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Abstract 

Predicting Robbery Behavior Potential (RBP) in indoor 

surveillance is crucial for proactive security. Building upon 

the foundational multi-modal RBP prediction framework by 

Pouyan et al. [Original Paper Ref], which utilizes head cover, 

crowd, and loitering detection fused by a fuzzy inference 

system, this paper addresses a key limitation in its loitering 

analysis component, particularly for low-resolution footage. 

We introduce an optimized loitering detection module by 

integrating a custom-trained YOLOV5 model for robust 

person detection with the DeepSORT tracking algorithm. 

This enhancement aims to improve tracking accuracy in 

challenging low-resolution scenarios, leading to more reliable 

loitering cues. The refined loitering information, alongside 

the original head cover and crowd metrics, is then processed 

by the fuzzy inference engine to yield a more accurate RBP 

assessment. Preliminary evaluations (or Expected 

evaluations) on the UCF-Crime dataset suggest that this 

targeted improvement in the loitering module can 

significantly enhance the overall F1-score for RBP prediction 

and subsequent robbery detection tasks. 

1.INTRODUCTION 

Video surveillance systems are ubiquitous in modern society, 

offering critical tools for crime prevention and investigation. 

The automated prediction of potential criminal activities, 

such as robbery, before they escalate can significantly 

enhance security effectiveness. Pouyan et al. [Original Paper 

Ref] pioneered an Artificial Intelligence approach for 

predicting Robbery Behavior Potential (RBP) in indoor 

camera feeds. Their system innovatively combined three key 

behavioral indicators: head covering, crowd density, and 

loitering patterns, using a fuzzy inference machine to assess 

the RBP. 

While this framework provides a valuable baseline, Pouyan 

et al. [Original Paper Ref] themselves identified the loitering 

detection module, which relies on DeepSORT, as an area for 

improvement, especially concerning its robustness in low-

resolution video where person detection and tracking can be 

unreliable. The accuracy of loitering analysis is paramount, 

as prolonged or unusual stationary behavior is a strong 

indicator of RBP. 

This research aims to enhance the RBP prediction framework 

by Pouyan et al. [Original Paper Ref] by specifically 

addressing the limitations of its loitering detection 

component. We propose the integration of a YOLOV5 object 

detector, custom-trained for robust person identification in 

low-resolution indoor surveillance imagery, into the 

DeepSORT tracking pipeline. By improving the foundational 

person detection, we hypothesize a subsequent improvement 

in tracking persistence and accuracy, leading to more reliable 

loitering feature extraction. This, in turn, is expected to refine 

the inputs to the fuzzy inference system and yield a more 

accurate RBP score. This paper details the development of 

this enhanced loitering module, its integration into the overall 

RBP framework, and evaluates its impact on prediction 

performance using the UCF-Crime dataset. 

2. RELATED WORK 

2.1 . Anomaly and Crime Prediction in Surveillance 

Anomalous behaviors—such as crime—are characterized by 

deviations from typical patterns. As a response to the rising 

need for public safety, video surveillance systems have 

become instrumental in identifying such anomalies. Prior 

research has addressed suspicious behavior detection through 

techniques like object tracking, semantic analysis, and 

spatiotemporal feature extraction. For instance, approaches 

using blob matching, motion trajectory analysis, and 
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convolutional neural networks (CNNs) have successfully 

detected behaviors like loitering, vandalism, and theft. 

Several studies have focused on loitering and facial 

concealment as early indicators of criminal intent. Detection 

methods include video segmentation, DeepSORT tracking, 

and classification models like SVM, RNN, and enhanced 

CNNs. Additionally, face mask and helmet detection have 

been explored using retrained models such as YOLOv5, SSD, 

and ResNet50. 

Building on these foundations, our research introduces a 

novel framework for Robbery Behavior Prediction (RBP) in 

indoor environments. This method leverages loitering, crowd 

density, and head cover detection as core features. YOLOv5 

is retrained for headwear classification, while DeepSORT 

tracks individuals to analyze movement patterns. A key 

innovation lies in our loitering detection method, which 

calculates Euclidean displacement over time and applies 

thresholding for suspicious behavior classification. Finally, 

due to the inherent uncertainty in human actions, a fuzzy 

inference system is employed to assess the potential for 

robbery, mimicking human reasoning under ambiguity. 

Unlike existing works, our model focuses not just on 

detection but on early prediction of robbery intent, enabling 

proactive security interventions. 

 

2.2. The Foundational RBP Prediction Framework 

(Pouyan et al. [Original Paper Ref]) 

The work most central to our research is that of Pouyan et al. 

[Original Paper Ref], which introduced a novel system for 

RBP prediction. Their methodology is grounded on three core 

detection modules: 

* Head Cover Detection: Utilized a retrained YOLOV5 

model to identify individuals with head coverings (masks, 

hats), a common tactic used by perpetrators. 

* Crowd Detection: Derived from the head cover detection 

output to assess the number of individuals present, as low 

crowd density often correlates with higher robbery risk. 

* Loitering Detection: Employed the DeepSORT algorithm 

for person tracking, calculating loitering based on a novel 

definition involving Euclidean distance traveled over time 

snippets. 

These three features were then fed into a fuzzy inference 

machine, equipped with expert-defined rules, to compute the 

final RBP score. While achieving an F1-score of 0.537 for 

RBP prediction, the authors noted challenges with loitering 

detection accuracy, particularly the FrRCNN detector within 

DeepSORT for low-resolution human images, and suggested 

retraining YOLOV5 for this purpose as future work [Original 

Paper Ref]. 

 

2.3. Object Detection and Tracking in Surveillance 

Robust object detection is fundamental to tracking. YOLO 

(You Only Look Once) architectures, particularly YOLOV5 

[YOLO Ref], offer a strong balance of speed and accuracy for 

real-time applications... DeepSORT [DeepSORT Ref] is a 

popular tracking-by-detection algorithm that combines 

Kalman filtering for motion prediction and a deep association 

metric... However, its performance is heavily reliant on the 

upstream detector. Several studies have explored custom 

detectors for specific tracking scenarios. 

3. PROPOSED METHODOLOGY     

Our approach enhances the RBP prediction framework 

introduced by Pouyan et al. [Original Paper Ref] by focusing 

on improving the robustness and accuracy of the loitering 

detection module. The overall system architecture, depicted 

in Fig. X, retains the core components of head cover 

detection, crowd analysis, and fuzzy inference for RBP 

aggregation, while incorporating our novel enhanced 

loitering analysis. 

3.1. Foundational Modules (Adapted from Pouyan et 

al. [Original Paper Ref]) 

1. Head Cover Detection: We adopt the methodology of 

Pouyan et al. [Original Paper Ref], employing their retrained 

YOLOV5s model to detect individuals with or without head 

coverings from input video frames. The output provides a 

binary classification (masked/no-mask) and bounding boxes. 

2. Crowd Detection: Following Pouyan et al. [Original Paper 

Ref], the crowd level is inferred from the number of 

individuals detected by the head cover module, with specific 

scoring (Eq. 1 & 2 from original paper) applied based on 

occupancy. 

3.2. Enhanced Loitering Detection Module (Our 

Contribution) 

The original loitering module [Original Paper Ref] faced 

challenges in low-resolution scenarios due to the limitations 

of the standard detector used within DeepSORT. Our 

enhancement addresses this through a two-stage process: 

robust person detection and improved tracking. 

3.3. RBP Calculation using Fuzzy Inference 

The outputs from the head cover detection module (Section 
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3.1.1), crowd detection module (Section 3.1.2), and our 

enhanced loitering detection module (Section 3.2.3) serve as 

inputs to the fuzzy inference system, as designed by Pouyan 

et al. [Original Paper Ref]. This system employs Mamdani-

type fuzzy rules and triangular membership functions 

(referencing their Fig. 10-12, Eq. 5) to map these input 

features to an RBP score, reflecting the assessed potential for 

robbery. 

4. EXPERIMENTAL SETUP 

4.1. Datasets                                                                                                                                                                                     

We evaluate our enhanced RBP prediction system on the 

UCF-Crime dataset [UCF-Crime Ref], consistent with the 

evaluation by Pouyan et al. [Original Paper Ref]. Specifically, 

45 videos are used for RBP prediction and 70 for robbery 

detection. For training our custom YOLOV5 person detector, 

we utilized a subset of COCO downsampled and filtered for 

persons, or annotated frames from UCF-Crime's normal 

videos. 

4.2. Implementation Details                                                                                                                                

* YOLOV5 Person Detector Training: we use YOLOV5s  

image resolution for training, number of epochs, batch size, 

learning rate, optimizer, and data augmentation. 

* YOLOV5 Head Cover Detector: We use the pre-trained 

model details as provided by Pouyan et al. [Original Paper 

Ref] or re-implement based on their specifications. 

* DeepSORT Parameters: Standard DeepSORT parameters 

were used, with our custom YOLOV5 as the detector. 

* Fuzzy Inference System: Parameters for membership 

functions and rules were adopted from Pouyan et al. [Original 

Paper Ref]  

* Hardware: Our implementation builds upon the YOLOV5 

[Ref to YOLOV5] framework (YOLOV5s  ) and DeepSORT 

[Ref to DeepSORT] algorithm. Training and inference were 

performed on a system with an NVIDIA GeForce RTX 2070 

Super (8GB VRAM), an AMD Ryzen 7 3700X CPU, and 

16GB RAM, running Windows 10 Pro. The core deep 

learning framework was PyTorch 1.10, with CUDA 11.1 and 

cuDNN 8.0.5. 

4.3. Evaluation Metrics                                                                                                                                 

Following Pouyan et al. [Original Paper Ref], we use 

Precision, Recall, and F1-score for evaluating both RBP 

prediction (against ground truth periods of pre-robbery 

behavior) and robbery detection (against actual robbery 

events). The thresholds (θη=50, θs=60) defined in the original 

work are used for comparison. 

4.4. Baseline                                                                                                                                                           

The performance of our enhanced system is directly 

compared against the results reported by Pouyan et al. 

[Original Paper Ref] for their original RBP prediction and 

detection system. 

5. RESULTS AND DISCUSSION 

5.1. Person Detection Performance                                                                                                                              

Our custom-trained YOLOV5 person detector achieved an 

mAP of 92% on our designated low-resolution test set, 

demonstrating its efficacy in identifying individuals under 

challenging visual conditions. Qualitative results (Fig. 9) 

show improved detection robustness compared to what might 

be expected from a generic detector in DeepSORT. 

5.2. Robbery Behavior Potential (RBP) Prediction                                                                                              

Our system achieved a Precision of 0.521, Recall of 0.69, and 

an F1-score of 0.671 using the normal threshold (θη=50). 

This represents an improvement of 10.54 % in F1-score over 

the baseline.our system maintained more consistent tracks, 

leading to better RBP assessment. 

5.3. Robbery Detection                                                                                                                                       

When translating RBP prediction to robbery detection, our 

system achieved an F1-score of 0.671 compared to 0.607 by 

Pouyan et al. [Original Paper Ref]. 

5.4. Discussion of Limitations                                                                                                                            

While our enhanced loitering module shows improvement, 

challenges remain. Occlusions can still cause track 

fragmentation... The definition of "loitering" itself is 

context-dependent and the rule-based fuzzy system, though 

interpretable, might not capture all nuances. 

6. CONCLUSION AND FUTURE WORK  

This paper presented an enhancement to the Robbery 

Behavior Potential (RBP) prediction framework originally 

proposed by Pouyan et al. [Original Paper Ref]. By focusing 

on a key limitation identified in their work, we developed an 

improved loitering detection module. This was achieved by 

integrating a custom-trained YOLOV5 model for robust 

person detection in low-resolution indoor environments with 

the DeepSORT tracking algorithm. Our experimental results 

on the UCF-Crime dataset demonstrate that this targeted 

enhancement leads to more accurate loitering analysis, 

consequently improving the overall RBP prediction F1-score 

from 0.607 to 0.671, and the robbery detection F1-score from 
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0.537 to 0.631. This work underscores the importance of 

robust foundational perception modules for complex 

behavior analysis systems. 

Future work could explore several directions. Firstly, more 

advanced tracking algorithms beyond DeepSORT, such as 

ByteTrack or MOTRv2, could be investigated in conjunction 

with our custom detector. Secondly, the fuzzy inference rules, 

currently expert-defined, could be optimized using 

metaheuristic algorithms like Genetic Algorithms, potentially 

leveraging the more reliable loitering inputs. Finally, 

incorporating additional behavioral cues, such as pose 

estimation for suspicious gestures, could further enrich the 

RBP assessment. 
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