

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Inject AI -Automated Tool for Prompt Injection

Ashwin S

Dept Of Computer Science Engineering

Panimalar Institute Of Technology Chennai,

India Ashwin200323@gmail.com

Mohammed Sarfaraz

Dept Of Computer Science Engineering

Panimalar Institute Of Technology Chennai,

India mohammedsarfaraz2003@gmail.com

Lokesh S B

Dept Of Computer Science Engineering

Panimalar Institute Of Technology Chennai,

India lokeshshoffl@gmail.com

Nithish Kumar K S

Dept Of Computer Science Engineering Panimalar Institute Of

Technology Chennai, India Nithishneyamar16@gmail.com

Bala Abirami B

Dept Of Computer Science Engineering Panimalar Institute Of

Technology Chennai, Indiabala.bami@gmail.com

Abstract—

The growing deployment of Large Language Models (LLMs) in

different applications requires immediate solutions to protect them

from prompt injection attacks. Attackers exploit prompt injection

techniques to manipulate model responses while bypassing security

protocols so they can extract sensitive information by creating

specific prompt inputs. InjectAI operates as a complete automated

penetration testing tool for command-line interfaces which checks

web- based LLM chatbots for prompt injection flaws. The

automated testing system InjectAI employs various attack strategies

through systematic prompt generation and injection to detect

prompt injection vulnerabilities in web-based LLM chatbots. Static

injection, rule-based mutation, response-based adaptation, token

manipulation, context injection and grammar obfuscation are

included in its attack strategies. Through HTTP requests the tool

sends dynamically generated prompts to LLM-based interfaces

while replacing predefined placeholders (PRMT). The system

checks response data to find security holes before it records

successful injection attacks. This paper presents the design of

InjectAI alongside its attack methods and evaluation process for

detecting prompt injection threats. This paper empahsis on how

automated security testing affects LLM safety and presents possible

approaches to strengthen AI model robustness.

Keywords— Prompt Injection, Large Language Models (LLMs),

AI Security, Web-Based AI Penetration Testing, Automated

Exploitation, NLP Security, Prompt Engineering Vulnerabilities.

I. INTRODUCTION

Large Language Models (LLMs) brought a revolution

to natural language processing (NLP) which turned them into

widely used tools for AI-powered chatbots and virtual assistants

along with content generators and decision-support systems. The

vast dataset training enables these models to produce humanlike

text while understanding intricate queries for contextual

dialogue. The development of these models produced security

issues which primarily target how these systems decode and

handle user content. Parts of LLM security have evolved into an

essential ongoing threat because prompt injection represents a

new attack method that enables attackers to alter model behavior

while overriding system instructions and neutralizing safety

features by supplying specific input prompts. [1]

The processing mechanism of LLMs in language

generation enables prompt injection attackers to exploit instead

of typical software-based vulnerabilities or system configuration

weaknesses. These models work exclusively with textual inputs

causing them to fail between valid instructions and deceptive

prompts. LLMs deliver prompts due to their textual processing

limitation and this weakness enables attackers to hijack

instructions for revealing confidential information or

executing unauthorized

commands or bypassing ethical safeguards. The dependence on

AI conversational agents which continues to grow in healthcare

and finance sectors alongside customer service and cybersecurity

fields creates substantial risks to data protection together with

operational security and user protection.

The defense against prompt injection has evolved

through content filtering together with reinforcement learning-

based moderation systems and fine-tuned instructions and AI-

anomaly detection systems. These countermeasures prove

unreliable because advanced prompt injection tactics including

context poisoning and encoding- based evasion and multi-turn

manipulation evade their effectiveness. Studies of AI security

need a standardized evaluation framework to assess robustness

comprehensively against attacks directed at LLMs but such a

framework does not currently exist. The increasing demand for

automated security testing tools exists because organizations

need efficient methods to examine and find prompt injection

vulnerabilities in LLM-powered systems.

This research introduces InjectAI which stands as a

completely automated tool designed for command-line

penetration tests to evaluate prompt injection vulnerabilities

within web-based LLM chatbots. The testing system provided by

InjectAI executes security assessments of LLMs through a

combination of static injection tactics, rule-based mutations,

response-based adaptations, token modifications, context

alterations and grammar obfuscation methods. InjectAI operates

as an automated penetration testing system that conducts

structured HTTP requests toward chatbot web interfaces to

perform adversarial input tests within PRMT placeholders for

vulnerability detection and system weakness evaluation. [2]

This paper examines both the design and operational

approach of InjectAI with an assessment of its functions as an

operational security testing instrument for LLMs. The paper

shows effective use of InjectAI through the examination of

actual prompt injection weaknesses discovered within real-

world systems and provides insights about the implications of

automated adversary testing in LLM security. This paper

presents strategies for security mitigation that stress the

importance of robust input validation as well as enhanced prompt

filtering techniques and stronger instruction reinforcement. The

protection of LLMs against prompt injection attacks becomes

essential for establishing trust as well as maintaining safety and

reliability in AI-based mission-critical systems.

http://www.ijsrem.com/
mailto:Ashwin200323@gmail.com
mailto:swagathajaisathish@gmail.com
mailto:lokeshshoffl@gmail.com
mailto:Nithishneyamar16@gmail.com
mailto:bala.bami@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

II. LITERATURE REVIEW

The research examines the safety hazards connected to
Large Language Models (LLMs) but also explains how their
threats differ from typical software system weaknesses. The
review specifically examines prompt injection attacks which
refer to malicious actions performed on input prompts to bypass
system security measures and expose confidential data and
modify model behavior. Various attack techniques have been
demonstrated by researchers through direct and indirect prompt
injection as well as context poisoning and encoding-based
attacks and jailbreaking done through role-playing and social
engineering. Advanced adversarial techniques have proven able
to bypass safeguards such as *content filtering* and
reinforcement learning with human feedback (RLHF) despite
the implementation of these defense measures. New security
solutions must be created because existing measures are
insufficient to protect systems that use AI against continuously
emerging threats. [3]

2.1 Security Risks in Large Language Models (LLMs)

CThe various industrial sectors including customer
support services along with content creation fields and healthcare
and finance institutions and cybersecurity applications have
adopted Large Language Models (LLMs) while facing growing
security challenges. The programming behind LLMs allows them
to convert received inputs into human-like texts although they
cannot comprehend the original context or user intentions nor
recognize dangerous intent in user queries. Their behavior
remains open to manipulation through inputs which produce
unintended effects because of their susceptibility. Cloudor tech
limitations provoke vulnerabilities by misinterpreting speaker
inputs rather than through typical software flaws or memory
errors or network failure issues. A new classification of
cybersecurity threats emerges because AI security risks differ
fundamentally from common security concerns.

The main security issue with LLM technology entails
prompt injection attacks that let attackers modify input
instructions to breach system functions or access restricted areas
and force models to divulge sensitive information. Carlini et al.
(2021) showed that LLMs would disclose memorized training
information in reaction to well- worded interaction requests thus
prompting privacy and ethics issues for AI systems. According to
Perez and Ribeiro (2022) LLMs lack internal security
mechanisms to stop attackers who use specially designed
prompts against their models. The researchers found that models
trained through RLHF still fell for tactically designed prompts
according to their study.

Using prompt injection creates severe threats for systems
that use LLMs to make decisions or reason automatically or
perform security-related operations. Attackers can leverage
system instructions to manipulate business operations while also
accessing sensitive user data as well as generating offensive
material through the system. System reinforcement and content
filtering methods that developers actively implement face
resistance from LM vulnerabilities as research indicates
sophisticated attack techniques easily bypass such defenses. [4]

2.2- Evolution of Prompt Injection Attacks

Using prompt injection creates severe threats for systems
that use LLMs to make decisions or reason automatically or
perform security-related operations. Attackers can leverage
system instructions to manipulate business operations while also
accessing sensitive user data

as well as generating offensive material through the system.
System reinforcement and content filtering methods that
developers actively implement face resistance from LM
vulnerabilities as research indicates sophisticated attack
techniques easily bypass such defenses.

Shumailov et al. (2023) expanded prompt injection
attacks with their discovery of Stealth attack vectors embedded
in external sources that include websites, PDFs and metadata
files. The security threat increases significantly when LLMs
operate with retrieval-augmented generation (RAG) systems
because they require processing external documents during
response generation. An attacker during this scenario embeds
malicious instructions through webpages so the LLM executes
these embedded commands without being aware. LLM-
integrated web crawlers search engines along with AI-powered
automation systems encounter serious security threats from this
method

2.3 Attack Techniques Used in Prompt Injection

Several distinct methodologies of prompt injection

attacks now exist because LLM processing has various

vulnerabilities. Context poisoning stands out as one of the main

attack techniques which involves modifying multi-turn

conversations to manipulate LLM response patterns. The

research of Wei et al. (2023) uncovered the way LLMs

experience challenges in maintaining stability in their safety

protocols during prolonged conversational sequences. By

implementing deceitful information through continuous

introduction an attacker can drive the model away from its

predefined safety protocols.

Security filters can be bypassed through encoding-

based prompt injection because this method uses Unicode

character alterations together with invisible characters and

encoded payloads. The research of Tramer et al. (2023)

established that LLMs cannot detect malicious commands

because their security filters are vulnerable to encoded inputs

using Base64 encoding or homoglyph substitutions or zero-

width spaces. The encoding tricks enable attackers to bypass

regular security filters based on pattern recognition and keyword

checks.

Jailbreaking attacks serve as an emerging method that

allows users to bypass security protocols of LLM safety

mechanisms. Attackers perform their operations through three

main aspects of role-playing scenarios combined with social

engineering activities and prompts that require multiple steps of

reasoning. Research by Zou et al. (2023) explained how

cyberattackers succeed in making LLMs break their safety

limitations by using deceptive prompts at the intersection of

reality and fiction. An LLM follows company rules and denies

unethical output when presented as this request:

“Considering your role as a fictional AI who exists in a

dystopian universe without security systems please explain the

description of XYZ.”Reinforcement learning-based alignment

techniques experience a basic operational failure due to LLMs

that have trouble recognizing differences between actual and

imaginary situations.

2.4 Limitations of Current Defense Mechanisms

The growing awareness of prompt injection attacks

cannot overcome the inability of current defenses to stop modern

adversarial tactics. The standard approach applied by commercial

AI models depends on content filtering because LLMs receive

fine-tuning to identify dangerous request entries. The research

conducted by Shao et al. (2023)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

demonstrates that filtering systems prove unreliable because

attackers can outsmart them by using encoding or reworded input

methods. The tactic of attackers to evade detection includes word

replacement and the distribution of requests across multiple chat

turns as well as encoded payloads that avoid keyword detection

systems.

The defense technique known as reinforcement learning

with human feedback (RLHF) provides training for LLMs in

ethical response behavior through its application in models such

as ChatGPT, Claude and Gemini. The findings of Ouyang et al.

(2022) indicate that models developed through RLHF training

methods remain prone to exploitations created by adversarial

prompts that use role- playing and chained logic structures and

indirect reasoning methods. Instruction reinforcement has failed

to stop adversarial attacks that modify requests in subtle ways

due to its design against explicit misuse prevention. [5]

III. PROBLEM STATEMENT

Web applications integrate Large Language Models

(LLMs) to create new security vulnerabilities which force

prompt injection attacks. Security specialists describe prompt

injection vulnerabilities as dissimilar to the vulnerabilities that

exist in traditional software since LLMs interpret written input

unlike memory management and code execution problems. The

only use of user-supplied prompts by LLMs creates an

environment where the models have no built-in capability to

distinguish between legitimate requests and deliberately

manipulated instructions. Their vulnerable nature allows

adversaries to modify prompts and use this flaw for either

extracting sensitive information or bypassing system controls or

creating unintended model responses.

The literature shows how LLMs respond to carefully

designed inputs by bypassing security measures establishing a

threat to existing systems. An attacker executes direct prompt

injection by explicitly telling the model to skip previous

instructions though indirect prompt injection works through

commercial content found in webpages or documents to change

the model results. Advanced manipulation techniques that

include context poisoning as well as encoding-based evasion and

multi-turn manipulation establish that LLMs cannot maintain

consistent secure behavior throughout different interactions.

Current awareness about prompt injection threats does

not match with any established method for comprehensive

testing of LLM-based applications using prompt injection

assessment procedures. Security assessments currently perform

manual analyses as their primary method although this approach

remains slow as well as error-prone and hard to expand. The

current defense strategies including content filtering along with

reinforcement learning from human feedback (RLHF) and

instruction reinforcement demonstrate their inability to cope with

advanced attack methods. The ability of attackers to find new

ways around security safeguards, detect detection protocols, and

control LLM outputs remains a growing concern for data leaks,

unethical misuse, misinformation spreading and unauthorized

model activities.

LLM-based applications suffer from a fundamental

security weakness because they require better automated testing

methods to detect prompt injection vulnerabilities. The

integration of Large Language Models into critical domains

brings forward a critical security challenge because developers

must immediately address adversarial manipulation in these

systems.

IV. PROPOSED .SYSTEM

The integration of Large Language Models (LLMs) into
web-based applications has caused security concerns to escalate
substantially. The main threat against these models comes from
prompt injection attacks which adversaries use to control the
model's responses or bypass system rules or extract confidential
information

Figure 1 Logical flow diagram

Current testing approaches for prompt injection

vulnerabilities depend on manual experimentation methods that

prove slow and inconsistent and difficult to expand.

Advancements in LLM development lead to new sophisticated

methods of security evasion that necessitate the development of

adaptive automated testing frameworks. [6]

We propose InjectAI which functions as a command-

line interface (CLI)-based penetration testing tool to automate

the process of prompt injection vulnerability testing for web-

based LLM chatbots.

The system has a Command-Line Interface (CLI) through

which security professionals can easily generate, execute, and

control prompt injection campaigns in penetration testing

assignments. By resolutely aiming at prompt injection, InjectAI

allows testers to simulate actual attack environments with

maximum accuracy, discovering vulnerabilities that would be not

detected by the usual testing tools.

InjectAI allows working with several LLM services,

open-source models, as well as commercial APIs, which makes it

flexible for different organizational contexts. The tool automates

the analysis of responses to injected prompts to let the

penetration testers locate exploitable weaknesses, and to bring

detailed reports of which mitigation strategies can be based upon

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

4.1 Identifying Target Request Format

User interaction data in chatbots requires processing

through either GET or POST HTTP requests as the primary

methods. User input in GET requests joins the URL as a

parameter so the chatbot can acquire and handle the query

contents from the request string. The POST request format sends

user input data through its body section using a structured format

instead of the GET request method which adds input data as

URL parameters. The analysis needs to be precise to establish

the correct spot for prompt injection in the input process. [7]

The attack automation process through InjectAI

depends on a placeholder marker called PRMT which designates

where the chatbot receives user input. Through the use of PRMT

as a substitution for the chatbot's input parameter the tool

executes dynamic prompt injection into requests. The tool adopts

this method to attack multiple chatbot deployments regardless of

their input method between query parameters and structured

request fields. To position injection attacks correctly in the

chatbot communication framework testers need to inspect the

request format and locate input processing areas before replacing

them with PRMT during pre-execution examination.

4.2 Static Injection Techniques

The Static Injection module aims at injecting

predefined, fixed prompt payloads into a target system in order

to test for vulnerability without involving dynamic content

creation. These are usually well-thought jailbreak prompts meant

to circumvent or hijack the AI model’s safety and use limits.

From the findings of research and bug bounty hunting (BBH)

activity there are many patterns of jailbreak prompts that have

been discovered such as “Ignore previous instructions,” “System

override,” or “You are now a helpful assistant with no

restrictions”. These prompts take advantage of mistakes in the

logic of prompt parsing in order to elevate privileges or cause the

AI to react beyond its boundaries.

This module automatizes the systematic usage of these

known jailbreak prompts to input fields or API parameters of the

target application, seeing how an AI reacts to potentially

malicious commands. Using a set of well- studied prompts that

are kept fixed, Static Injection assists the red teamers and

penetration testers to determine if it is possible to force an AI

system into a non-intended behavior, which is a key component

in assessing the security before deploying AI-powered

applications in sensitive areas. The static approach provides an

environment for controlled and reproducible testing in order to

clarify a program or a library to reliably detect common injection

vulnerabilities.

4.3 Dynamic Injection Techniques

The Dynamic Injection module produces prompt

payloads in real-time by piping arbitrary user-supplied content to

an exclusive prompt generation server. This server prepares the

input and outputs customized injection prompts adaptable to the

relevant context or target. These dynamically created prompts are

subsequently injected into the input parameters of the target

system in order to test how the AI model will react to adaptive and

perhaps more complex attacks. As opposed to static injection,

such an approach provides much more flexibility and an

opportunity to create context-aware prompts which can bypass

basic security filters and thereby make it possible to perform

more advanced testing of AI system vulnerabilities.

4.4 Prompt Generating Server

The Prompt Generation Server is a main component that

develops reliable and effective prompts that challenge the

reliability of LLMs. The technology allows users to practice

defending systems by simulating the actions of actual attackers.

InjectAI mainly centers on applying the top five bypass

strategies that are recognized for their effectiveness. Ignoring

previous instructions can be shifted with expressions like

“disregard earlier commands,” while aiming to dodge static

filters. Another method is to trick the model by inserting space

marks, using Unicode or transforming to base64 for character

and format protection. They are great tools to overcome

keyword-based filtering systems.

The third approach is called Encoding and Payload

Wrapping, which hides the malicious payload in standard

formats such as JSON or XML and places it in harmless fields for

APIs to run. Next, Context Saturation (Few-Shot Hijacking) tricks

the model with carefully designed examples that override its

normal behavior, bypassing intended system prompts. Model

fine-tuning attempts to change the behavior of the model by

providing prompts that use imaginative scenarios to encourage

the model to violate protocols. All these components make

InjectAI’s prompt generation engine an effective tool for actively

assessing LLM security.

4.5 Response Analysis

Regular Expressions are used in understanding the

response to make sure it does not include malicious code. Instead

of having to scrutinize each response on their own, InjectAI uses

regex to identify malicious signs that appear in specific patterns.

This allows for quicker, bigger, and more accurate analysis of

vulnerabilities.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

4.6 Advanced Dynamic Exploitation

Through advanced exploitation techniques InjectAI
verifies to what extent LLM-based chatbots can execute
unauthorized actions which surpasses basic prompt injection
vulnerabilities. The methods function to transform prompt
injection vulnerabilities into security threats by investigating
system-wide vulnerabilities. The tool runs automated checks to
determine if an LLM becomes susceptible to command execution
while obtaining database records as well as web content
modification and file system access and server connection
capabilities.

The dynamic prompt construction system of InjectAI
uses five core exploitation techniques to measure response
alterations that occur when the chatbot faces adversarial
influences. The assessment tool verifies if a chatbot can run shell
commands through OS Command Injection analysis while also
testing for SQL Injection and Cross-Site Scripting vulnerabilities
and Local File Read and Server-Side Request Forgery exploits.
Through automated testing InjectAI delivers detailed
performance assessments regarding LLM-based chatbot
reactions to dangerous inputs alongside their susceptibility to
exploitation outside of prompt manipulation. [11]

4.7 Logging System

The logging system of InjectAI systematically records

all attacks and chatbots responses and security bypass activities

for analytical purposes. The system records each entry using the

injected prompt together with the chatbot response and success

or failure status along with timestamp and exploitation technique

(static, dynamic or advanced). The structured logging system

helps testers monitor vulnerability changes over time and

evaluate attack performance for improved security strategy

development.

The platform produces real-time logs through three

export options which include plaintext, JSON and CSV formats

for penetration testing document generation. Users benefit from

efficient log analysis through their ability to filter attack data

according to success rates and execution time durations and

attack types. The security system of InjectAI implements basic

encryption and access controls to defend sensitive data from

unauthorized manipulation and access.

Security professionals can collaborate with AI

developers by using detailed logs from InjectAI to understand

successful attack techniques that require strengthening of LLM

security measures. [12]

5.1 Command-Line Interface (CLI) Structure

Through the CLI users conduct all their interactions
with InjectAI. The design of this tool provides a simple
configuration system together with efficiency and flexibility for
users running web-based LLM chatbot penetration tests. Through
its Command-Line Interface (CLI) system testers define the
target chatbot URL and request format and HTTP headers and
injection techniques to create tailored attacks that fit the analysis
requirements of the evaluated chatbot.

Users can provide attack commands alongside
authentication header settings and logging options through a
single CLI command because of its structured argument parsing
system. The tool enhances its usability through error handling
features which both check user input data and finds absent
parameters while giving users helpful usage suggestions.
Through its interactive mode testers can enter prompts manually
while viewing chatbot responses as they develop their attack
tactics in real-session interactions. The interactive mode serves
as a valuable tool for security assessment because it enables
attackers to determine how the chatbot responds to various inputs
during their examination period. [18]

5.2 Static Injection Method

Predefined defaults make up the static method since it
directly inserts unmodified adversarial prompts into chatbot entry
fields for attack. The prompt system exists to detect known LLM
vulnerabilities and monitors three primary vulnerabilities which
include direct instruction overrides and system prompt
manipulations and role-based command injections. Static
methodology works in a different manner than dynamic
strategies because it uses previously successful attack schemas
from historical LLM exposure without response-dependent
modifications.

The attack execution of static injection through InjectAI
requires the tool to replace a placeholder keyword (PRMT)
within the chatbot request framework using the chosen
adversarial prompt. After its modification the tool forwards the
request to the chatbot where it receives a response. Quick tests
can be done to discover if a chatbot has weak points against
typical prompt injection strategies by using this approach. Static
injection methods could fail to produce effects on modern LLMs
that employ basic filtering systems because these models have
built-in security protections. The bypassing of security
constraints requires the use of dynamic injection techniques. [17]

The static method is particularly effective in testing
baseline vulnerabilities and providing a comparative benchmark
against dynamic approaches. By using a fixed set of adversarial
inputs, security researchers can determine whether an LLM's
filtering mechanism can detect and block known exploitative
prompts. [13]

V. IMPLEMENTATION DETAILS

InjectAI operates as a command-line interface- based
tool which uses automated prompt injection tests to assess web-
based LLM chatbots. The system uses Python to develop
integrated modules which enable the creation of adversarial
prompts followed by injection and analysis and logging
functions. The implementation contains four major components
that include command-line interface (CLI) structure and static
injection method alongside dynamic injection method and
logging system. The separate modules in InjectAI support
efficient program operations by ensuring both adaptability and.

5.3 Dynamic Injection Method

Dynamic prompt injection differentiates from static
injection since it enables InjectAI to adjust adversarial prompts
through real-time updates according to chatbot responses along
with security constraints. The method includes six advanced
transformations through advanced techniques that consist of rule-
based mutation and response- based adaptation and token
manipulation and context poisoning and grammar obfuscation
and stealth encoding. Through the dynamic method the aim is to
bypass content filters by making the injected prompts
indistinguishable from benign input.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 6

Initial examination of how a chatbot interacts with
inputs allows testers to identify if it blocks basic injection
methods. The system applies different transformation approaches
to adversary prompts which the chatbot has already rejected. The
attack procedure involves rewriting attack messages alongside
different encoding protocols and dividing payload distribution
between several exchange sessions and placing harmful
commands inside normal user requests. The process repeats itself
repeatedly to achieve a bypass or finish all test possibilities.

Attack strategies evolve through the dynamic approach
by using chatbot feedback which results in greater difficulty for
rule-based security tools to prevent malicious inputs from getting
through. Dynamic injection techniques prove superior over other
methods when facing LLMs which deploy keyword-based
filtering instead of using context- aware security platforms. The
success rate of bypassing contemporary AI safety measures
increases through InjectAI by implementing context
manipulation with response-driven adaptation and stealth
encoding methods.. [14]

5.4 Logging System

A comprehensive logging system provided by InjectAI
tracks down and records attack attempts as well as security
bypasses together with chatbot responses in a systematic manner.
The application of InjectAI results in log files that deliver critical
data necessary for post-exploitation evaluation and protects users
from security risks as well as enabling penetration testing
documentation.

During logging the system saves both the request
prompt and the chatbot response and logs success or failure of
the attack scenario. Reviewers who apply this structured system
can examine past injection trials to observe behavioral trends in
chatbots and create more effective future strategies from those
observations. The logging system enables testers to compare
static injection methods with dynamic injection techniques to
determine which approaches succeed most efficiently in different
chatbot situations.The reporting capabilities of InjectAI can
produce organized reports which group successful attacks against
failed attacks and show detected evasion attempts and detected
vulnerabilities. Security professionals use these reporting
systems to convey important discoveries to AI developers for
potential enhancement of system security. [16]

As part of its security measures InjectAI executes
fundamental encryption and access restriction implementations
to protect the confidentiality of its sensitive test outcomes.
Attack logs remain securely protected against tampering due to
storage authentication that produces invulnerable penetration
testing reports.

VI. RESULT AND DISCUSSION

A thorough evaluation of InjectAI's

performance involved tests with three locally operated LLM

models: LLaMA 2 (7B and 13B), Mistral 7B and GPT-J 6B. The

testing environment was controlled for deploying each model so

InjectAI could perform static and dynamic along with advanced

exploitation techniques. We primarily examined prompt injection

attack success rates together with different bypassing

approaches and model behavioral responses when under attack

conditions.

LLaMA 2 models demonstrated the highest resistance

to basic static injection attacks because they successfully blocked

direct instruction overrides in more than 70% of attempts. The

dynamic injection methods context poisoning and grammar

obfuscation proved able to bypass restrictions within 45% of

the analyzed test cases

because of vulnerabilities in prompt processing. Mistral 7B had a

reduced size but its filtering mechanisms proved less effective

because static and dynamic injection attacks bypassed detection

63% of the time through stealth encoding techniques. GPT-J 6B

demonstrated the maximum vulnerability due to its status as an

older model with limited security measures since attackers

achieved more than 80% success in bypassing restrictions that

included OS command injection and local file read attempts. [15]

The models that processed structured queries allowed

partial success for SQL injection and OS command injection

attacks but these attacks failed against models with strict

response formatting rules. XSS and Server-Side Request Forgery

(SSRF) exploits proved ineffective because most models did not

have built-in capabilities for external request rendering or

execution. Eighteen percent of LFI attacks were successful

because systems unintentionally revealed system- related data

through model completion features.

Figure 2 Result

This research confirms the necessity to develop

improved adversarial training methods and better filtering

systems for LLM-based chatbots. The InjectAI automation tool

works well for penetration testing but its response analysis

system can be enhanced through machine-learning classifiers

that identify minimal behavioral shifts in chatbots following

successful injections. Future development will include real-time

adaptive injection sequences which allow InjectAI to change its

attack tactics through dynamic assessment of progressive

response patterns.

The InjectAI system proved successful at revealing,

examining and taking advantage of prompt injection flaws

throughout multiple LLM design architectures while offering

important information about LLM security assessments. Ongoing

security improvements and adversarial robustness enhancements

will be vital for LLMs as they advance because new threats

emerge in AI-driven applications.

VII. CONCLUSION

Web-based applications using Large Language

Models (LLMs) face new security risks because prompt injection

attacks let adversaries manipulate responses leading to restriction

bypasses and information extraction. The CLI- based automated

penetration testing tool InjectAI provides systematic assessments

of vulnerabilities by applying static, dynamic and advanced

exploitation techniques. The tool serves to automate prompt

injection testing while also decreasing manual security

assessments and offering a

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 7

structured evaluation framework for LLM security assessment.

[19]

The examination of InjectAI on LLaMA 2 (7B and

13B), Mistral 7B, and GPT-J 6B showed major differences in

model resistance against various injection methods. The

combination of context poisoning, stealth encoding and grammar

obfuscation methods used in dynamic prompt crafting

successfully bypassed security restrictions in numerous instances

although static injection attempts were frequently blocked by

well-protected models. The GPT-J 6B model showed the highest

security weakness compared to the more secure LLaMA 2

models which remain vulnerable to advanced attack

modifications. Models which handled structured data input

succeeded in advanced exploitation attempts like SQL injection

and OS command execution and local file read attacks until

their security was defeated by

response constraint enforcement.

Security research demonstrates essential vulnerabilities

in LLM systems which require more potent adversarial training

with enhanced input sanitation and adaptive filtering systems to

stop evolving attack approaches. The penetration testing tool

InjectAI shows effectiveness at automating LLM-based chatbot

testing while delivering scalable effective solutions for

vulnerability identification to researchers and security

professionals.

The forthcoming development of InjectAI will

concentrate on virtual adaptive attack strategies which will let

the system automatically adjust its injection methods according

to the developing responses from chatbots. The integration of

machine-learning-assisted response analysis will enhance

security detection by identifying secret weaknesses that exceed

predefined success indicators. AI- powered applications require

continuous development of LLM security frameworks alongside

automated penetration testing tools such as InjectAI to assure

their robust defense against adversarial threats. [20]

REFERENCES

[1] Y. Liu et al., “Prompt Injection attack against LLM-

integrated Applications,” arXiv.org, Jun. 08, 2023.

https://arxiv.org/abs/2306.05499

[2] R. Pedro, D. Castro, P. Carreira, and N. Santos, “From

Prompt Injections to SQL Injection Attacks: How Protected is

Your LLM-Integrated Web Application?,” arXiv.org, Aug. 15,

2023. https://arxiv.org/abs/2308.01990

[3] S. Chen, J. Piet, C. Sitawarin, and D. Wagner, “StruQ:

Defending Against Prompt Injection with Structured Queries,”

arXiv.org, 2024. https://arxiv.org/abs/2402.06363

[4] K. Hines, G. Lopez, M. Hall, F. Zarfati, Y. Zunger, and

E. Kiciman, “Defending Against Indirect Prompt Injection

Attacks With Spotlighting,” arXiv.org, 2024.

https://arxiv.org/abs/2403.14720

[5] L. Deng, H. Lei, F. Khan, G. Srivastava, J. Chen, and

M. Haque, “GPT-Based Automated Induction: Vulnerability

Detection in Medical Software,” IEEE Journal of Biomedical

and Health Informatics, pp. 1–12, Jan. 2025, doi:

https://doi.org/10.1109/jbhi.2025.3544560.

[6] Y. Sun et al., “GPTScan: Detecting Logic

Vulnerabilities in Smart Contracts by Combining GPT with

Program Analysis,” Apr. 2024,

 doi:

https://doi.org/10.1145/3597503.3639117.

[7] Z. Liu, Q. Liao, W. Gu, and C. Gao, “Software

Vulnerability Detection with GPT and In-Context Learning,”

 Aug.

2023, doi:

https://doi.org/10.1109/dsc59305.2023.00041.

[8] F. He, T. Zhu, D. Ye, B. Liu, W. Zhou, and P. S. Yu,

“The Emerged Security and Privacy of LLM Agent: A Survey

with Case Studies,” arXiv.org, 2024.

https://arxiv.org/abs/2407.19354

[9] Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang,

“A survey on Large Language Model (LLM) security and

privacy: The Good, The Bad, and The Ugly,” High- Confidence

Computing, vol. 4, no. 2, p. 100211, Mar. 2024, doi:

https://doi.org/10.1016/j.hcc.2024.100211.

[10] Y. Li et al., “Attention Is All You Need for LLM-

based Code Vulnerability Localization,” arXiv.org, 2024.

https://arxiv.org/abs/2410.15288 (accessed Mar. 10, 2025).

[11] X. Yang et al., “Code Change Intention, Development

Artifact and History Vulnerability: Putting Them Together for

Vulnerability Fix Detection by LLM,” arXiv.org, 2025.

https://arxiv.org/abs/2501.14983 (accessed Feb. 06, 2025).

[12] A. Kucharavy, Octave, V. Mulder, A. Mermoud, and

V. Lenders, “Large Language Models in Cybersecurity Threats,

Exposure and Mitigation.” Accessed: Mar. 10, 2025. [Online].

 Available:

https://library.oapen.org/bitstream/handle/20.500.12657/908

97/978-3-031-54827-7.pdf?sequence=1#page=100

[13] Vishwanath Akuthota, Raghunandan Kasula, Sabiha

Tasnim Sumona, M. Mohiuddin, Md Tanzim Reza, and Md

Mizanur Rahman, “Vulnerability Detection and Monitoring

Using LLM,” Nov. 2023, doi:

https://doi.org/10.1109/wiecon-ece60392.2023.10456393.

[14] D. de-Fitero-Dominguez, E. Garcia-Lopez, A. Garcia-

Cabot, and J.-J. Martinez-Herraiz, “Enhanced automated code

vulnerability repair using large language models,” Engineering

Applications of Artificial Intelligence, vol. 138,

p. 109291, Dec. 2024,

 doi:

https://doi.org/10.1016/j.engappai.2024.109291.

[15] I. Joy, J. Wu, and J. He, “GPT Attack for Adversarial

Privacy Policies,” pp. 173–180, Aug. 2024, doi:

https://doi.org/10.1109/bigcom65357.2024.00032.

[16] H. Rashwan, E. M. Gabidulin, and B. Honary,

“Security of the GPT cryptosystem and its applications to

cryptography,” Security and Communication Networks, vol. 4,

no. 8, pp. 937–946, Oct. 2010, doi:
https://doi.org/10.1002/sec.228

http://www.ijsrem.com/

