27 2y,
@ﬁgg International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 11 | Nov - 2025

il

SJIF Rating: 8.586

ISSN: 2582-3930

Improving E-commerce Web Performance through Lazy Loading and Client-
Side Caching

Ayush Wange!, Ankita Tambe?, Rahul Nathe?, Shital Satpute?, Prof. Mrs. Swati Ghule®
12345 MCA Department, P.E.S Modern College of Engineering Pune, India

ABSTRACT

E-commerce websites often face performance issues due
to heavy product images, repeated server requests, and
inefficient resource management, leading to higher load
times and poor user experience. This research presents a
hybrid optimization technique that integrates lazy
loading with client-side caching using the browser’s
Local Storage to improve overall web performance. The
system is structured into four experimental routes—
Baseline, Caching Only, Lazy Loading Only, and
Optimized (Lazy Loading + Caching)—to evaluate their
respective impacts on load time, network usage, and
server dependency. Lazy loading minimizes initial data
transfer by deferring non-critical assets, while Local
Storage caching stores product data in JSON format for
instant retrieval on repeat visits.

Keywords— Local Storage, Lazy Loading, Caching, Web
Optimization, React.js, Supabase, User Experience

1.INTRODUCTION

During this age of technology, internet visitors demand
sites to open quickly and function without hitches.
Inelegant loading times on online marketplaces
frequently lead to customer dissatisfaction, diminished
interaction levels among users, and decreased success of
purchase conversions. In order to tackle this issue,
programmers employ diverse techniques for enhancing
efficiency while maintaining up-to-date information.

Among the best strategies for optimizing frontend
performance are lazy loading and client-side caching.
Asynchronous resource fetching postpones content load
times for unseen elements, enhancing page rendering
efficiency initially; meanwhile, local storage optimizes
access patterns by retaining commonly used information
on devices, minimizing unnecessary network queries.
Nevertheless, such approaches frequently operate
separately.

The study investigates how both techniques interrelate
through an integrated framework featuring four
pathways: Baseline mode, caching exclusively, lazy
loading solely, and optimized performance modes—in
order to assess each method's efficacy across equivalent
scenarios. This project employs React technology.
JavaScript is utilized in the front-end development
process. For backend interactions, js is utilized; for
managing product information, Supabase serves as an
option. The browser employs local storage in

conjunction with cached JSON structures for efficient
data management. Comparative outcomes indicate that
integrating these strategies leads to enhanced
performance by reducing loading times substantially
while boosting responsiveness significantly and
optimizing servers efficiently.

2.LITERATURE SURVEY

Vijay Jain published an article in 2022. Enhancing web
performance through lazy loading and code splitting
techniques. In practical scenarios involving web
development using frameworks like React, Angular, and
Vue, developers utilized techniques such as lazy loading
and code splitting for efficient application performance.
By employing techniques such as lazy loading combined
with code splitting through tools like Lighthouse, they
observed an average of approximately forty percent
decrease in their webpage's initial content delivery time.

The research indicates significant improvements in
loading speed and user engagement but highlights
challenges such as higher demand for data transfers
through multiple API calls and complexities introduced
by enhanced cache management techniques. Your
project's integrated strategy is directly linked here;
consider comparing how code splitting in conjunction
with lazy loading aligns with your own method of
implementing lazy-loading coupled with cache
management techniques.

Zulfa et al. , M. 1., Hartanto, R., & Permanasari, A.
E. (2020). A systematic literature review on caching
strategies employed in web applications. The document
examines various caching techniques such as web
caching, prefetching, and application-level caching,
analyzing how these methods impact response times
within web-based systems. Their conclusion is that
effective caching greatly enhances performance by
reducing load times.

In support of your endeavor, we advocate employing
browser-side caching through Local Storage for
managing product information locally on client devices.
Additionally, it highlights the significance of managing
cached information efficiently alongside ensuring timely
updates for optimal performance.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53922 | Pagel

https://ijsrem.com/

27 2y,
@ﬁgg International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 11 | Nov - 2025

il

SJIF Rating: 8.586

ISSN: 2582-3930

Surayawan, A. 1. ; Muliantara, A. The year 2024 is
approaching. Efficiently = optimizing database
performance through lazy loading in conjunction with
Redis for an online marketplace website. This research
employs an application-centric cache technique utilizing
data stored in RAM alongside deferred loading
mechanisms within an e-commerce platform. The results
indicate an improvement in performance ranging
between about 38% and 65%, varying by specific
conditions.

Despite using server-side caching through Redis instead
of client-side local storage, this approach highlights how
integrating lazy loading alongside caching yields
significant ~ performance enhancements—aligning
perfectly with "optimized" strategies.

Karri, R. (2009). Client-Side Page Element Web-
Caching. San José State University. Karri explores the
concept of caching recurring page elements (logo,
navigation, search bar, common images) on the client
side to reduce transmission of redundant page
components. She sets up a realistic server environment
(using Squid) and benchmarks end-user response times
with and without the client-side cache. Results show that
caching common page elements significantly reduces
front-end download time and improves response time for
subsequent page views. However, the study also notes
usability risks (due to caching of interactive elements)
and the need for mechanism to manage stale Ul
fragments.

Mertz, J., & Nunes, L. (2020). Understanding
Application-Level Caching in Web Applications: A
Comprehensive Introduction and Survey of State-of-the-
Art. arXiv. This paper surveys caching logic embedded
in application code (rather than infrastructure or network
caching) and discusses how inserting caching at the
“application level” (e.g., caching processed results,
JSON responses) can reduce response time and backend
load. It highlights trade-offs: developers must decide
what/when to cache, risk of outdated data, and the
necessity for adaptive invalidation strategies. The survey
provides patterns and guidelines for managing
application-level cache effectively.

Goel, A., Ruamviboonsuk, V., Netravali, R., &
Madhyastha, H. V. (2021). Rethinking Client-Side
Caching for the Mobile Web. ACM, HotMobile 2021.
This work focuses on client-side caching for mobile
browsers and mobile web pages. They find that client-
side computation (especially JavaScript execution) is a
major performance bottleneck. Their solution enables
clients to reuse prior computations and resources across

page loads, observing a median ~49% reduction in
client-side computation time on mobile for heavily-
loaded pages. They argue that intelligent reuse of client-
side state and caching of computations (not just raw data)
offers substantial gains in mobile web performance

3.METHODOLOGY

3.1 Proposed system

A suggested architecture combines deferred loading
techniques and browser storage mechanisms for
improving online retail site efficiency. Asynchronous
resource retrieval postpones image and data loadings till
requisitioned, thereby curtailing startup rendering
duration. The client employs its local storage mechanism
for saving products' information like titles, costs, and
images directly in the user's web browser cache,
allowing it to quickly access this data on subsequent
visits by avoiding another round trip to the server.

This setup comprises four distinct pathways aimed at
evaluating variations in performance:

Baseline Route:

A standard webpage for products lacking any
improvements. Upon loading the webpage, all visual
elements including graphics and multimedia content
appear at once without any delay.

Caching Only Route:

Stores product information such as ID, name, price, and
an image URL directly within local storage using JSON
format. For future check-ins, the program retrieves
information from storage instead of contacting the
servers directly.

Lazy Loading Only Route:

Utilizes React's Suspense along with lazy() function or
Intersection Observer API for image loading until visible
on screen, thereby reducing initial data transfer costs.

Optimized Route (Lazy Loading + Caching):

Incorporates both methods. Efficient initial load is
enhanced by lazy loading techniques, while caching
significantly reduces reload times for repeat users,
ultimately providing an optimal user interface.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53922 | Page2

https://ijsrem.com/

g&’ ‘2;\‘

; IJSREM;’?
©-Jeurnal
Tmadt

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

3.2 System Architecture

ARCHITECTURE @
=
L=
Qytadess
1
e L Gt Seth Frome 08
R o
2 r \ 1
; 4 N
—— a (B |esantan
Fig.3.1 Architecture of the proposed system
3.3 Working of the system
1. [Initial Visit:
o Data fetched from Supabase backend
and displayed.
o Product details serialized into JSON and
stored in Local Storage.
o Lazy loading defers image downloads

until they enter the viewport.
2. Subsequent Visits:

o Application checks for cached entries.

. If wvalid, cached data is rendered
instantly, skipping server requests.

o A background process verifies freshness

and updates outdated cache items.
3. Cache Expiry:

o Cached data includes a timestamp and
TTL value.
o When expired, data is automatically

refreshed during the next interaction.
This process ensures high performance without
compromising accuracy or data consistency.

Store Product
Data in Cache

e
|

Display
Product

Fig 3.2 Flowchart of the System

4. TOOLS AND TECHNOLOGY USED

Component Technology / Tool

Frontend React.js, Tailwind
CSS

Backend Node.js

Database Supabase

Caching Layer Browser’s Local
Storage

Styling Tailwind CSS

Version Control Git and GitHub

Testing Tools Chrome DevTools,
Lighthouse

Metrics Evaluated LCP, FCP, CLS,
Network Requests,

Server Hits

5.RESULT AND ANALYSIS

5.1 Performance Comparison

Each route was tested under similar network conditions,
and Largest Contentful Paint (LCP) was recorded
across four consecutive product page visits.

Route st 2nd 3rd 4th
LCP LCP LCP LCP
O] O] (s) (s)

Baseline 4.58 5.32 9.28 7.24

Caching Only 3.84 2.92 2.48 2.36

Lazy Loading 1.98 2.30 4.25 2.40

Only

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53922 | Page 3

https://ijsrem.com/

©-Jeurnal

w Volume: 09 Issue: 11 | Nov - 2025

L
@Rg International Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586 ISSN: 2582-3930

Optimized 1.54 2.80
(Lazy +
Caching)

5.2 Findings and Observations

Parameter Baseli = Cachi
ne ng
Only
Average — 38%
LCP faster
Improvem
ent
Number of 100% 45%
Server
Requests
Network High Mediu
Usage m
User Slow Smoot
Experience h on
revisits
LT &

Weh l_‘crl'prm:uwc
Optimization Demo

3.28

Lazy
Loadi
ng
Only
55%
faster

70%

Mediu
m
Fast
initial
load

Fig.5.3 Lazy-only Route

3.09

Optimiz
ed

68%
faster

30%

Low

Fastest
overall

Fig.5.5 Student dashboard

Observations:
o The Baseline route showed the slowest response
and highest data transfer.
e The Caching Only route provided near-instant
page loads on revisits.
e The Lazy Loading route improved first load
times but had no effect on repeat visits.
¢ The Optimized route provided the most balanced
and consistent performance across all conditions,
confirming the benefits of combining both methods.

6.FUTURE SCOPE
Further enhancements can strengthen and expand this
model:
o Integrating IndexedDB for storing larger
product images or video files.
e Implementing Service Workers for offline
functionality.
e Adopting stale-while-revalidate policies for
intelligent cache refreshing.
e Using Al-based cache management to adapt
TTL dynamically.
e Exploring cross-device caching through
authenticated synchronization.
These additions can make the model production-ready
for enterprise-level e-commerce solutions.

7.CONCLUSION

This research demonstrates that combining lazy loading
and client-side caching significantly improves the
performance of web applications, particularly for e-
commerce platforms. The optimized route, integrating
both techniques, consistently outperformed single-
method approaches in all tested metrics. Controlled
caching with Local Storage reduced server dependency
while maintaining data accuracy. By adopting this hybrid

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJ]SREM53922 | Page 4

https://ijsrem.com/

©-Jeurnal

LN
@Rg International Journal of Scientific Research in Engineering and Management (IJSREM)
w Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

model, developers can deliver faster, more efficient, and
user-friendly web experiences without requiring
complex backend modifications.

REFERENCES

[1] V. Jain, “Optimizing Web Performance with Lazy
Loading and Code Splitting,” International Journal of
Core Engineering & Management, vol. 7, no. 03, pp.
193-199, 2022. [Online]. Available:
https://ijcem.in/archive/volume-7-issue-03-2022/.
jjcem.in+2ijcem.in+2

[2] R. Karri, “Client-Side Page Element Web-Caching,”
San José State University ScholarWorks, 2018. [Online].
Available:

https://scholarworks.sjsu.edu/etd projects/137. SJSU
ScholarWorks

[3] J. Mertz and 1. Nunes, “Understanding Application-
Level Caching in Web Applications: A Comprehensive
Introduction and Survey,” ACM Computing Surveys, vol.
50, no. 6, Art. 39, Mar. 2017. [Online]. Available:
https://arxiv.org/abs/2011.00477. arXiv+l

[4] A. Goel, V. Ruamviboonsuk, R. Netravali, and H. V.
Madhyastha, “Rethinking Client-Side Caching for the
Mobile Web,” in Proc. 22nd Int. Workshop on Mobile
Computing Systems and Applications (HotMobile 2021),
Virtual, UK, Feb. 24-26, 2021, pp. 111-117, ACM. doi:
10.1145/3446382.3448664. [Online]. Available:
https://doi.org/10.1145/3446382.3448664.
web.cs.ucla.edu+l

[5] A. I. Suryawan and A. Muliantara, “Database
Performance Optimization using Lazy Loading with
Redis on Online Marketplace Website,” JELIKU (Jurnal
Elektronik Ilmu Komputer Udayana), vol. 12, no. 3, pp.
627-632, Feb. 2024. [Online]. Available:
https://ojs.unud.ac.id/index.php/JLK/article/view/92533
. doi: 10.24843/JL.K.2023.v12.i03.p16.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJ]SREM53922 | Page 5

https://ijsrem.com/
https://ijcem.in/archive/volume-7-issue-03-2022-current-issue/?utm_source=chatgpt.com
https://scholarworks.sjsu.edu/etd_projects/137?utm_source=chatgpt.com
https://scholarworks.sjsu.edu/etd_projects/137/?utm_source=chatgpt.com
https://scholarworks.sjsu.edu/etd_projects/137/?utm_source=chatgpt.com
https://arxiv.org/abs/2011.00477?utm_source=chatgpt.com
https://arxiv.org/abs/2011.00477?utm_source=chatgpt.com
https://web.cs.ucla.edu/~ravi/publications/compcache_hotmobile21.pdf?utm_source=chatgpt.com
https://ojs.unud.ac.id/index.php/JLK/article/view/92533?utm_source=chatgpt.com
https://ojs.unud.ac.id/index.php/JLK/article/view/92533?utm_source=chatgpt.com

