 else:

 if counts[n] > counts[candidate]:

 candidate = n

 result.append(candidate)

 used.add(candidate)

 return result, table

def print_table(table):

 print("\nComparison Table:")

 print(f"{'n':<5}{'onp':<5}{'cnp':<5}{'ocr':<5}")

 print("-"*20)

 for row in table:

print(f"{row['n']:<5}{row['onp']:<5}{row['cnp']:<5}{ro

w['ocr']:<5}")

main() function definition

def main():

 user_input = input("Enter elements separated by

spaces: ")

 arr = list(map(int, user_input.split()))

 order = input("Enter order (asc/desc):

").strip().lower()

 result, table = table_track_sort(arr, order=order)

 print("\nSorted Result:", result)

 print_table(table)

Calling function

if __name__ == "__main__":

 main()

8. FUNCTIONING OF CODE

 The code implements the

Table_Track_Sort(TTS) algorithm, a comparison-

based sorting technique. It takes a list of numbers

and the desired order (ascending or descending)

from the user. Inside the table_track_sort function,

each element is compared with every other element,

and the results of these comparisons are stored in a

table with fields: the Number (N), Its ORIGINAL

NUMBER POSITION (ONP), the COMPARED

NUMBER POSITION (CNP), and the

ORIGINAL AND COMPARED NUMBER

(OCR).

Using this table, the algorithm counts how many

times each element is greater than the others (wins)

and arranges the elements accordingly. For

ascending order, elements with fewer wins appear

first; for descending order, elements with more wins

appear first. The program then returns both the

sorted result and the full comparison table. The

print_table() function displays this table in a clear

format, and the main function manages input,

execution, and output.

9. COMPLEXITY OF ALGORITHM

In computer science, the analysis of algorithms is a

crucial part. It is important to find the most efficient

algorithm for solving a problem. It is possible to

have many algorithms to solve a problem, but the

challenge here is to choose the most efficient one.[1]

There are multiple ways to design an algorithm, or

considering which one to implement in an

application. When thinking through this, it’s crucial

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52579 | Page 5

to consider the algorithm’s time

complexity and space complexity.[2]

10. SPACE COMPLEXITY

 The space complexity of an algorithm is the amount

of space (or memory) taken by the algorithm to run

as a function of its input length, n. Space complexity

includes both auxiliary space and space used by the

input.[3]

Auxiliary space is the temporary or extra space used

by the algorithm while it is being executed. Space

complexity of an algorithm is commonly expressed

using Big (O(n)) notation.[3]

The Space complexity is ignored in this research

paper, since the space complexity of a particular

problem is not considered so important.

Space complexity for the Table_Track_Sort()

algorithm is : O(n)

11. TIME COMPLEXITY

The time complexity of an algorithm is the amount

of time taken by an algorithm to complete its

process as a function of its input length, n. The time

complexity of an algorithm is commonly expressed

using asymptotic notations: [2]

Big O - O(n)

Big Theta - Θ(n)

Big Omega - Ω(n)

It’s valuable for a programmer to learn how to

compare the performances of different algorithms

and choose the best time-space complexity to solve

a particular problem in the most efficient way

possible.[2]

Big O notation is used in Computer Science to

portray the performance or complexity of an

algorithm.

Big O specifically defines the worst-case scenario

of an algorithm, and can be used to describe the

execution time required or the space used (e.g., in

memory or on disk) by an algorithm. here, O stands

for order of growth.

Big Theta(Θ) is used to represent the average case

scenario of an algorithm and can be used to describe

the execution time required or the space used (e.g.,

in memory or on disk) by an algorithm.

Big Omega (Ω)is used to represent the best-case

scenario of an algorithm and can be used to describe

the execution time required or the space used (e.g.,

in memory or on disk) by an algorithm.

These three methods are the most common and very

popular methods of design and analysis of an

algorithm and are used for finding the efficiency of

the program.

12. RUNTIME COMPLEXITY OF

Table_Track_Sort(TTS)

Input Time Complexity

5 0.061331

10 0.44261

50 11.70741

100 46.094

250 187.22642

500 637.85106

1000 1332.75919

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52579 | Page 6

13. GRAPHICAL REPRESENTATION

14. THE RUNTIME COMPLEXITY OF

TABLE_TRACK_SORT():

 for i in range(len(arr)):

 for j in range(len(arr)):

 if i == j:

 continue

 n = arr[i]

 compared_n = arr[j]

 ocr = 1 if n > compared_n else (-1 if n <

compared_n else 0)

 table.append({

 'n': n,

 'onp': i,

 'cnp': j,

 'ocr': ocr

 })

For the above code the time complexity is O (n2)

NEXT FOR LOOP

for row in table:

 n = row['n']

 if n not in counts:

 counts[n] = 0

 if row['ocr'] == 1:

 counts[n] += 1

 result = []

 used = set()

For the above code the time complexity is O (n)

WHILE LOOP

while len(result) < len(arr):

 candidate = None

 for n in arr:

 if n in used:

 continue

 if candidate is None:

 candidate = n

 else:

 if order == 'asc':

 if counts[n] < counts[candidate]:

 candidate = n

 else:

 if counts[n] > counts[candidate]:

 candidate = n

 result.append(candidate)

 used.add(candidate)

For the above code the time complexity is O (n2)

TOTAL TIME COMPLEXITY:

Add the complexities of each part:

* Part 1: O(n²)

* Part 2: O(n)

* Part 3: Between O(n) and O(n²)

So the overall time complexity is:

Best-case: O(n²)

Worst-case:O(n² + n + n²) = O(2n² + n) = O(n²)

(since highest-order term dominates)

Final Time Complexity: O(n²)

5 10 50 100 250

500

1000

0.061331

0.44261

11.70741

46.094

187.22642

637.85106

1332.75919

1 2 3 4 5 6 7

Table_Track_Sort() Runtime Complexity

Input Time Complexity

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52579 | Page 7

15. CONCLUSION

There are numerous sorting techniques that exist;

each one has pros and cons, and these sorting

techniques are used in the development of software.

The table_track_sort () sorting algorithm is a unique

method to sort the elements of a given list of

numbers. Unlike other sorting techniques it uses a

table to sort list of numbers by recording

comparisons. This is one of the distinct

methodology of implementing the sorting method.

16. ACKNOWLEDGEMENT

Apart from our efforts, the success of any work or

project depends largely on the encouragement and

guidelines of many others. I take this opportunity to

express my gratitude to the people who have been

instrumental in the successful completion of this

research paper.

I express a deep sense of gratitude to Almighty God

for giving us the strength to successfully complete

the research paper.

I express my heartfelt gratitude to my parents for

their constant encouragement while carrying out

this research paper.

I express my deep sense of gratitude to the luminary,

The Principal Captain (Indian Navy) K

Manikandan, Sainik School Amaravathinagar,

who has been continuously motivating and

extending their helping hand to us.

I express my sincere thanks to the academician, the

Vice Principal, Lt Col Kaushok Nandini Arun,

Sainik School Amaravathinagar, for constant

encouragement and the guidance provided during

this research.

My sincere thanks to Mr.Praveen Kumar

Murigeppa Jigajinni, Master In-charge, A guide,

Mentor, and great motivator, who critically

reviewed my paper and helped in solving each and

every problem that occurred during the

implementation of this research paper.

15. REFERENCES

 [1]https://www.freecodecamp.org/news/time-

complexity-of-algorithms/

[2]https://www.educative.io/edpresso/time-

complexity-vs-space-complexity

[3]https://en.wikipedia.org/wiki/Space_complexity

Your Paper Index is : 202509-01-024001

https://ijsrem.com/
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.educative.io/edpresso/time-complexity-vs-space-complexity
https://www.educative.io/edpresso/time-complexity-vs-space-complexity

