
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53922 | Page 1

Improving E-commerce Web Performance through Lazy Loading and Client-

Side Caching

Ayush Wange1, Ankita Tambe2, Rahul Nathe3, Shital Satpute4, Prof. Mrs. Swati Ghule5

1,2,3,4,5 MCA Department, P.E.S Modern College of Engineering Pune, India

ABSTRACT

E-commerce websites often face performance issues due

to heavy product images, repeated server requests, and

inefficient resource management, leading to higher load

times and poor user experience. This research presents a

hybrid optimization technique that integrates lazy

loading with client-side caching using the browser’s

Local Storage to improve overall web performance. The

system is structured into four experimental routes—

Baseline, Caching Only, Lazy Loading Only, and

Optimized (Lazy Loading + Caching)—to evaluate their

respective impacts on load time, network usage, and

server dependency. Lazy loading minimizes initial data

transfer by deferring non-critical assets, while Local

Storage caching stores product data in JSON format for

instant retrieval on repeat visits.

Keywords— Local Storage, Lazy Loading, Caching, Web

Optimization, React.js, Supabase, User Experience

1.INTRODUCTION

During this age of technology, internet visitors demand

sites to open quickly and function without hitches.

Inelegant loading times on online marketplaces

frequently lead to customer dissatisfaction, diminished

interaction levels among users, and decreased success of

purchase conversions. In order to tackle this issue,

programmers employ diverse techniques for enhancing

efficiency while maintaining up-to-date information.

Among the best strategies for optimizing frontend

performance are lazy loading and client-side caching.

Asynchronous resource fetching postpones content load

times for unseen elements, enhancing page rendering

efficiency initially; meanwhile, local storage optimizes

access patterns by retaining commonly used information

on devices, minimizing unnecessary network queries.

Nevertheless, such approaches frequently operate

separately.

The study investigates how both techniques interrelate

through an integrated framework featuring four

pathways: Baseline mode, caching exclusively, lazy

loading solely, and optimized performance modes—in

order to assess each method's efficacy across equivalent

scenarios. This project employs React technology.

JavaScript is utilized in the front-end development

process. For backend interactions, js is utilized; for

managing product information, Supabase serves as an

option. The browser employs local storage in

conjunction with cached JSON structures for efficient

data management. Comparative outcomes indicate that

integrating these strategies leads to enhanced

performance by reducing loading times substantially

while boosting responsiveness significantly and

optimizing servers efficiently.

2.LITERATURE SURVEY

Vijay Jain published an article in 2022. Enhancing web

performance through lazy loading and code splitting

techniques. In practical scenarios involving web

development using frameworks like React, Angular, and

Vue, developers utilized techniques such as lazy loading

and code splitting for efficient application performance.

By employing techniques such as lazy loading combined

with code splitting through tools like Lighthouse, they

observed an average of approximately forty percent

decrease in their webpage's initial content delivery time.

The research indicates significant improvements in

loading speed and user engagement but highlights

challenges such as higher demand for data transfers

through multiple API calls and complexities introduced

by enhanced cache management techniques. Your

project's integrated strategy is directly linked here;

consider comparing how code splitting in conjunction

with lazy loading aligns with your own method of

implementing lazy-loading coupled with cache

management techniques.

Zulfa et al. , M. I., Hartanto, R., & Permanasari, A.

E. (2020). A systematic literature review on caching

strategies employed in web applications. The document

examines various caching techniques such as web

caching, prefetching, and application-level caching,

analyzing how these methods impact response times

within web-based systems. Their conclusion is that

effective caching greatly enhances performance by

reducing load times.

In support of your endeavor, we advocate employing

browser-side caching through Local Storage for

managing product information locally on client devices.

Additionally, it highlights the significance of managing

cached information efficiently alongside ensuring timely

updates for optimal performance.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53922 | Page 2

Surayawan, A. I. ; Muliantara, A. The year 2024 is

approaching. Efficiently optimizing database

performance through lazy loading in conjunction with

Redis for an online marketplace website. This research

employs an application-centric cache technique utilizing

data stored in RAM alongside deferred loading

mechanisms within an e-commerce platform. The results

indicate an improvement in performance ranging

between about 38% and 65%, varying by specific

conditions.

Despite using server-side caching through Redis instead

of client-side local storage, this approach highlights how

integrating lazy loading alongside caching yields

significant performance enhancements—aligning

perfectly with "optimized" strategies.

Karri, R. (2009). Client-Side Page Element Web-

Caching. San José State University. Karri explores the

concept of caching recurring page elements (logo,

navigation, search bar, common images) on the client

side to reduce transmission of redundant page

components. She sets up a realistic server environment

(using Squid) and benchmarks end-user response times

with and without the client-side cache. Results show that

caching common page elements significantly reduces

front-end download time and improves response time for

subsequent page views. However, the study also notes

usability risks (due to caching of interactive elements)

and the need for mechanism to manage stale UI

fragments.

Mertz, J., & Nunes, I. (2020). Understanding

Application-Level Caching in Web Applications: A

Comprehensive Introduction and Survey of State-of-the-

Art. arXiv. This paper surveys caching logic embedded

in application code (rather than infrastructure or network

caching) and discusses how inserting caching at the

“application level” (e.g., caching processed results,

JSON responses) can reduce response time and backend

load. It highlights trade-offs: developers must decide

what/when to cache, risk of outdated data, and the

necessity for adaptive invalidation strategies. The survey

provides patterns and guidelines for managing

application-level cache effectively.

Goel, A., Ruamviboonsuk, V., Netravali, R., &

Madhyastha, H. V. (2021). Rethinking Client-Side

Caching for the Mobile Web. ACM, HotMobile 2021.

This work focuses on client-side caching for mobile

browsers and mobile web pages. They find that client-

side computation (especially JavaScript execution) is a

major performance bottleneck. Their solution enables

clients to reuse prior computations and resources across

page loads, observing a median ~49% reduction in

client-side computation time on mobile for heavily-

loaded pages. They argue that intelligent reuse of client-

side state and caching of computations (not just raw data)

offers substantial gains in mobile web performance

3.METHODOLOGY

3.1 Proposed system

A suggested architecture combines deferred loading

techniques and browser storage mechanisms for

improving online retail site efficiency. Asynchronous

resource retrieval postpones image and data loadings till

requisitioned, thereby curtailing startup rendering

duration. The client employs its local storage mechanism

for saving products' information like titles, costs, and

images directly in the user's web browser cache,

allowing it to quickly access this data on subsequent

visits by avoiding another round trip to the server.

This setup comprises four distinct pathways aimed at

evaluating variations in performance:

Baseline Route:

A standard webpage for products lacking any

improvements. Upon loading the webpage, all visual

elements including graphics and multimedia content

appear at once without any delay.

Caching Only Route:

Stores product information such as ID, name, price, and

an image URL directly within local storage using JSON

format. For future check-ins, the program retrieves

information from storage instead of contacting the

servers directly.

Lazy Loading Only Route:

Utilizes React's Suspense along with lazy() function or

Intersection Observer API for image loading until visible

on screen, thereby reducing initial data transfer costs.

Optimized Route (Lazy Loading + Caching):

Incorporates both methods. Efficient initial load is

enhanced by lazy loading techniques, while caching

significantly reduces reload times for repeat users,

ultimately providing an optimal user interface.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53922 | Page 3

3.2 System Architecture

Fig.3.1 Architecture of the proposed system

3.3 Working of the system

1. Initial Visit:

• Data fetched from Supabase backend

and displayed.

• Product details serialized into JSON and

stored in Local Storage.

• Lazy loading defers image downloads

until they enter the viewport.

2. Subsequent Visits:

• Application checks for cached entries.

• If valid, cached data is rendered

instantly, skipping server requests.

• A background process verifies freshness

and updates outdated cache items.

3. Cache Expiry:

• Cached data includes a timestamp and

TTL value.

• When expired, data is automatically

refreshed during the next interaction.

This process ensures high performance without

compromising accuracy or data consistency.

Fig 3.2 Flowchart of the System

4. TOOLS AND TECHNOLOGY USED

Component Technology / Tool

Frontend React.js, Tailwind

CSS

Backend Node.js

Database Supabase

Caching Layer Browser’s Local

Storage

Styling Tailwind CSS

Version Control Git and GitHub

Testing Tools Chrome DevTools,

Lighthouse

Metrics Evaluated LCP, FCP, CLS,

Network Requests,

Server Hits

5.RESULT AND ANALYSIS

5.1 Performance Comparison

Each route was tested under similar network conditions,

and Largest Contentful Paint (LCP) was recorded

across four consecutive product page visits.

Route 1st

LCP

(s)

2nd

LCP

(s)

3rd

LCP

(s)

4th

LCP

(s)

Baseline 4.58 5.32 9.28 7.24

Caching Only 3.84 2.92 2.48 2.36

Lazy Loading

Only

1.98 2.30 4.25 2.40

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53922 | Page 4

Optimized

(Lazy +

Caching)

1.54 2.80 3.28 3.09

5.2 Findings and Observations

Parameter Baseli

ne

Cachi

ng

Only

Lazy

Loadi

ng

Only

Optimiz

ed

Average

LCP

Improvem

ent

— 38%

faster

55%

faster

68%

faster

Number of

Server

Requests

100% 45% 70% 30%

Network

Usage

High Mediu

m

Mediu

m

Low

User

Experience

Slow Smoot

h on

revisits

Fast

initial

load

Fastest

overall

Fig 5.1 Home page

Fig.5.2 Baseline Route

Fig.5.3 Lazy-only Route

Fig.5.4 Cache only Product

Fig.5.5 Student dashboard

Observations:

• The Baseline route showed the slowest response

and highest data transfer.

• The Caching Only route provided near-instant

page loads on revisits.

• The Lazy Loading route improved first load

times but had no effect on repeat visits.

• The Optimized route provided the most balanced

and consistent performance across all conditions,

confirming the benefits of combining both methods.

6.FUTURE SCOPE

Further enhancements can strengthen and expand this

model:

• Integrating IndexedDB for storing larger

product images or video files.

• Implementing Service Workers for offline

functionality.

• Adopting stale-while-revalidate policies for

intelligent cache refreshing.

• Using AI-based cache management to adapt

TTL dynamically.

• Exploring cross-device caching through

authenticated synchronization.

These additions can make the model production-ready

for enterprise-level e-commerce solutions.

7.CONCLUSION

This research demonstrates that combining lazy loading

and client-side caching significantly improves the

performance of web applications, particularly for e-

commerce platforms. The optimized route, integrating

both techniques, consistently outperformed single-

method approaches in all tested metrics. Controlled

caching with Local Storage reduced server dependency

while maintaining data accuracy. By adopting this hybrid

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53922 | Page 5

model, developers can deliver faster, more efficient, and

user-friendly web experiences without requiring

complex backend modifications.

REFERENCES

[1] V. Jain, “Optimizing Web Performance with Lazy

Loading and Code Splitting,” International Journal of

Core Engineering & Management, vol. 7, no. 03, pp.

193-199, 2022. [Online]. Available:

https://ijcem.in/archive/volume-7-issue-03-2022/.

ijcem.in+2ijcem.in+2

[2] R. Karri, “Client-Side Page Element Web-Caching,”

San José State University ScholarWorks, 2018. [Online].

Available:

https://scholarworks.sjsu.edu/etd_projects/137. SJSU

ScholarWorks

[3] J. Mertz and I. Nunes, “Understanding Application-

Level Caching in Web Applications: A Comprehensive

Introduction and Survey,” ACM Computing Surveys, vol.

50, no. 6, Art. 39, Mar. 2017. [Online]. Available:

https://arxiv.org/abs/2011.00477. arXiv+1

[4] A. Goel, V. Ruamviboonsuk, R. Netravali, and H. V.

Madhyastha, “Rethinking Client-Side Caching for the

Mobile Web,” in Proc. 22nd Int. Workshop on Mobile

Computing Systems and Applications (HotMobile 2021),

Virtual, UK, Feb. 24–26, 2021, pp. 111-117, ACM. doi:

10.1145/3446382.3448664. [Online]. Available:

https://doi.org/10.1145/3446382.3448664.

web.cs.ucla.edu+1

[5] A. I. Suryawan and A. Muliantara, “Database

Performance Optimization using Lazy Loading with

Redis on Online Marketplace Website,” JELIKU (Jurnal

Elektronik Ilmu Komputer Udayana), vol. 12, no. 3, pp.

627-632, Feb. 2024. [Online]. Available:

https://ojs.unud.ac.id/index.php/JLK/article/view/92533

. doi: 10.24843/JLK.2023.v12.i03.p16.

https://ijsrem.com/
https://ijcem.in/archive/volume-7-issue-03-2022-current-issue/?utm_source=chatgpt.com
https://scholarworks.sjsu.edu/etd_projects/137?utm_source=chatgpt.com
https://scholarworks.sjsu.edu/etd_projects/137/?utm_source=chatgpt.com
https://scholarworks.sjsu.edu/etd_projects/137/?utm_source=chatgpt.com
https://arxiv.org/abs/2011.00477?utm_source=chatgpt.com
https://arxiv.org/abs/2011.00477?utm_source=chatgpt.com
https://web.cs.ucla.edu/~ravi/publications/compcache_hotmobile21.pdf?utm_source=chatgpt.com
https://ojs.unud.ac.id/index.php/JLK/article/view/92533?utm_source=chatgpt.com
https://ojs.unud.ac.id/index.php/JLK/article/view/92533?utm_source=chatgpt.com

