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Abstract - AlexNet—released by Krizhevsky, Sutskever, and 

Hinton in 2012—initiated the deep-learning revolution with its 

win in the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC-2012) by an unprecedented error reduction over 

traditional methods. The five-convolutional-layer (informally 

referred to as "AlexNet-5 conv") model applies max-pooling, 

ReLU non-linearities, local response normalization (LRN), data 

augmentation, dropout, and stochastic gradient descent (SGD) 

with momentum—every one of them trained on GPUs. This 

paper outlines the architecture, training pipeline, and 

contributions; discusses shortcomings; This paper presents 

future directions and open problems. Overall, AlexNet-5 is best 

understood as an early template whose ideas—ReLU, 

aggressive augmentation, dropout, and GPU-first training—

remain at the core of current architectures even as the field 

continues to move toward deeper, normalized, and efficiency-

optimized networks.  
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1.INTRODUCTION 

 
Prior to 2012, vision recognition was based on hand-crafted 

features (SIFT/HOG) with shallow classifiers. AlexNet 

demonstrated that end-to-end learned features could handily 

trounce them on large, labeled sets like ImageNet (1.2M images, 

1,000 classes) [1],[2]. AlexNet has five convolutional layers and 

three fully connected layers, so the standard shorthand 

"AlexNet-5 conv." The original implementation also divided the 

model across two GPUs to conserve memory and speed up 

training [1]. 

Key Contributions: 
• ReLU activations enabling fast, non-saturating training [1],[3]. 

• Max-pooling overlap improving translational robustness. 

• Local response normalization (LRN) as a then-useful 

regularizer [1]. 

• Dropout in fully connected layers to prevent overfitting [4]. 

• Large data augmentation (random crop, flip, color jitter) [1]. 

• GPU training for end-to-end multi-epoch optimization at scale. 

Table-I organizes AlexNet's forward pass layer by 

layer for an input 224×224 RGB image—kernel/stride/pad, 

resulting feature-map sizes step by step, and the primary 

operations (ReLU, LRN, max-pooling, dropout). It illustrates 

how spatial resolution decreases and channel depth increases 

from Conv1–Conv5, followed by FC6–FC8 and Softmax—a 

simple plan to execute and replicate. 

 

 

Stage 
Layer 

(kernel/stride/pad) 

Maps × 

size 
Notes 

Input — 

3×224×224 

(originally 

227×227) 

RGB image 

Conv1 11×11 / 4 / 2 96×55×55 
ReLU → LRN → 

3×3 max-pool / 2 

Conv2 5×5 / 1 / 2 256×27×27 
ReLU → LRN → 

3×3 max-pool / 2 

Conv3 3×3 / 1 / 1 384×13×13 ReLU 

Conv4 3×3 / 1 / 1 384×13×13 ReLU 

Conv5 3×3 / 1 / 1 256×13×13 
ReLU → 3×3 

max-pool / 2 

FC6 — 4096 
ReLU + Dropout 

(p=0.5) 

FC7 — 4096 
ReLU + Dropout 

(p=0.5) 

FC8 — 1000 Softmax 

Table-1: AlexNet (5-Conv) Architecture Summary 

 

The network's backbone consists of five large early 

convolutional layers with large early receptive fields (e.g., 

11×11 stride-4 in Conv1) followed by later 3×3 smaller kernels. 

The three main ingredients are rectified linear unit (ReLU) 

activations, overlapping max-pooling, and local response 

normalization (LRN) as initially introduced. Three fully 

connected layers (two of 4096 units) finish off the classifier, 

with dropout (p=0.5) to prevent overfitting. The training recipe 

used large-scale data augmentation—random crops, horizontal 

left-right reflection, and color perturbations—plus stochastic 

gradient descent with momentum, weight decay, and stepwise 

learning-rate schedules. To keep the workload tractable in 2012, 

the model and minibatches were divided between two consumer 

GPUs. Overall, AlexNet used about 60 million parameters and 

trained on ~1.2 million images resized to 224–227 pixels. 

 

 From the deployment perspective, AlexNet's size and 

compute requirements restricted real-time and edge usage 

without pruning, quantization, or architect rethinking. The gap 

analysis in this report compares AlexNet's strengths with 

contemporary solutions: global average pooling for substituting 

large fully connected layers, residual connections for facilitating 

depth, normalization layers for regularizing optimization, and 

efficiency techniques (depthwise separable kernels, 

group/pointwise convolutions) for mobile use cases. 
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2. LITERATURE SURVEY 

2.1 Overview of Implications 

AlexNet's top-5 error (~15.3%) reduced the then-best by more 

than 10 percentage points, eliciting immediate follow-on work 

on deeper, more regularized CNNs (VGG, GoogLeNet, ResNet) 

and the wholesale use of GPUs [1],[5]–[7]. AlexNet (popularly 

known as AlexNet-5 for five convolutional layers) was the 

milestone from hand-engineered features to end-to-end deep 

learning in vision. Labeled on the 1.2-million-image ImageNet 

dataset, it brought together large early receptive fields (11×11 

stride-4 in Conv1) and small 3×3 kernels later in the network, 

and combined three fully connected layers to form the classifier. 

The key engineering choices were ReLU activations for 

efficient, non-saturating optimization; overlapping max-pooling 

for translation robustness; local response normalization (LRN) 

as a then-effective regularizer; aggressive data augmentation 

(random crops, flipping, color jitter); and dropout (p=0.5) in the 

fully connected layers to prevent overfitting. Stochastic gradient 

descent with momentum, weight decay, and stepwise learning-

rate schedules were a reliable training recipe. Since 2012 GPUs 

were memory-constrained, the model and minibatches were 

split across two devices. 

Empirically, AlexNet reduced the ILSVRC-2012 top-5 

error by more than ten percentage points, demonstrating that 

learned hierarchical features generalize much better than 

SIFT/HOG pipelines. It triggered transfer learning in computer 

vision: AlexNet pre-trained weights became default detection, 

segmentation, and fine-grained task initializations. Its success 

also became the benchmark for GPU-first training and rendered 

practical approaches—ReLU, strong augmentation, and 

dropout—default options in many situations. Even though 

subsequent models (VGG, Inception, ResNet, EfficientNet) 

outperformed it in accuracy and efficiency, AlexNet set the 

template and lexicon for contemporary CNN design. 

 

2.2 Practical Challenges Identified 

 

• Model & compute size: ~60M parameters; large FC layers 

consume most memory and FLOPs. 

• Stability in training: Weight-decay sensitive and learning-rate 

schedules; LRN now outdated in comparison to BN [8]. 

• Generalization gaps: Large, labeled datasets needed; data bias 

and domain shift are still issues [2]. 

•Deployment: The original model is costly for edge/mobile 

deployment without compression. 

• Parameter and compute footprint: At about 60M parameters, 

the majority of which are from the fully connected head, 

AlexNet is memory-intensive and not edge or mobile 

deployable. 

• Old normalization: LRN achieved minor improvements but 

was surpassed subsequently by batch normalization and its 

variations; in the absence of BN, optimization remains 

initialization- and learning-rate schedule-sensitive. 

• Risk of overfitting in FC layers: Dropout alleviated it, but the 

deep FC stack still overfits on small datasets and increases 

inference cost; recent architectures instead employ global 

average pooling and smaller heads. 

• Stability training and tuning load: Performance depends on 

appropriately selected learning rates, momentum, and decay; 

absence of BN lowers tolerance to large batches or rapid 

schedules.  

• Explainability: Although saliency techniques can project 

AlexNet's features, its choices are difficult to reason out for 

high-stakes use in the absence of domain-specific attribution 

and auditing. 

• Net takeaway: AlexNet concepts initiated the deep vision age, 

but its size, normalization approach, and shallow depth 

constrain present performance and deploy ability—problems 

subsequent architectures explicitly solve. 

• Batch Normalization and Dropout [15],[16]: Minibatches for 

stability. Randomly zeros a fraction to reduce overfitting. 

• SE (Squeeze and Excitation) [17] : Blocks global spatial stats 

and reweight feature maps. 

 

Aspect 
AlexNet 

Strength 
Modern Resolution 

Nonlinearity 
ReLU sped 

training 
BN/LayerNorm [8] 

Pooling 
Overlapping 

max-pool  

Strided convs, dilations; 

attention 

Regularization 

Dropout was 

effective in 

FC layers 

Dropout mainly in 

classifier; BN + strong 

augmentation 

Capacity 

High 

capacity for 

ImageNet 

Global average pooling; 

residuals [7] 

Depth 
5 conv 

blocks 

Very deep nets with skip 

connections (ResNet-

50/101) [7] 

Compute 
Two-GPU 

split- 2012 

EfficientNets/MobileNets; 

pruning/quantization [9] 

Table-2: Gap analysis of various aspects 

 

2.3 ECG 

Clinically, ECG (ElectroCardioGram) [10] is crucial in 

the detection of arrhythmias (e.g., atrial fibrillation, AV block, 

ventricular tachycardia), myocardial ischemia and infarction 

(through ST-segment and Q-wave changes), disturbances in 

conduction (bundle branch blocks), chamber enlargement, 

electrolyte imbalance (e.g., hyperkalemia), and drug effects 

(e.g., QT prolongation). They direct near-instant decisions—

thrombolysis or PCI in ST-elevation MI—pacing and 

antiarrhythmic therapy monitoring, and perioperative and 

critical-care follow-up. Serial ECGs assist in monitoring 

dynamic changes, and correlation with symptoms. 

 

The arrhythmias are classified into 10 classes as below: 

#class0 Normal sinus rhythm — Regular rhythm 60–100 bpm 

of the sinoatrial node with upright P waves in I, II, aVF (usually 

biphasic in V1), each followed by a narrow QRS, constant PR 

interval (120–200 ms), and normal QTc. Axis, intervals, and R-

wave progression are normal for age. This rhythm is the 

"reference normal," helpful for comparison with previous ECGs 

and for ruling out arrhythmias, conduction blocks, ischemia, 

and chamber overload. 

 

#class1 Sinus tachycardia — Normal sinus rhythm >100 bpm in 

adults with normal P-axis and 1:1 AV relationship; PR and QRS 

typically normal. Physiologic causes are exercise, fever, 

anemia, hypovolemia, pain, anxiety, hyperthyroidism, or 

medications (e.g., stimulants). Context-dependent meaning: 

http://www.ijsrem.com/
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generally a compensatory response; sudden-onset/offset or 

inappropriateness for environment requires search for SVT or 

other cause. 

 

#.class2 Sinus bradycardia — Sinus rhythm below 60 bpm with 

upright P, regular PR in II; found in athletes, sleep, or beta-

blockers. Pathologic etiologies are hypothyroidism, ischemia, 

intracranial hypertension, or sick sinus syndrome. 

Asymptomatic patient is usually benign; red flags are dizziness, 

syncope, hypotension, or pauses that suggest sinus node 

dysfunction or high-grade AV block. 

 

#class3 Left bundle branch block (possible) — Suggestive 

features: wide QRS (usually ≥120 ms for complete; 110–119 ms 

for incomplete), absent septal q in V5–V6, I, aVL, wide 

notched/slurred R in V5–V6; deep rS or QS in V1–V3 with 

secondary ST-T discordance. LBBB can hide ischemia and 

signifies intraventricular conduction delay; "possible" denotes 

borderline morphology or rate-dependent LBBB—take 

symptoms and echocardiography into account. 

 

#class4 Right bundle branch block (possible) — QRS 

prolongation with rsR′/rSR′ in V1–V2 ("rabbit ears"), wide 

terminal S in I and V6, and secondary ST-T changes in right 

precordials. Incomplete RBBB has QRS 100–119 ms. Usually 

benign, but can be present with right heart strain (PE), 

congenital heart disease, or myocarditis; "possible" indicates 

partial/atypical criteria—see clinical context and comparison 

ECGs. 

 

#class5 Left ventricular hypertrophy (possible) — Elevated LV 

voltage (e.g., Sokolow–Lyon: SV1 + RV5/V6 ≥35 mm; Cornell: 

RaVL + SV3 >28 mm men, >20 mm women) with potential 

"strain" pattern: lateral ST depression and asymmetric T 

inversion. Voltage in itself can be normal in young/thin persons; 

"possible" is applied to borderline criteria. Clinically suggests 

hypertension, aortic stenosis, or athletic remodeling—

corroborate with echo and BP check. 

 

#class6 Right ventricular hypertrophy (possible) — Right axis 

deviation, tall R in V1 (R/S >1) with progressive diminution 

across precordium, possible right precordial T-wave inversion 

("strain"), and qR in V1. Typically subtle on adults' ECGs; 

"possible" indicates incomplete criteria. Suspect pulmonary 

hypertension, chronic lung disease, congenital lesion, or 

pulmonary embolism; echocardiography assists in establishing 

RV pressure/size overload. 

 

#class7 ST-elevation MI (possible) — Regional ST elevation in 

adjacent leads (typical thresholds: in V2–V3 ≥2 mm men ≥40, 

≥2.5 mm men <40, ≥1.5 mm women; ≥1 mm in other leads) 

with reciprocal ST depression, evolving hyperacute T waves 

and subsequently Q waves. "Possible" implies shape/size not 

obviously diagnostic or confounders (LBBB, LVH, 

pericarditis). Treat as time-critical—correlate with onset of 

pain, troponin, and consider immediate reperfusion if met. 

 

#class8 ST-depression / ischemia (possible) — 

Horizontal/downsloping ST depression ≥0.5–1 mm in adjacent 

leads with/without T-wave inversion suggests subendocardial 

ischemia, demand ischemia, or NSTEMI; may also suggest 

reciprocal changes. "Possible" indicates borderline or rate-

related changes, drug or electrolyte effects (e.g., digoxin). 

Interpret with symptoms, risk factors, and serial ECG/troponin 

trends; stress testing or imaging may be indicated. #class9 

Atrial/ventricular ectopy (irregular RR, possible) — Irregular 

RR beats caused by premature beats: PACs have premature and 

widened P with non-compensatory pause; PVCs are wide, 

bizarre QRS with no preceding P with often complete 

compensatory pause; rhythm may be bigeminy/trigeminy or 

couplets. Benign in the majority but may be a sign of electrolyte 

disturbance, stimulants, structural disease, or ischemia; high 

PVC burden or symptoms require ambulatory monitoring and 

echo. 

 

3. IMPLEMENTATION 
 

3.1 Datasets, Classes 

To implement the ECG analysis [11], the dataset[12],[13],[14] 

in raw format has to be undergone the below process: 

• 12-lead dataset in hea, mat, csv formats 

• generate a image file from csv file 

• classify the images into classes 

• classes are as follows: 

#class0 Normal sinus rhythm 

#class1 Sinus tachycardia 

#class2 Sinus bradycardia 

#class3 Left bundle branch block (possible) 

#class4 Right bundle branch block (possible) 

#class5 Left ventricular hypertrophy (possible) 

#class6 Right ventricular hypertrophy (possible) 

#class7 ST-elevation MI (possible) 

#class8 ST-depression / ischemia (possible) 

#class9 Atrial/ventricular ectopy (irregular RR, 

possible) 

• dataset was executed in three scalable levels 

• the execution was distributed as 70/15/15 i.e., 70% was for 

training, 15% for validation testing and 15% for testing the 

model 

• epoch=20, batch_size=16 

Results: 

• the dataset was used to test the original AlexNet and modified 

AlexNet-M model also. 

Dataset=204;  test_set= 64: 

AlexNet Model: 

 
Fig-1: Classification report- AlexNet(base)model 

AlexNet-M model: 

 
Fig-2:Classification report- AlexNet-M-SE model 

 

http://www.ijsrem.com/
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The above implementation shows that the modified 

AlexNet-M showed an accuracy of 96.9% while the base model 

showed only 62.5% accuracy. The Confusion matrix indicates 

that the AlexNet-M has better recognition capabilities compared 

to base model. 

 
Fig-3: ConfusionMatrix- AlexNet(base)model 

 

AlexNet5 (base): Classes 0–4 and 9 are ideal (all on 

the diagonal). But LVH (class5), RVH (class6), STEMI 

(class7), and ST-depression (class8) have systematic false 

negatives to "Normal"—e.g., most LVH/RVH/STEMI rows 

concentrate in the first column. Rough estimates from the 

matrix: class5 ≈14% (1/7), class6 ≈29% (2/7), class7 ≈0% (0/6), 

class8 ≈50% (3/6). That pattern makes the base model under-

call pathology and fall back to NSR when unsure. 

 
Fig-4: ConfusionMatrix- AlexNet-M-SE model 

 

AlexNet5-M (modified): Nearly all mass is on the 

diagonal across all classes. Only small residual confusions 

remain (notably brady vs LBBB and LVH vs RVH), but every 

class is detected well (e.g., LVH ≈86%, brady ≈80%, others 

≈100%). In short: the modified model fixes the “everything 

looks normal” failure and balances performance class-wise. 

 
Fig-5: ROC curves- AlexNet(base)model 

 

AlexNet5 (base): Micro/macro AUC ≈ 0.95 (good 

overall ranking), but class AUCs are poor separability for NSR 

(≈0.83) and especially RVH (≈0.82); LVH ≈0.92; STEMI 

≈0.94; others ≈1.00. The inconsistency—high AUC but terrible 

confusion—means the scores rank positives fairly well, but the 

argmax/threshold employed won't transform them into accurate 

labels (i.e., calibration/decision rule issues). 

 

 
Fig-6: ROC Curves- AlexNet-M-SE model 

 

AlexNet5-M (modified): Micro/macro AUC ≈ 0.995 

with per-class AUCs ~1.00 (LVH ≈0.94; STEMI ≈0.994). This 

shows excellent separability and is as expected with the clean 

diagonal of the confusion matrix. Bottom line: The BN + 

Dropout + SE variant of AlexNet substantially enhances class 

detection for LVH/RVH/ST change and has almost perfect 

ROC performance. Squeeze the last drop if you must: calibrate 

probabilities (temperature scaling), re-weight decision 

thresholds by class (in the context of asymmetric costs), and add 

targeted data/augmentation for the remaining confusions 

(brady↔LBBB, LVH↔RVH). 

Dataset=440;  test_set= 130: 

 

AlexNet Model: 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 08 | Aug - 2025                               SJIF Rating: 8.586                                       ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51808                                                    |        Page 5 
 

 
Fig-7: Classification report- AlexNet(base)model 

 

AlexNet-M model: 

 
Fig-8:Classification report- AlexNet-M-SE model 

 

The above implementation shows that, the dataset hs 

been increased, so the test_set. The modified AlexNet-M 

showed an accuracy of 98.5% while the base model showed 

only 96.9% accuracy. These results are far better compared to 

previous dataset results. The base model and modified models 

work better with increasing the samples in datasets. 

 
Fig-9: ConfusionMatrix- AlexNet(base)model 

Confusion matrix: total errors = 4 → 126/130 = 96.9% 

accurate. Error modes: Normal sinus rhythm → Sinus 

tachycardia (2/13) and the same ST-elevation MI ↔ ST-

depression swap (1 each); the rest of the classes are perfect. 

This indicates that the base model overcalls rate-related changes 

occasionally and swaps the two ST syndromes minimally. 13 

test samples per class; 2 total errors → 128/130 = 98.5% 

accuracy. The errors are a small, clinically reasonable spill: ST-

elevation MI ↔ RVH (1 case) and ST-elevation MI ↔ ST-

depression (1 case). All other classes are on the diagonal 

precisely. Practical implication: residual ambiguity is limited to 

the ST/RVH neighborhood; per-class recall/precision for the 

affected classes ≈ 12/13 ≈ 92%, others ≈ 100%. 

 
Fig-10: ConfusionMatrix- AlexNet-M-SE model 

 

 
Fig-11: ROC curves- AlexNet(base)model 

Micro/macro AUC ≈ 1.000 too; per-class AUCs are 

~1.00 with small drops (STEMI ~0.999, ST-depression ~0.998). 

Ranking is great, but decision boundaries cause some mislabels. 

 

 
Fig-12: ROC Curves- AlexNet-M-SE model 

 

Micro/macro AUC = 1.000; individual AUCs are 

~1.00 with the worst being ~0.997 (STEMI) and ~0.999 

(RBBB). So separability is basically ideal; the label mistakes 

are threshold/argmax effects and not bad ranking. 

 

http://www.ijsrem.com/
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Bottom line: Both models distinguish classes very 

well, but the modified i.e., AlexNet-M-SE is demonstrably 

better—higher accuracy and fewer, more localized mistakes. If 

you need to squeeze out the final mistakes, attempt per-class 

threshold tuning or probability calibration, and include targeted 

augmentation/examples for STEMI versus ST-depression (and 

ST-like changes adjacent RVH). 

 

4. CONCLUSIONS 

 
In brief, both models classify ECG exceptionally well 

on this data set, but the modified AlexNet-M-SE is clearly 

superior. AlexNet5-M-SE (BatchNorm + Dropout + SE) 

achieves 128/130 correct (≈98.5% accurate) with only two 

clinically plausible slips—one ST-elevation MI misclassified as 

RVH and one as ST-depression—while all other classes are 

classified correctly. By comparison, the vanilla AlexNet5 

achieves 126/130 correct (≈96.9% accurate) and has two 

additional errors: Normal sinus rhythm → Sinus tachycardia 

and the same small STEMI ↔ ST-depression exchange. ROC 

curves corroborate the image: both models exhibit near-perfect 

separability with micro/macro AUC ≈ 1.000, and classwise 

AUCs ≈0.998–1.000, i.e., score ranking is extremely resilient; 

the handful of errors stem from decision boundaries, not weak 

feature acquisition. Clinically, the adapted model's tighter 

confusion matrix reflects superior generalization to rate-related 

and ST-segment pathologies, while the vanilla model overcalls 

sinus tachycardia and slightly blurs the two ischemic patterns. 

External validation on larger, heterogeneous cohorts is 

recommended before clinical deployment. 
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