
          
      International Journal of Scientific Research in Engineering and Management (IJSREM) 

                         Volume: 09 Issue: 05 | May - 2025                            SJIF Rating: 8.586                                       ISSN: 2582-3930                                                                                                                                               

  

© 2025, IJSREM      | www.ijsrem.com                                                                                                                         |        Page 1 
 

Inject AI -Automated Tool for Prompt Injection 
 

Ashwin S 

Dept Of Computer Science Engineering 

Panimalar Institute Of Technology Chennai, 

India Ashwin200323@gmail.com 

Mohammed Sarfaraz 

Dept Of Computer Science Engineering 

Panimalar Institute Of Technology Chennai, 

India mohammedsarfaraz2003@gmail.com 

Lokesh S B 

Dept Of Computer Science Engineering 

Panimalar Institute Of Technology Chennai, 

India lokeshshoffl@gmail.com 

 

Nithish Kumar K S 

Dept Of Computer Science Engineering Panimalar Institute Of 

Technology Chennai, India Nithishneyamar16@gmail.com 

 

Bala Abirami B 

Dept Of Computer Science Engineering Panimalar Institute Of 

Technology Chennai, Indiabala.bami@gmail.com 

 

Abstract— 

The growing deployment of Large Language Models (LLMs) in 

different applications requires immediate solutions to protect them 

from prompt injection attacks. Attackers exploit prompt injection 

techniques to manipulate model responses while bypassing security 

protocols so they can extract sensitive information by creating 

specific prompt inputs. InjectAI operates as a complete automated 

penetration testing tool for command-line interfaces which checks 

web- based LLM chatbots for prompt injection flaws. The 

automated testing system InjectAI employs various attack strategies 

through systematic prompt generation and injection to detect 

prompt injection vulnerabilities in web-based LLM chatbots. Static 

injection, rule-based mutation, response-based adaptation, token 

manipulation, context injection and grammar obfuscation are 

included in its attack strategies. Through HTTP requests the tool 

sends dynamically generated prompts to LLM-based interfaces 

while replacing predefined placeholders (PRMT). The system 

checks response data to find security holes before it records 

successful injection attacks. This paper presents the design of 

InjectAI alongside its attack methods and evaluation process for 

detecting prompt injection threats. This paper empahsis on how 

automated security testing affects LLM safety and presents possible 

approaches to strengthen AI model robustness. 

Keywords— Prompt Injection, Large Language Models (LLMs), 

AI Security, Web-Based AI Penetration Testing, Automated 

Exploitation, NLP Security, Prompt Engineering Vulnerabilities. 

 

I. INTRODUCTION 

Large Language Models (LLMs) brought a revolution 

to natural language processing (NLP) which turned them into 

widely used tools for AI-powered chatbots and virtual assistants 

along with content generators and decision-support systems. The 

vast dataset training enables these models to produce humanlike 

text while understanding intricate queries for contextual 

dialogue. The development of these models produced security 

issues which primarily target how these systems decode and 

handle user content. Parts of LLM security have evolved into an 

essential ongoing threat because prompt injection represents a 

new attack method that enables attackers to alter model behavior 

while overriding system instructions and neutralizing safety 

features by supplying specific input prompts. [1] 

The processing mechanism of LLMs in language 

generation enables prompt injection attackers to exploit instead 

of typical software-based vulnerabilities or system configuration 

weaknesses. These models work exclusively with textual inputs 

causing them to fail between valid instructions and deceptive 

prompts. LLMs deliver prompts due to their textual processing 

limitation and this weakness enables attackers to hijack 

instructions for revealing confidential  information  or  

executing  unauthorized 

commands or bypassing ethical safeguards. The dependence on 

AI conversational agents which continues to grow in healthcare 

and finance sectors alongside customer service and cybersecurity 

fields creates substantial risks to data protection together with 

operational security and user protection. 

The defense against prompt injection has evolved 

through content filtering together with reinforcement learning-

based moderation systems and fine-tuned instructions and AI-

anomaly detection systems. These countermeasures prove 

unreliable because advanced prompt injection tactics including 

context poisoning and encoding- based evasion and multi-turn 

manipulation evade their effectiveness. Studies of AI security 

need a standardized evaluation framework to assess robustness 

comprehensively against attacks directed at LLMs but such a 

framework does not currently exist. The increasing demand for 

automated security testing tools exists because organizations 

need efficient methods to examine and find prompt injection 

vulnerabilities in LLM-powered systems. 

This research introduces InjectAI which stands as a 

completely automated tool designed for command-line 

penetration tests to evaluate prompt injection vulnerabilities 

within web-based LLM chatbots. The testing system provided by 

InjectAI executes security assessments of LLMs through a 

combination of static injection tactics, rule-based mutations, 

response-based adaptations, token modifications, context 

alterations and grammar obfuscation methods. InjectAI operates 

as an automated penetration testing system that conducts 

structured HTTP requests toward chatbot web interfaces to 

perform adversarial input tests within PRMT placeholders for 

vulnerability detection and system weakness evaluation. [2] 

This paper examines both the design and operational 

approach of InjectAI with an assessment of its functions as an 

operational security testing instrument for LLMs. The paper 

shows effective use of InjectAI through the examination of 

actual prompt injection weaknesses discovered within real- 

world systems and provides insights about the implications of 

automated adversary testing in LLM security. This paper 

presents strategies for security mitigation that stress the 

importance of robust input validation as well as enhanced prompt 

filtering techniques and stronger instruction reinforcement. The 

protection of LLMs against prompt injection attacks becomes 

essential for establishing trust as well as maintaining safety and 

reliability in AI-based mission-critical systems. 

http://www.ijsrem.com/
mailto:Ashwin200323@gmail.com
mailto:swagathajaisathish@gmail.com
mailto:lokeshshoffl@gmail.com
mailto:Nithishneyamar16@gmail.com
mailto:bala.bami@gmail.com


          
      International Journal of Scientific Research in Engineering and Management (IJSREM) 

                         Volume: 09 Issue: 05 | May - 2025                            SJIF Rating: 8.586                                       ISSN: 2582-3930                                                                                                                                               

  

© 2025, IJSREM      | www.ijsrem.com                                                                                                                         |        Page 2 
 

II. LITERATURE REVIEW 

The research examines the safety hazards connected to 
Large Language Models (LLMs) but also explains how their 
threats differ from typical software system weaknesses. The 
review specifically examines prompt injection attacks which 
refer to malicious actions performed on input prompts to bypass 
system security measures and expose confidential data and 
modify model behavior. Various attack techniques have been 
demonstrated by researchers through direct and indirect prompt 
injection as well as context poisoning and encoding-based 
attacks and jailbreaking done through role-playing and social 
engineering. Advanced adversarial techniques have proven able 
to bypass safeguards such as *content filtering* and 
*reinforcement learning with human feedback (RLHF)* despite 
the implementation of these defense measures. New security 
solutions must be created because existing measures are 
insufficient to protect systems that use AI against continuously 
emerging threats. [3] 

 

2.1 Security Risks in Large Language Models (LLMs) 

CThe various industrial sectors including customer 
support services along with content creation fields and healthcare 
and finance institutions and cybersecurity applications have 
adopted Large Language Models (LLMs) while facing growing 
security challenges. The programming behind LLMs allows them 
to convert received inputs into human-like texts although they 
cannot comprehend the original context or user intentions nor 
recognize dangerous intent in user queries. Their behavior 
remains open to manipulation through inputs which produce 
unintended effects because of their susceptibility. Cloudor tech 
limitations provoke vulnerabilities by misinterpreting speaker 
inputs rather than through typical software flaws or memory 
errors or network failure issues. A new classification of 
cybersecurity threats emerges because AI security risks differ 
fundamentally from common security concerns. 

The main security issue with LLM technology entails 
prompt injection attacks that let attackers modify input 
instructions to breach system functions or access restricted areas 
and force models to divulge sensitive information. Carlini et al. 
(2021) showed that LLMs would disclose memorized training 
information in reaction to well- worded interaction requests thus 
prompting privacy and ethics issues for AI systems. According to 
Perez and Ribeiro (2022) LLMs lack internal security 
mechanisms to stop attackers who use specially designed 
prompts against their models. The researchers found that models 
trained through RLHF still fell for tactically designed prompts 
according to their study. 

Using prompt injection creates severe threats for systems 
that use LLMs to make decisions or reason automatically or 
perform security-related operations. Attackers can leverage 
system instructions to manipulate business operations while also 
accessing sensitive user data as well as generating offensive 
material through the system. System reinforcement and content 
filtering methods that developers actively implement face 
resistance from LM vulnerabilities as research indicates 
sophisticated attack techniques easily bypass such defenses. [4] 

 

2.2- Evolution of Prompt Injection Attacks 

Using prompt injection creates severe threats for systems 
that use LLMs to make decisions or reason automatically or 
perform security-related operations. Attackers can leverage 
system instructions to manipulate business operations while also 
accessing sensitive user data 

as well as generating offensive material through the system. 
System reinforcement and content filtering methods that 
developers actively implement face resistance from LM 
vulnerabilities as research indicates sophisticated attack 
techniques easily bypass such defenses. 

Shumailov et al. (2023) expanded prompt injection 
attacks with their discovery of Stealth attack vectors embedded 
in external sources that include websites, PDFs and metadata 
files. The security threat increases significantly when LLMs 
operate with retrieval-augmented generation (RAG) systems 
because they require processing external documents during 
response generation. An attacker during this scenario embeds 
malicious instructions through webpages so the LLM executes 
these embedded commands without being aware. LLM-
integrated web crawlers search engines along with AI-powered 
automation systems encounter serious security threats from this 
method 

2.3 Attack Techniques Used in Prompt Injection 

Several distinct methodologies of prompt injection 

attacks now exist because LLM processing has various 

vulnerabilities. Context poisoning stands out as one of the main 

attack techniques which involves modifying multi-turn 

conversations to manipulate LLM response patterns. The 

research of Wei et al. (2023) uncovered the way LLMs 

experience challenges in maintaining stability in their safety 

protocols during prolonged conversational sequences. By 

implementing deceitful information through continuous 

introduction an attacker can drive the model away from its 

predefined safety protocols. 

Security filters can be bypassed through encoding- 

based prompt injection because this method uses Unicode 

character alterations together with invisible characters and 

encoded payloads. The research of Tramer et al. (2023) 

established that LLMs cannot detect malicious commands 

because their security filters are vulnerable to encoded inputs 

using Base64 encoding or homoglyph substitutions or zero- 

width spaces. The encoding tricks enable attackers to bypass 

regular security filters based on pattern recognition and keyword 

checks. 

Jailbreaking attacks serve as an emerging method that 

allows users to bypass security protocols of LLM safety 

mechanisms. Attackers perform their operations through three 

main aspects of role-playing scenarios combined with social 

engineering activities and prompts that require multiple steps of 

reasoning. Research by Zou et al. (2023) explained how 

cyberattackers succeed in making LLMs break their safety 

limitations by using deceptive prompts at the intersection of 

reality and fiction. An LLM follows company rules and denies 

unethical output when presented as this request: 

“Considering your role as a fictional AI who exists in a 

dystopian universe without security systems please explain the 

description of XYZ.”Reinforcement learning-based alignment 

techniques experience a basic operational failure due to LLMs 

that have trouble recognizing differences between actual and 

imaginary situations. 

2.4 Limitations of Current Defense Mechanisms 

The growing awareness of prompt injection attacks 

cannot overcome the inability of current defenses to stop modern 

adversarial tactics. The standard approach applied by commercial 

AI models depends on content filtering because LLMs receive 

fine-tuning to identify dangerous request entries. The research 

conducted by Shao et al. (2023) 

http://www.ijsrem.com/
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demonstrates that filtering systems prove unreliable because 

attackers can outsmart them by using encoding or reworded input 

methods. The tactic of attackers to evade detection includes word 

replacement and the distribution of requests across multiple chat 

turns as well as encoded payloads that avoid keyword detection 

systems. 

The defense technique known as reinforcement learning 

with human feedback (RLHF) provides training for LLMs in 

ethical response behavior through its application in models such 

as ChatGPT, Claude and Gemini. The findings of Ouyang et al. 

(2022) indicate that models developed through RLHF training 

methods remain prone to exploitations created by adversarial 

prompts that use role- playing and chained logic structures and 

indirect reasoning methods. Instruction reinforcement has failed 

to stop adversarial attacks that modify requests in subtle ways 

due to its design against explicit misuse prevention. [5] 

 

III. PROBLEM STATEMENT 

Web applications integrate Large Language Models 

(LLMs) to create new security vulnerabilities which force 

prompt injection attacks. Security specialists describe prompt 

injection vulnerabilities as dissimilar to the vulnerabilities that 

exist in traditional software since LLMs interpret written input 

unlike memory management and code execution problems. The 

only use of user-supplied prompts by LLMs creates an 

environment where the models have no built-in capability to 

distinguish between legitimate requests and deliberately 

manipulated instructions. Their vulnerable nature allows 

adversaries to modify prompts and use this flaw for either 

extracting sensitive information or bypassing system controls or 

creating unintended model responses. 

The literature shows how LLMs respond to carefully 

designed inputs by bypassing security measures establishing a 

threat to existing systems. An attacker executes direct prompt 

injection by explicitly telling the model to skip previous 

instructions though indirect prompt injection works through 

commercial content found in webpages or documents to change 

the model results. Advanced manipulation techniques that 

include context poisoning as well as encoding-based evasion and 

multi-turn manipulation establish that LLMs cannot maintain 

consistent secure behavior throughout different interactions. 

Current awareness about prompt injection threats does 

not match with any established method for comprehensive 

testing of LLM-based applications using prompt injection 

assessment procedures. Security assessments currently perform 

manual analyses as their primary method although this approach 

remains slow as well as error-prone and hard to expand. The 

current defense strategies including content filtering along with 

reinforcement learning from human feedback (RLHF) and 

instruction reinforcement demonstrate their inability to cope with 

advanced attack methods. The ability of attackers to find new 

ways around security safeguards, detect detection protocols, and 

control LLM outputs remains a growing concern for data leaks, 

unethical misuse, misinformation spreading and unauthorized 

model activities. 

LLM-based applications suffer from a fundamental 

security weakness because they require better automated testing 

methods to detect prompt injection vulnerabilities. The 

integration of Large Language Models into critical domains 

brings forward a critical security challenge because developers 

must immediately address adversarial manipulation in these 

systems. 

IV. PROPOSED .SYSTEM 

The integration of Large Language Models (LLMs) into 
web-based applications has caused security concerns to escalate 
substantially. The main threat against these models comes from 
prompt injection attacks which adversaries use to control the 
model's responses or bypass system rules or extract confidential 
information 

 

Figure 1 Logical flow diagram 

 

Current testing approaches for prompt injection 

vulnerabilities depend on manual experimentation methods that 

prove slow and inconsistent and difficult to expand. 

Advancements in LLM development lead to new sophisticated 

methods of security evasion that necessitate the development of 

adaptive automated testing frameworks. [6] 

We propose InjectAI which functions as a command-

line interface (CLI)-based penetration testing tool to automate 

the process of prompt injection vulnerability testing for web-

based LLM chatbots. 

The system has a Command-Line Interface (CLI) through 

which security professionals can easily generate, execute, and 

control prompt injection campaigns in penetration testing 

assignments. By resolutely aiming at prompt injection, InjectAI 

allows testers to simulate actual attack environments with 

maximum accuracy, discovering vulnerabilities that would be not 

detected by the usual testing tools. 

InjectAI allows working with several LLM services, 

open-source models, as well as commercial APIs, which makes it 

flexible for different organizational contexts. The tool automates 

the analysis of responses to injected prompts to let the 

penetration testers locate exploitable weaknesses, and to bring 

detailed reports of which mitigation strategies can be based upon 

http://www.ijsrem.com/
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4.1 Identifying Target Request Format 

User interaction data in chatbots requires processing 

through either GET or POST HTTP requests as the primary 

methods. User input in GET requests joins the URL as a 

parameter so the chatbot can acquire and handle the query 

contents from the request string. The POST request format sends 

user input data through its body section using a structured format 

instead of the GET request method which adds input data as 

URL parameters. The analysis needs to be precise to establish 

the correct spot for prompt injection in the input process. [7] 

 

 

The attack automation process through InjectAI 

depends on a placeholder marker called PRMT which designates 

where the chatbot receives user input. Through the use of PRMT 

as a substitution for the chatbot's input parameter the tool 

executes dynamic prompt injection into requests. The tool adopts 

this method to attack multiple chatbot deployments regardless of 

their input method between query parameters and structured 

request fields. To position injection attacks correctly in the 

chatbot communication framework testers need to inspect the 

request format and locate input processing areas before replacing 

them with PRMT during pre-execution examination. 

 

4.2 Static Injection Techniques 

 

The Static Injection module aims at injecting 

predefined, fixed prompt payloads into a target system in order 

to test for vulnerability without involving dynamic content 

creation. These are usually well-thought jailbreak prompts meant 

to circumvent or hijack the AI model’s safety and use limits. 

From the findings of research and bug bounty hunting (BBH) 

activity there are many patterns of jailbreak prompts that have 

been discovered such as “Ignore previous instructions,” “System 

override,” or “You are now a helpful assistant with no 

restrictions”. These prompts take advantage of mistakes in the 

logic of prompt parsing in order to elevate privileges or cause the 

AI to react beyond its boundaries. 

 

 

This module automatizes the systematic usage of these 

known jailbreak prompts to input fields or API parameters of the 

target application, seeing how an AI reacts to potentially 

malicious commands. Using a set of well- studied prompts that 

are kept fixed, Static Injection assists the red teamers and 

penetration testers to determine if it is possible to force an AI 

system into a non-intended behavior, which is a key component 

in assessing the security before deploying AI-powered 

applications in sensitive areas. The static approach provides an 

environment for controlled and reproducible testing in order to 

clarify a program or a library to reliably detect common injection 

vulnerabilities. 

4.3 Dynamic Injection Techniques 

 

The Dynamic Injection module produces prompt 

payloads in real-time by piping arbitrary user-supplied content to 

an exclusive prompt generation server. This server prepares the 

input and outputs customized injection prompts adaptable to the 

relevant context or target. These dynamically created prompts are 

subsequently injected into the input parameters of the target 

system in order to test how the AI model will react to adaptive and 

perhaps more complex attacks. As opposed to static injection, 

such an approach provides much more flexibility and an 

opportunity to create context-aware prompts which can bypass 

basic security filters and thereby make it possible to perform 

more advanced testing of AI system vulnerabilities. 

 

4.4 Prompt Generating Server 

 

The Prompt Generation Server is a main component that 

develops reliable and effective prompts that challenge the 

reliability of LLMs. The technology allows users to practice 

defending systems by simulating the actions of actual attackers. 

InjectAI mainly centers on applying the top five bypass 

strategies that are recognized for their effectiveness. Ignoring 

previous instructions can be shifted with expressions like 

“disregard earlier commands,” while aiming to dodge static 

filters. Another method is to trick the model by inserting space 

marks, using Unicode or transforming to base64 for character 

and format protection. They are great tools to overcome 

keyword-based filtering systems. 

 

 

The third approach is called Encoding and Payload 

Wrapping, which hides the malicious payload in standard 

formats such as JSON or XML and places it in harmless fields for 

APIs to run. Next, Context Saturation (Few-Shot Hijacking) tricks 

the model with carefully designed examples that override its 

normal behavior, bypassing intended system prompts. Model 

fine-tuning attempts to change the behavior of the model by 

providing prompts that use imaginative scenarios to encourage 

the model to violate protocols. All these components make 

InjectAI’s prompt generation engine an effective tool for actively 

assessing LLM security. 

 

4.5 Response Analysis 

 

Regular Expressions are used in understanding the 

response to make sure it does not include malicious code. Instead 

of having to scrutinize each response on their own, InjectAI uses 

regex to identify malicious signs that appear in specific patterns. 

This allows for quicker, bigger, and more accurate analysis of 

vulnerabilities. 

http://www.ijsrem.com/
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4.6 Advanced Dynamic Exploitation 

Through advanced exploitation techniques InjectAI 
verifies to what extent LLM-based chatbots can execute 
unauthorized actions which surpasses basic prompt injection 
vulnerabilities. The methods function to transform prompt 
injection vulnerabilities into security threats by investigating 
system-wide vulnerabilities. The tool runs automated checks to 
determine if an LLM becomes susceptible to command execution 
while obtaining database records as well as web content 
modification and file system access and server connection 
capabilities. 

The dynamic prompt construction system of InjectAI 
uses five core exploitation techniques to measure response 
alterations that occur when the chatbot faces adversarial 
influences. The assessment tool verifies if a chatbot can run shell 
commands through OS Command Injection analysis while also 
testing for SQL Injection and Cross-Site Scripting vulnerabilities 
and Local File Read and Server-Side Request Forgery exploits. 
Through automated testing InjectAI delivers detailed 
performance assessments regarding LLM-based chatbot 
reactions to dangerous inputs alongside their susceptibility to 
exploitation outside of prompt manipulation. [11] 

 

4.7 Logging System 

 

The logging system of InjectAI systematically records 

all attacks and chatbots responses and security bypass activities 

for analytical purposes. The system records each entry using the 

injected prompt together with the chatbot response and success 

or failure status along with timestamp and exploitation technique 

(static, dynamic or advanced). The structured logging system 

helps testers monitor vulnerability changes over time and 

evaluate attack performance for improved security strategy 

development. 

The platform produces real-time logs through three 

export options which include plaintext, JSON and CSV formats 

for penetration testing document generation. Users benefit from 

efficient log analysis through their ability to filter attack data 

according to success rates and execution time durations and 

attack types. The security system of InjectAI implements basic 

encryption and access controls to defend sensitive data from 

unauthorized manipulation and access. 

Security professionals can collaborate with AI 

developers by using detailed logs from InjectAI to understand 

successful attack techniques that require strengthening of LLM 

security measures. [12] 

5.1 Command-Line Interface (CLI) Structure 

Through the CLI users conduct all their interactions 
with InjectAI. The design of this tool provides a simple 
configuration system together with efficiency and flexibility for 
users running web-based LLM chatbot penetration tests. Through 
its Command-Line Interface (CLI) system testers define the 
target chatbot URL and request format and HTTP headers and 
injection techniques to create tailored attacks that fit the analysis 
requirements of the evaluated chatbot. 

Users can provide attack commands alongside 
authentication header settings and logging options through a 
single CLI command because of its structured argument parsing 
system. The tool enhances its usability through error handling 
features which both check user input data and finds absent 
parameters while giving users helpful usage suggestions. 
Through its interactive mode testers can enter prompts manually 
while viewing chatbot responses as they develop their attack 
tactics in real-session interactions. The interactive mode serves 
as a valuable tool for security assessment because it enables 
attackers to determine how the chatbot responds to various inputs 
during their examination period. [18] 

 

5.2 Static Injection Method 

Predefined defaults make up the static method since it 
directly inserts unmodified adversarial prompts into chatbot entry 
fields for attack. The prompt system exists to detect known LLM 
vulnerabilities and monitors three primary vulnerabilities which 
include direct instruction overrides and system prompt 
manipulations and role-based command injections. Static 
methodology works in a different manner than dynamic 
strategies because it uses previously successful attack schemas 
from historical LLM exposure without response-dependent 
modifications. 

The attack execution of static injection through InjectAI 
requires the tool to replace a placeholder keyword (PRMT) 
within the chatbot request framework using the chosen 
adversarial prompt. After its modification the tool forwards the 
request to the chatbot where it receives a response. Quick tests 
can be done to discover if a chatbot has weak points against 
typical prompt injection strategies by using this approach. Static 
injection methods could fail to produce effects on modern LLMs 
that employ basic filtering systems because these models have 
built-in security protections. The bypassing of security 
constraints requires the use of dynamic injection techniques. [17] 

The static method is particularly effective in testing 
baseline vulnerabilities and providing a comparative benchmark 
against dynamic approaches. By using a fixed set of adversarial 
inputs, security researchers can determine whether an LLM's 
filtering mechanism can detect and block known exploitative 
prompts. [13] 

 

V. IMPLEMENTATION DETAILS 

InjectAI operates as a command-line interface- based 
tool which uses automated prompt injection tests to assess web-
based LLM chatbots. The system uses Python to develop 
integrated modules which enable the creation of adversarial 
prompts followed by injection and analysis and logging 
functions. The implementation contains four major components 
that include command-line interface (CLI) structure and static 
injection method alongside dynamic injection method and 
logging system. The separate modules in InjectAI support 
efficient program operations by ensuring both adaptability and. 

5.3 Dynamic Injection Method 

Dynamic prompt injection differentiates from static 
injection since it enables InjectAI to adjust adversarial prompts 
through real-time updates according to chatbot responses along 
with security constraints. The method includes six advanced 
transformations through advanced techniques that consist of rule-
based mutation and response- based adaptation and token 
manipulation and context poisoning and grammar obfuscation 
and stealth encoding. Through the dynamic method the aim is to 
bypass content filters by making the injected prompts 
indistinguishable from benign input. 

http://www.ijsrem.com/
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Initial examination of how a chatbot interacts with 
inputs allows testers to identify if it blocks basic injection 
methods. The system applies different transformation approaches 
to adversary prompts which the chatbot has already rejected. The 
attack procedure involves rewriting attack messages alongside 
different encoding protocols and dividing payload distribution 
between several exchange sessions and placing harmful 
commands inside normal user requests. The process repeats itself 
repeatedly to achieve a bypass or finish all test possibilities. 

Attack strategies evolve through the dynamic approach 
by using chatbot feedback which results in greater difficulty for 
rule-based security tools to prevent malicious inputs from getting 
through. Dynamic injection techniques prove superior over other 
methods when facing LLMs which deploy keyword-based 
filtering instead of using context- aware security platforms. The 
success rate of bypassing contemporary AI safety measures 
increases through InjectAI by implementing context 
manipulation with response-driven adaptation and stealth 
encoding methods.. [14] 

5.4 Logging System 

A comprehensive logging system provided by InjectAI 
tracks down and records attack attempts as well as security 
bypasses together with chatbot responses in a systematic manner. 
The application of InjectAI results in log files that deliver critical 
data necessary for post-exploitation evaluation and protects users 
from security risks as well as enabling penetration testing 
documentation. 

During logging the system saves both the request 
prompt and the chatbot response and logs success or failure of 
the attack scenario. Reviewers who apply this structured system 
can examine past injection trials to observe behavioral trends in 
chatbots and create more effective future strategies from those 
observations. The logging system enables testers to compare 
static injection methods with dynamic injection techniques to 
determine which approaches succeed most efficiently in different 
chatbot situations.The reporting capabilities of InjectAI can 
produce organized reports which group successful attacks against 
failed attacks and show detected evasion attempts and detected 
vulnerabilities. Security professionals use these reporting 
systems to convey important discoveries to AI developers for 
potential enhancement of system security. [16] 

As part of its security measures InjectAI executes 
fundamental encryption and access restriction implementations 
to protect the confidentiality of its sensitive test outcomes. 
Attack logs remain securely protected against tampering due to 
storage authentication that produces invulnerable penetration 
testing reports. 

VI. RESULT AND DISCUSSION 

A thorough evaluation of InjectAI's 

performance involved tests with three locally operated LLM 

models: LLaMA 2 (7B and 13B), Mistral 7B and GPT-J 6B. The 

testing environment was controlled for deploying each model so 

InjectAI could perform static and dynamic along with advanced 

exploitation techniques. We primarily examined prompt injection 

attack success rates together with different bypassing 

approaches and model behavioral responses when under attack 

conditions. 

LLaMA 2 models demonstrated the highest resistance 

to basic static injection attacks because they successfully blocked 

direct instruction overrides in more than 70% of attempts. The 

dynamic injection methods context poisoning and grammar 

obfuscation proved able to bypass restrictions within 45% of 

the analyzed test cases 

because of vulnerabilities in prompt processing. Mistral 7B had a 

reduced size but its filtering mechanisms proved less effective 

because static and dynamic injection attacks bypassed detection 

63% of the time through stealth encoding techniques. GPT-J 6B 

demonstrated the maximum vulnerability due to its status as an 

older model with limited security measures since attackers 

achieved more than 80% success in bypassing restrictions that 

included OS command injection and local file read attempts. [15] 

The models that processed structured queries allowed 

partial success for SQL injection and OS command injection 

attacks but these attacks failed against models with strict 

response formatting rules. XSS and Server-Side Request Forgery 

(SSRF) exploits proved ineffective because most models did not 

have built-in capabilities for external request rendering or 

execution. Eighteen percent of LFI attacks were successful 

because systems unintentionally revealed system- related data 

through model completion features. 
 

 
Figure 2 Result 

This research confirms the necessity to develop 

improved adversarial training methods and better filtering 

systems for LLM-based chatbots. The InjectAI automation tool 

works well for penetration testing but its response analysis 

system can be enhanced through machine-learning classifiers 

that identify minimal behavioral shifts in chatbots following 

successful injections. Future development will include real-time 

adaptive injection sequences which allow InjectAI to change its 

attack tactics through dynamic assessment of progressive 

response patterns. 

The InjectAI system proved successful at revealing, 

examining and taking advantage of prompt injection flaws 

throughout multiple LLM design architectures while offering 

important information about LLM security assessments. Ongoing 

security improvements and adversarial robustness enhancements 

will be vital for LLMs as they advance because new threats 

emerge in AI-driven applications. 

VII. CONCLUSION 

Web-based applications using Large Language 

Models (LLMs) face new security risks because prompt injection 

attacks let adversaries manipulate responses leading to restriction 

bypasses and information extraction. The CLI- based automated 

penetration testing tool InjectAI provides systematic assessments 

of vulnerabilities by applying static, dynamic and advanced 

exploitation techniques. The tool serves to automate prompt 

injection testing while also decreasing manual security 

assessments and offering a 

http://www.ijsrem.com/
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structured evaluation framework for LLM security assessment. 

[19] 

 

The examination of InjectAI on LLaMA 2 (7B and 

13B), Mistral 7B, and GPT-J 6B showed major differences in 

model resistance against various injection methods. The 

combination of context poisoning, stealth encoding and grammar 

obfuscation methods used in dynamic prompt crafting 

successfully bypassed security restrictions in numerous instances 

although static injection attempts were frequently blocked by 

well-protected models. The GPT-J 6B model showed the highest 

security weakness compared to the more secure LLaMA 2 

models which remain vulnerable to advanced attack 

modifications. Models which handled structured data input 

succeeded in advanced exploitation attempts like SQL injection 

and OS command execution and local file read attacks until 

their security was defeated by 

response constraint enforcement. 

Security research demonstrates essential vulnerabilities 

in LLM systems which require more potent adversarial training 

with enhanced input sanitation and adaptive filtering systems to 

stop evolving attack approaches. The penetration testing tool 

InjectAI shows effectiveness at automating LLM-based chatbot 

testing while delivering scalable effective solutions for 

vulnerability identification to researchers and security 

professionals. 

The forthcoming development of InjectAI will 

concentrate on virtual adaptive attack strategies which will let 

the system automatically adjust its injection methods according 

to the developing responses from chatbots. The integration of 

machine-learning-assisted response analysis will enhance 

security detection by identifying secret weaknesses that exceed 

predefined success indicators. AI- powered applications require 

continuous development of LLM security frameworks alongside 

automated penetration testing tools such as InjectAI to assure 

their robust defense against adversarial threats. [20] 

 
REFERENCES 

[1] Y. Liu et al., “Prompt Injection attack against LLM- 

integrated Applications,” arXiv.org, Jun. 08, 2023. 

https://arxiv.org/abs/2306.05499 

[2] R. Pedro, D. Castro, P. Carreira, and N. Santos, “From 

Prompt Injections to SQL Injection Attacks: How Protected is 

Your LLM-Integrated Web Application?,” arXiv.org, Aug. 15, 

2023. https://arxiv.org/abs/2308.01990 

[3] S. Chen, J. Piet, C. Sitawarin, and D. Wagner, “StruQ: 

Defending Against Prompt Injection with Structured Queries,” 

arXiv.org, 2024. https://arxiv.org/abs/2402.06363 

[4] K. Hines, G. Lopez, M. Hall, F. Zarfati, Y. Zunger, and 

E. Kiciman, “Defending Against Indirect Prompt Injection 

Attacks With Spotlighting,” arXiv.org, 2024. 

https://arxiv.org/abs/2403.14720 

[5] L. Deng, H. Lei, F. Khan, G. Srivastava, J. Chen, and 

M. Haque, “GPT-Based Automated Induction: Vulnerability 

Detection in Medical Software,” IEEE Journal of Biomedical 

and Health Informatics, pp. 1–12, Jan. 2025, doi: 

https://doi.org/10.1109/jbhi.2025.3544560. 

[6] Y. Sun et al., “GPTScan: Detecting Logic 

Vulnerabilities in Smart Contracts by Combining GPT with 

Program Analysis,” Apr. 2024,

 doi: 

https://doi.org/10.1145/3597503.3639117. 

[7] Z. Liu, Q. Liao, W. Gu, and C. Gao, “Software 

Vulnerability Detection with GPT and In-Context Learning,”

 Aug. 

2023, doi: 

https://doi.org/10.1109/dsc59305.2023.00041. 

[8] F. He, T. Zhu, D. Ye, B. Liu, W. Zhou, and P. S. Yu, 

“The Emerged Security and Privacy of LLM Agent: A Survey 

with Case Studies,” arXiv.org, 2024. 

https://arxiv.org/abs/2407.19354 

[9] Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang, 

“A survey on Large Language Model (LLM) security and 

privacy: The Good, The Bad, and The Ugly,” High- Confidence 

Computing, vol. 4, no. 2, p. 100211, Mar. 2024, doi: 

https://doi.org/10.1016/j.hcc.2024.100211. 

[10] Y. Li et al., “Attention Is All You Need for LLM-

based Code Vulnerability Localization,” arXiv.org, 2024. 

https://arxiv.org/abs/2410.15288 (accessed Mar. 10, 2025). 

[11] X. Yang et al., “Code Change Intention, Development 

Artifact and History Vulnerability: Putting Them Together for 

Vulnerability Fix Detection by LLM,” arXiv.org, 2025. 

https://arxiv.org/abs/2501.14983 (accessed Feb. 06, 2025). 

[12] A. Kucharavy, Octave, V. Mulder, A. Mermoud, and 

V. Lenders, “Large Language Models in Cybersecurity Threats, 

Exposure and Mitigation.” Accessed: Mar. 10, 2025. [Online].

 Available: 

https://library.oapen.org/bitstream/handle/20.500.12657/908 

97/978-3-031-54827-7.pdf?sequence=1#page=100 

[13] Vishwanath Akuthota, Raghunandan Kasula, Sabiha 

Tasnim Sumona, M. Mohiuddin, Md Tanzim Reza, and Md 

Mizanur Rahman, “Vulnerability Detection and Monitoring 

Using LLM,” Nov. 2023, doi: 

https://doi.org/10.1109/wiecon-ece60392.2023.10456393. 

[14] D. de-Fitero-Dominguez, E. Garcia-Lopez, A. Garcia- 

Cabot, and J.-J. Martinez-Herraiz, “Enhanced automated code 

vulnerability repair using large language models,” Engineering 

Applications of Artificial Intelligence, vol. 138, 

p. 109291, Dec. 2024,

 doi: 

https://doi.org/10.1016/j.engappai.2024.109291. 

[15] I. Joy, J. Wu, and J. He, “GPT Attack for Adversarial 

Privacy Policies,” pp. 173–180, Aug. 2024, doi: 

https://doi.org/10.1109/bigcom65357.2024.00032. 

[16] H. Rashwan, E. M. Gabidulin, and B. Honary, 

“Security of the GPT cryptosystem and its applications to 

cryptography,” Security and Communication Networks, vol. 4,  

no.  8,  pp.  937–946,  Oct.  2010,  doi: 
https://doi.org/10.1002/sec.228 

http://www.ijsrem.com/

