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Abstract— Inert unique finger impression improvement is a 
fundamental pre-handling step for idle finger impression 
distinguishing proof. Most inactive finger impression 
improvement strategies attempt to reestablish ruined dim 
edges/valleys. In this paper, we propose another strategy that for-
mulates dormant unique mark upgrade as an obliged finger 
impression age issue inside a generative ill-disposed network 
(GAN) structure. We name the proposed network FingerGAN. It 
can implement its created unique finger impression (i.e, 
improved idle balance gerprint) unclear from the relating 
ground truth case as far as the finger impression skeleton map 
weighted by particulars areas and the direction field regularized 
by the FOMFE model. Since details is the essential component 
for unique mark acknowledgment and particulars can be 
recovered straightforwardly from the finger impression skeleton 
map, we offer an all encompassing structure that can perform 
dormant finger impression upgrade with regards to 
straightforwardly streamlining particulars data. This will assist 
with further developing inactive finger impression ID execution 
essentially. Trial results on two public inactive finger impression 
data sets show that our technique beats the condition of artistic 
expressions altogether. 

Index Terms—Constrained fingerprint generation, deep 
convolutional generative adversarial network, latent fingerprint 
enhancement. 

 

I 

INTRODUCTION 

INGERPRINTS have been widely used for human verifi- cation 

and identification in many civil or criminal applica- tions [1], [2]. 

Different from plain and rolled fingerprints that are acquired 

professionally, latent fingerprints refer to finger skin impressions 

unintentionally left at a crime scene and are generally used as 

important evidence to identify criminals by law enforcement and 

forensic agencies. Compared with plain and rolled fingerprints, 

latent fingerprints are usually smudgy and blurred, with incomplete 

regions, unclear ridge structures, 
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and complex background noise. Due to these factors, the iden- 

tification accuracy of latent fingerprints, which heavily relies on 

fingerprint quality, is much lower than that of plain and rolled 

fingerprints. Therefore, latent fingerprint enhancement, which aims 

to improve latent fingerprint quality, becomes one of the most 

necessary and important preprocessing steps for latent fingerprint 

identification. 

Over the past few decades, many efforts have been made toward 

latent fingerprint enhancement [3], [4], [5], [6], [7]. In the early days, 

classical image processing techniques such as contextual filtering and 

directional filtering were introduced to enhance fingerprints. For 

example, Cappelli et al. [8] proposed tuning a Gabor filter to the local 

orientations and frequencies of fingerprints to suppress noise and 

improve the clarity of ridge structure. Chikkerur et al. [9] proposed 

performing con- textual filtering in the Fourier domain to enhance 

fingerprints. However, these methods are mainly effective for bad-

quality plain or rolled fingerprints, and tend to fail in latent 

fingerprint enhancement due to: 1) the corrupted ridge structures 

caused by structural noise in latent fingerprints; and 2) the unreliable 

orientation and frequency estimation caused by the low clarity of 

ridge structures of latent fingerprints. Therefore, varieties of 

smoothing and global modeling techniques were proposed to address 

the above problems and devoted to reliable orientation estimation to 

improve the latent fingerprint enhancement [10], [11], [12], [13]. For 

example, Yoon et al. [11] proposed using a polynomial model 

together with Gabor filters to estimate the fingerprint orientations to 

improve the latent enhancement. Feng et al. [12] proposed using an 

orientation patch dictionary to estimate orientations and then 

applying Gabor filtering to the orientations to achieve latent 

fingerprint enhancement. Yang et al. [13] proposed to further 

improve the above method by replacing its orientation dictionary 

with a set of localized ori- entation dictionaries. However, tuning of 

Gabor filters requires a fixed ridge frequency. This is problematic 

because the ridge frequency of fingerprints is not constant. 

Later, to further improve the enhancement of latent finger- 

prints, various total variation (TV) image models, which mini- mize 

the total variation of an image and decompose the image into two 

components of texture and cartoon, were adopted to take advantage 

of ridge structures [14], [15], [16], [17]. For example, Zhang et al. 

firstly proposed an adaptive TV model 

[14] to remove the structural noise of latent fingerprints and then 

proposed an adaptive directional TV model [15] for la- tent 

fingerprint enhancement. These methods can restrain the 
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structural noise in the decomposed texture components of la- tent 

fingerprints by integrating local orientations and scales of 

fingerprints. However, estimating the local parameters of these 

models for poor-quality latent fingerprints is difficult and thus the 

extracted ridge structures by these models are usually weak. 

Therefore, in later research, TV decomposi- tion is generally used as 

a preprocessing for latent fingerprint enhancement [16], [17]. 

After that, with the success of deep learning, deep neural networks 

were proposed for latent fingerprint enhancement [18], [19], [20]. For 

example, Svoboda et al. [21] proposed using a convolutional 

autoencoder to reconstruct latent fingerprints. Li et al. [22] proposed a 

deep convolutional network consisting of one convolution and two 

deconvolution parts for latent finger- print enhancement. Qian et al. 

[23] proposed a latent fingerprint enhancement method based on 

DenseUnet. Horapong et al. [24] used a sparse autoencoder to boost 

the ridge/valley spectrum to enhance latent fingerprints. Liu et al. 

[25] proposed using deep nested UNets for latent fingerprint 

enhancement. These methods take advantage of the strong 

representation ability of deep neural networks and achieve 

remarkable results, but the corrupted ridge/valley structures of latent 

fingerprints are not well restored in most cases. 

Recently, generative adversarial networks (GANs) have been used 

for latent fingerprint enhancement to enhance the restora- tion of 

ridge/valley structures. For example, Dabouei et al. 

[26] proposed a conditional GAN for partial latent fingerprint 

enhancement, which achieves an enhancement of rejecting seri- ously 

corrupted fingerprint regions while improving ridge struc- ture clarity 

in relatively good-quality regions. Joshi et al. [27] proposed a GAN-

based algorithm to amplify the ridge/valley structure of latent 

fingerprint for enhancement. Huang et al. 

[28] proposed using a progressive PatchGAN to achieve la- tent 

fingerprint enhancement. The enhancement ability of these methods 

mainly comes from the powerful feature representation and 

reconstruction ability of GANs. 

In this paper, we propose a new method that formulates latent 

fingerprint enhancement as a constrained fingerprint generation 

problem within a GAN framework. The proposed network is named 

FingerGAN. It can enforce its generated fingerprint (i.e, enhanced 

latent fingerprint) indistinguishable from the cor- responding ground 

truth instance in terms of the fingerprint skeleton map weighted by 

minutia locations and the orientation field regularized by the FOMFE 

model. Because minutia is the primary feature for recognition and 

minutia can be retrieved directly from the fingerprint skeleton map 

[29], we offer a holistic framework that can perform latent fingerprint 

enhance- ment in the context of directly optimizing minutia 

information. This will help improve latent fingerprint identification 

perfor- mance significantly. Experimental results on two public latent 

fingerprint databases demonstrate that our method significantly 

outperforms the state of the arts. 

The main contributions of this paper are summarized as 

follows. 

1) Unlike most latent fingerprint enhancement methods that try to 

restore corrupted gray ridges/valleys, we propose a 

new method that formulates latent fingerprint enhance- ment 

as a constrained fingerprint generation problem within a GAN 

framework. 

2) We propose a FingerGAN which can generate en- hanced 

latent fingerprints conditioned on a fingerprint- to-fingerprint 

translation and can enforce its generated enhanced latent 

fingerprints indistinguishable from the ground truth instances in 

terms of fingerprint skeleton map and orientation field. 

3) The fingerprint skeleton map is proposed as a ground truth 

because minutia is the primary feature for recognition and 

minutia can be retrieved directly from the fingerprint skeleton 

map. Also, a Gaussian-based minutia weight map is proposed to 

apply to the reconstruction loss, which can accommodate a 

moderate loss of the accuracy of minutia locations. 

4) The orientation field is proposed as a ground truth in a way of 

bringing in correspondence between the generated en- hanced 

latent fingerprint and the ground truth orientation field. Also, 

the FOMFE model is adopted to regularize the orientation field 

so that the effects of spurious pixels and noise can be rectified. 

5) A synthetic latent fingerprint generation method is pro- posed, 

which can address the issue of lacking high-volume latent 

fingerprints and their true mates required for deep learning. 

The rest of this paper is organized as follows. Section II 

provides background information on related techniques. 

Section III describes the proposed method in detail. Section IV 

presents and discusses the experimental results. Finally, the 

paper is concluded in Section V. 

 

II 

BACKGROUND 

Since the proposed method involves GAN, U-Net, and the FOMFE 

fingerprint orientation model, relevant background knowledge is 

provided as follows. 

 

A. Generative Adversarial Network 

GAN is one of the most popular groups of generative net- works, 
which learns to map an embedding space to a data distribution of 
interest, and has achieved great success in various image generation and 
processing tasks [26], [30], [31]. The underlying strategy of a GAN is 

emulating a competition, with a generative network, called generator 

G, which takes a random vector z sampled from a noise distribution Z 

as input and tries to generate samples as ‘real’ as possible, and a 

discriminative network, called discriminator D, which performs 

binary clas- sification to distinguish samples generated by G from the 

real samples and acts as an adversary. The goal of G is to maximize 

the misclassification error of D while the goal of D is to beat G by 

learning to identify the generated samples. Through such a zero-sum 

game, the GANs have the ability to learn any kind of data 

distribution in an unsupervised manner. The networks of G and D are 

trained iteratively with two steps: 1) fixing the parameters of G and 

optimizing D; and 2) fixing the parameters 
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of D and optimizing G by using a loss function formulated as [32]: 

min max L(G, D) = Ex∈X [log(D(x))] 
G D 

propose a FingerGAN by embedding a U-shaped network in a GAN 

such that the U-shaped network acts as the generator of the GAN, as 

illustrated in Fig. 1. 

The U-shaped network is responsible for generating enhanced 

+ Ez∈Z [log(1 − D(G(z)))] , (1) 

where x is the real sample from the data distribution X . D(x) 

represents the binary classification score given input x. During the 

training, half of the samples are real and the rest G(z) are samples 

generated by G given z. 

Although the superiority of GAN in unsupervised represen- tation 

learning, it can not be directly used for latent fingerprint enhancement 

due to its high probability of generating unrelated fingerprints. A GAN 

conditioned on the given information or constrained by prior 

knowledge can address this issue [31], [33], which inspires us to 

propose the FingerGAN. It is elaborately designed by customizing a 

GAN to fit the latent fingerprint enhancement task. 

 

B. U-Net and Its Variations 

U-Net [35] is a fully convolutional neural network (CNN) that was 

originally invented for biomedical image segmentation. It has a U-

shaped encoder-decoder network architecture consisting of two main 

parts: a contracting path (encoder network) and an expansive path 

(decoder network). The encoder and decoder networks have four 

encoder blocks and four decoder blocks, re- spectively, and are 

connected via skip connections. The encoder network is responsible for 

feature extraction, which compresses the resolution of the input 

image and extracts target sensitive information. The decoder network 

is responsible for mixing the extracted features with the outputs of 

horizontally correspond- ing encoder blocks to generate a semantic 

segmentation mask. U-Net has been proven to be a powerful tool to 

learn efficient data presentation and semantically meaningful 

information. In fact, after this, the U-shaped network has been 

widely used in various tasks including image-to-image translation 

[31], [36]. Inspired by this, we propose embedding a U-shaped 

network in a GAN for latent fingerprint enhancement. It can 

leverage both the advantages of the U-shaped network and the 

advantages of GAN by jointly training the U-shaped network 

with an adversarial loss, as in [37]. 

 

C. FOMFE Model 

FOMFE model describes the global topology of fingerprint ridges 

and is for modeling fingerprint orientations [38]. It is a regularized 

orientation field that is more reliable against noise and works well for 

low-quality fingerprints. Therefore, in this pa- per, we introduce it as 

prior knowledge to guide the constrained fingerprint generation. 

 

III PROPOSED METHOD 

A. Problem Formulation 

We propose to formulate the latent fingerprint enhancement as a 

constrained fingerprint generation problem conditioned on a 

fingerprint-to-fingerprint translation. For this purpose, we 

latent fingerprints given input latent fingerprints. Because minu- tia is 

the primary feature for recognition and minutia can be retrieved 

directly from the fingerprint skeleton map, we propose using the 

minutia location weighted fingerprint skeleton map as a ground truth 

to force the U-shaped network to perform latent fingerprint 

enhancement in the context of directly opti- mizing minutia 

information. The discriminator is used to force the U-shaped network 

to generate enhanced latent fingerprints indistinguishable from the 

ground truth instances in terms of both the fingerprint skeleton map 

and the FOMFE-based ori- entation field. For this purpose, its input 

is a concatenation1 of the fingerprint skeleton map and the FOMFE-

based orientation field. Specifically, the U-shaped network generated 

enhanced latent fingerprint and the ground truth orientation field are 

con- catenated to form a type of input. The ground truth skeleton map 

and the ground truth orientation field are concatenated to form 

another type of input. The discriminator tries to distinguish these two 

types of inputs to beat the U-shaped network. This design of 

concatenation brings in correspondence between the generated 

enhanced fingerprint and the ground truth orientation field. Therefore, 

the generation of the U-shaped network is constrained by prior 

knowledge of FOMFE-based orientation field and can address the 

problem of generating unrelated fin- gerprints. Details of the 

proposed FingerGAN are provided in the following Section III.B. 

 

B. Details of the Proposed FingerGAN 

Fig. 2 illustrates the details of the proposed FingerGAN. 

U-Shaped Network: The U-shaped network consists of an encoder 

with five composite convolutional blocks (C1-C5) and a decoder 

with five deconvolutional blocks (DC1-DC5), where skip connection 

[39] is adopted for the first four com- posite deconvolutional blocks. 

This is proposed to keep the high-frequency details of the inputs 

and increase the quality of the reconstruction from the decoder. Each 

of the first four composite convolutional blocks consists of two 

convolutional layers, and each convolutional layer is followed by a 

batch- normalization layer and a leaky rectified linear unit (ReLU) 

[40]. The last composite convolutional block consists of one 

convolutional layer, which is followed by a batch-normalization layer 

and a leaky ReLU layer. Each of the first four composite 

deconvolutional blocks consists of two up-convolutional lay- ers, and 

each up-convolutional layer is followed by a batch- normalization 

layer and a leaky ReLU layer. The last com- posite deconvolutional 

block consists of an up-convolutional layer, a batch-normalization 

layer, and a sigmoid layer. Ac- cording to the study in [41], 

successive convolutions by a set of small kernels are equal to one 

convolution by a larger kernel. It can effectively enhance a 

network’s discriminative 
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Fig. 1. The framework of the proposed FingerGAN. Texture components from the TV decomposition [34] are used as the latent fingerprints input to 
the U-shaped network because they are generally used as the representation of the latent fingerprints to be enhanced in current research [14], [15], 
[16], [17]. 

 

 

 

Fig. 2.  Illustration of details of the proposed FingerGAN. 

 

power and reduce the number of parameters required to be learned. 

In this paper, we use a set of small kernels and their details are 

reported in Table I. Also, we double or halve the kernel numbers 

when the size of feature maps halving or doubling. 

The input of the U-shaped network is a latent fingerprint to be 

enhanced, and the output is the generated enhanced latent fingerprint. 

In the training stage, the input latent fingerprints are synthesized using 

rolled fingerprints by our proposed method described in the 

following Section III.C. The ground truths used to optimize the 

generation of the U-shaped network are the fingerprint skeleton maps 

of the rolled fingerprints. This way, by calculating a reconstruction 

loss between the generated enhanced latent fingerprint and the ground 

truth, the U-shaped network can learn to denoise the input latent 

fingerprint and reconstruct its fingerprint skeleton. 

1) Discriminator: The architecture of the discriminator is a classical 

CNN. It has seven composite blocks, and each of the first six blocks 

consists of a convolutional layer followed by a batch-normalization 

layer and a leaky ReLU layer. The last 

block consists of a convolutional layer, a batch-normalization layer, 

and a sigmoid layer. Similar to the parameter choice of the U-shaped 

network, we use small kernels for the discriminator. Details of the 

kernels are in Table I. 

The discriminator takes a two-channel map as input and outputs a 

binary classification score. Specifically, the U-shaped network 

generated enhanced latent fingerprints and the ground truth skeleton 

map are respectively concatenated with the ground truth orientation 

field to form two types of two- channel inputs to the discriminator. 

The discriminator tries to distinguish them and thus can force the U-

shaped net- work generated enhanced latent fingerprint 

indistinguishable from the ground truth in terms of the fingerprint 

skeleton map and the FOMFE-based orientation field. This way, it 

en- ables the U-shaped network to have an ability of deep seman- tic 

understanding, and thus to learn to restore the corrupted ridge 

structure of the latent fingerprint in addition to the denoising. 

1) Gaussian-Based Minutia Weight Map: To force the U- shaped 

network to optimize minutia information, we propose a 

http://www.ijsrem.com/
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TABLE I 
DETAILS OF THE ARCHITECTURE OF 

THE FINGERGAN 

 

 

 

 
 

Fig. 3. Illustration of the proposed Gaussian-based minutia weight 

map. (a) a fingerprint skeleton map; (b) the minutia map M of (a); 
and (c) the Gaussian- based minutia weight map of (a). 

which is used to further force the U-shaped network to gen- erate 

enhanced latent fingerprints in the context of optimizing minutiae 

information. 

Denote the training latent fingerprint as l and its domain as L, the 

U-shaped network as G, the generated enhanced latent fingerprint as 

G(l), the ground truth skeleton map as g and its domain as G, the 

ground truth FOMFE-based orientation field as gF and its domain as 

GF [38], and the discriminator as D. According to the loss function 

in (1), the adversarial loss La is 

formulated as: 

min max La(G, D) = Eg∈G,gF ∈GF [log(D(g, gF ))] 
G D 

Gaussian-based minutia weight map w which is defined as: 
+ El∈L,gF ∈GF  [log (1 − D(G(l), gF ))] .

 
 

w(x, y) = 

 
with 

Σr 

w∗(x, y), if w∗(x, y) /= 0, 
w0, otherwise, 

 
Σr wg(u, v) · M (x + u, y + v) 

 
(2) 

 
We use the L1 loss as the reconstruction loss L r, and thus it is 
formulated as: 

Lr(G) = El∈L [||w ⊙ (g − G(l))||1] , (7) 
where ⊙ denotes the element-wise multiplication. Overall, the 

w∗ (x, y) = 
u=
−r 

v=−r 
r r =− =− 

 
wg(u, v) 

, 
total loss function is formulated as: 

u r v r 
(3) 

 

min max L = La + ηLr, (8) 

wg(u, v) = 

 
and 

1 u2 +v2 G D 

2πσ2 e 2σ2    , (4) where η is a parameter that weights the contributions of the 

reconstruction loss and the adversarial loss. It is empirically set 
to be 0.001 in the experiments. 

  wg(r, r)  (5) 

w0 = Σr 
u=
−r 

Σr 
v=
−r 

, 
wg(u, v) C. Proposed Training Data Generation 

where (x, y) are coordinates of each pixel, (u, v) are coordinates of 

pixels in a local window centered at (x, y), r is half the size of the 

local window, M   is the minutia map whose value is 1 at minutia 

and 0 otherwise (as shown in Fig. 3b), and σ is the standard deviation 

of Gaussian. In the experiment, σ is set to be 8 and r is set to be 17. An 

example of the proposed weight map is illustrated in Fig. 3. 

4 ) Loss Functions: The FingerGAN has two losses: 1) an adversarial 

loss which is used to jointly train the discriminator and the U-shaped 

network, and force the U-shaped network to generate enhanced 

latent fingerprints indistinguishable from the ground truths in terms of 

fingerprint skeleton map and FOMFE-based orientation field; and 2) 

a reconstruction loss 

Applying deep learning to latent fingerprint applications is 

challenging because the current public databases either are short of the 

correspondence between latent fingerprints and their true mates or lack 

quantity. In this paper, we propose an effective procedure to generate 

the training data. 

1) Overview: Fig. 4 illustrates the process of the proposed training 

data generation. First, a quality evaluation is performed on rolled 

reliable ground truth labels to provide meaningful supervision for the 

training. Then, the TV decomposition [34] is applied to those selected 

good-quality fingerprints to obtain their texture components, which are 

subse- quently enhanced and thinned to generate ground truth skeleton 

Σ 
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Fig. 4.    Schematic diagram of the proposed training data generation. 

 

 

maps. Also, ground truth FOMFE-based orientation fields are 

calculated based on the ground truth skeleton maps using the method 

in [38]. Meanwhile, noise is added to those selected good-quality 

fingerprints to obtain synthesized latent finger- prints, which are 

subsequently decomposed by the TV decompo- sition to obtain their 

texture components to be used as the training latent fingerprints. In the 

experiment, the rolled fingerprints are from the database NIST SD14 

[42]. The quality evaluation is achieved using the method in [43] due 

to its effectiveness. The enhancement is achieved using the gradient-

based method in 

[9] due to the good quality of those selected fingerprints. The noise is 

added by the proposed latent fingerprint synthesization method, which 

is described as follows. 

2) Latent Fingerprint Synthesization: For better noise sim- ulation, 

we propose adding complex and realistic noise instead of simple line 

or character noise adopted in previous works [18], [22]. This helps 

provide abundant training data that better mimics real latent 

fingerprint cases, and is important for the 

Ufin-sghearpreidntsnefrtowmortkoutoghlesaitrunatmioonrse.  effective  representations of 

 

 
 

Fig. 5. Example of (a) various plastic distortions and (b) 
corresponding distorted fingerprints based on the same rolled 
fingerprint. 

 

 

at oe with semi-axes sx and sy, and is formulated as: 

q   

h(bi) = (bi − oe)T A−1(bi  − oe) − 1, (13) 

with 

 

Given a selected rolled fingerprint b, firstly, a plastic distortion 

[44] is added by the following equation: 

"
s2 0 

# 

A = x 
0 s2 

 
(14) 

b∗ = bi + Δ(bi) · g(h(bi), k), (9) In the experiments, to generate reasonable distortions, the 
where bi = [xb , yb ]T is a point in b and b∗ is its distorted ranges of values for parameters k, θ, e, and A are empirically set 
point. i i i 

k is the skin plasticity coefficient. Δ(bi) is the torsion and 

traction amount computed on the basis of a rotation angle θ and a 

displacement vector e = [ex, ey]T , and is given by 

Δ(bi) = (Rθ · (bi − or )+ or  + e) − bi, (10) 

with 
" #

 

Rθ = 
cosθ sinθ  

, (11)
 

where 
−sinθ cosθ 

or is the center of rotation. g(h(bi), k) is the gradual 
transition define

⎧
d as: 

⎨⎪0 h(bi ) < 0 

(for sy)}, respectively, where s is half of the size of the fin- 

gerprint image width. or and oe are both set to be the center of the 

fingerprint image. Fig. 5 shows various plastic distortions and their 

corresponding distorted fingerprints based on the same rolled 
fingerprint. 

Then, speckle noise is added to the distorted fingerprint b∗ by the 

equation b∗∗ = b∗ + n ∗ b∗, where n is uniformly distributed 

random noise with mean 0 and variance set to (0, 0.02). Finally, a latent 
fingerprint c is synthesized by fusing b∗∗ and a realistic 

noise image d according to the equation: 

c = (1 − λ)b∗∗ + λd, (15) 

g(h(bi), k) = 1 
⎪⎩ 

2 
1 − cos
 π·h(b
i) 

0 < h(bi) < k, where d is randomly cropped from the background regions of 

1 otherwise  

(12) 

latent fingerprints in the NIST SD27 database [42]. λ is a weight that 

measures the intensity degree of the realistic noise image. 

where function h(bi) returns a measure proportional to the 

distance between the point and the border of an ellipse centered 

In the experiments, its value ranges from 0.2 to 0.8. Fig. 6 shows some 

synthesized latent fingerprints and their training latent 
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Fig. 6. Examples illustrating the proposed training data generation by 
(a) selected good-quality rolled fingerprints, (b) synthesized latent 
fingerprints of (a), (c) training latent fingerprints (TV decomposed 
textures) of (a), and (d) ground truth skeleton maps of (a). 

 

 

fingerprints and ground truth skeleton maps generated by the 

proposed latent fingerprint synthesization method. 

 

IV EXPERIMENTAL RESULTS 

In this section, we evaluate our proposed method. Database and 

implementation details are firstly introduced in Section 

IV.A. Experimental results are then presented in Sections IV.B and 

IV.C. Finally, the proposed method is analyzed and dis- cussed in 

Section IV.D. 

 

A. Database and Implementation Details 

1) Database: Training Database The database NIST SD14 

[42] is used to generate the training data, which consists of 54,000 

rolled fingerprint. According to the described method in Section 

III.C, a total of 13,000 good-quality fingerprints are selected from 

them. For each of the selected fingerprints, 10 latent fingerprints are 

synthesized, and thus the final training database consists of a total of 

130,000 training latent fingerprints and 13,000 corresponding ground 

truth skeleton maps. 

Test Databases Two challenging latent fingerprint databases NIST 

SD27 [45] and IIIT-Delhi MOLF [46] are used to eval- uate the 

performance of the proposed method. Database NIST SD27 is 

provided by the National Institute of Standards and Technology in 

collaboration with the FBI. It contains 258 latent fingerprints collected 

from crime scenes, which are classified based on three different 

qualities, ‘good’, ‘bad’, and ‘ugly’, with numbers of images 88, 85, 

and 85, respectively. Latent fingerprints in this database contain 

complex noises and degra- dation of various types and levels, and 

therefore is a rigorous 

benchmark for evaluating the performance of the proposed method. 

Database IIIT-Delhi MOLF is provided by Sankaran et al. and is 

widely used in latent fingerprint tasks in recent years. It contains 

4,400 latent fingerprints and three sets of live-scan fingerprints 

obtained by different acquisition sensors of ‘Crossmatch’, ‘Secugen’, 

and ‘Lumidigm’. Each set has 4,000 live-scan fingerprints and can be 

used as a reference database for latent fingerprint identification. These 

three reference databases are denoted as ‘C’, ‘S’, and ‘L’, respectively. 

The resolution of images in these two databases is 500 ppi. 

2) Implementation Details: Enhancement. Details of the ar- 

chitecture of the FingerGAN are provided in Fig. 2 and Table 

I. It was implemented in PyTorch and its optimizations are solved by 
the SGD solver Adam [47] with a learning rate of 0.001. During 

the training, 192 × 192 patches are used to train the FingerGAN. 

During the testing, for a latent fingerprint to be enhanced, a sliding 

window of size 192 × 192 with a step size of 8 was adopted to 

generate the enhanced latent fingerprint using the trained U-shaped 
network. Implementa- tion codes will be available for non-
commercial purposes from 
https://github.com/HubYZ/LatentEnhancement. 

Identification. Enhanced latent fingerprint identification ex- 

periments are conducted to quantitatively evaluate the perfor- mance 

of the proposed method. For experiments conducted on the NIST 

SD27 database, the manually marked regions of interest provided in 

[12] are used consistently for all compared methods. Also, to make 

the identification more challenging, the reference fingerprint database 

is extended by adding rolled fingerprints from the NIST SD14 

database. This is reasonable because the NIST SD14 database has 

been only used for en- hancement training and has not been used in 

any way for the identification task. Therefore, each enhanced latent 

fingerprint is compared with a total of 27,258 rolled fingerprints for 

the identification. For experiments conducted on the IIIT-Delhi 

MOLF database, each enhanced latent fingerprint is compared with 

the first and second fingerprint samples of each subject for each of 

the three reference databases according to the test protocol 

established by Sankaran et al. [46]. The commercial software 

Neurotechnology VeriFinger SDK12.1 2 is used for the identification. 

The Cumulative Match Characteristic (CMC) curve is employed to 

evaluate the performance of the latent fingerprint identification. 

 

B. Minutia Recovery Accuracy 

1) Quantitative Evaluation: To evaluate the performance of our 

proposed method, we investigate our minutia recovery ac- curacy and 

compare it with those of the state-of-the-art Tang’s method [19], 

Qian’s method [23], Cao’s method [48], and Huang’s method [28]. 

This experiment is conducted on the NIST SD27 database because it 

provides manually marked minutiae which can be used as genuine 

minutiae. Recovered minutiae of each compared method are extracted 

using the VeriFinger12.1 from its enhanced 

http://www.ijsrem.com/
https://github.com/HubYZ/LatentEnhancement
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Fig. 7. Numbers of recovered genuine minutiae extracted from the enhanced latent fingerprints generated by our and the four compared 
methods, compared with the numbers of manually marked minutiae for each of the 258 latent fingerprints in the NSIT SD27 database. 

 

 

 
 

 
Fig. 8. Comparison of numbers of introduced fake minutiae in the enhanced latent fingerprints generated by our and the four compared 
methods for each of the 258 latent fingerprints in the NSIT SD27 database. 

 

TABLE II 
COMPARISON OF MINUTIA RECOVERY ACCURACY OF 

DIFFERENT METHODS IN TERMS OF OVERALL NUMBERS 
OF RECOVERED GENUINE MINUTIAE AND INTRODUCED 
FAKE MINUTIAE FOR THE 258 LATENT FINGERPRINTS IN 

THE NIST SD27 DATABASE 

genuine minutiae meanwhile introducing fewer fake minutiae than 

all the other methods. 

Also, we provide a detailed comparison of the minutiae recovery 

accuracy of our and the four compared methods on 

         each of the 258 enhanced latent fingerprints in Figs. 7 and 

8. As can be seen, compared with the second-best method (Tang’s 

method), there are 112 latent fingerprints where our enhanced latent 

fingerprints recover more genuine minutiae, while there are 98 latent 

fingerprints where Tang’s enhanced latent fingerprints recover more 

genuine minutiae than ours. 

  Furthermore, there are 128 latent fingerprints where our en- hanced 

latent fingerprints introduce fewer fake minutiae than Tang’s, while 

there are 111 latent fingerprints where Tang’s 

         enhanced latent fingerprints introduce fewer fake minutiae than 

ours. These results demonstrate the superiority of our method in terms 

of minutia recovery accuracy, and support our claim that 

latent fingerprints. We compare the extracted minutiae with the 

manually marked minutiae and define the recovered genuine 

minutiae as those extracted minutiae with both correct location, 

orientation, and minutia type in accordance with the manually 

marked minutiae. All the other extracted minutiae are defined as 

introduced fake minutiae. As can be seen from the results in Table II, 

our method achieves the best result, recovering more 

the FingerGAN can perform latent fingerprint enhancement in the 

context of directly optimizing minutia information. 

2) Visual Inspection: We provide an illustrative example in Fig. 9 

for visually comparing the enhanced latent fingerprint of our and the 

four compared methods. Recovered minutiae are also labeled to 

compare with the manually marked minutiae. By observing and 

comparing the bottom right areas (yellow 

   

 
 

 
 

 
 

 

 

 
 

 
 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 08 Issue: 06 | June - 2024                         SJIF Rating: 8.448                                    ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM36022                          |        Page 9 

 
 

Fig. 9. Example of the comparison of the enhanced latent fingerprints generated by different methods. (a) Latent fingerprint B176 from the 
NIST SD27 database with the manually marked minutiae labeled as red circles or crosses, (b) the enhanced latent fingerprint by Cao’s method, 
(c) the enhanced latent fingerprint by Qian’s method, (d) the enhanced latent fingerprint by Huang’s method, (e) the enhanced latent fingerprint 
by Tang’s method, and (f) the enhanced latent fingerprint by our method. Recovered genuine minutiae and introduced fake minutiae in (b-f) are 
labeled as red and blue circles or crosses, respectively. Some regions of interest are highlighted in red rectangles. 

 

 

rectangles) of the fingerprints in Fig. 9(b-f), we can observe that our 

enhanced latent fingerprint (f) gets better ridge/valley structures than 

the enhanced latent fingerprints (b-e) of the four compared methods. 

The superiority of our method can also be proved by observing the 

recovered genuine minutiae in Fig. 9(b-f). As can be seen, a total of 16 

minutiae is manually marked in the latent fingerprint (a), only three, 

four, five, and three recovered genuine minutiae are extracted from 

Cao’s, Qian’s, Huang’s, and Tang’s enhanced latent fingerprints (b-e), 

respec- tively. However, ten recovered genuine minutiae are extracted 

from our enhanced latent fingerprint (f). 

 

C. Identification Performance 

1) Evaluation on Database NIST SD27: To comprehensively 

evaluate our proposed method, we perform fingerprint identifica- tion 

using our enhanced latent fingerprints and compare its per- formance 

with those achieved using enhanced latent fingerprints of the state-of-

the-art Tang’s method [19], Dabouei’s method [49], Qian’s method 

[23], Joshi’s method [27], Cao’s method [48], and Huang’s method 

[28]. We conduct comparison exper- iments on all latent fingerprints, 

the ‘good’ latent fingerprints, the ‘bad’ latent fingerprints, and the 

‘ugly’ latent fingerprints, respectively. Comparison results are shown 

in Fig. 10. As can be seen, our method achieves significantly better 

results than 

 

all the other methods on the overall, the ‘good’, and the ‘bad’ latent 

fingerprints. For the identification on the ‘ugly’ latent fingerprints, 

our method achieves the tied best rank-1 result with Tang’s method, 

and outperforms Tang’s method in rank-2. These results demonstrate 

the superiority of our method in latent fingerprint enhancement. 

2) Evaluation on Database IIIT-Delhi MOLF: We also com- pare 

the identification performance of using our enhanced latent fingerprints 

with those of using enhanced latent fingerprints of the six state-of-the-

art methods (Tang’s [19], Dabouei’s [49], Qian’s [23], Joshi’s [27], 

Cao’s [48], and Huang’s [28] methods) on the IIIT-Delhi MOLF 

database. Fig. 11 shows the comparison of CMC curves achieved over 

the three reference databases ’C’, ’S’, and ’L’, respectively. As can be 

seen, our method achieves consistently the best rank-1 performance 

over the three reference databases, which demonstrates the superiority 

and robustness of our method. 

 

D. Ablation Study 

To further analyze our method and justify the effectiveness of the 

FingerGAN design, we conduct the following ablation studies. These 

experiments are conducted on the NIST SD27 database using a 

reference database consisting of 258 corre- sponding rolled 

fingerprints of the NIST SD27 database. All 

http://www.ijsrem.com/
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Fig. 10. Comparison of CMC curves achieved using the enhanced latent fingerprints generated by Cao’s, Qian’s Huang’s, Tang’s, Joshi’s, 
Dabouei’s, and our methods on the NIST SD27 database. (a) CMC curves achieved using all latent fingerprints, (b) CMC curves achieved using 
the ‘good’ latent fingerprints, (c) CMC curves achieved using the ‘bad’ latent fingerprints, and (d) CMC curves achieved using the ‘ugly’ latent 
fingerprints. 

 

 

 
Fig. 11. Comparison of CMC curves achieved using the enhanced fingerprints generated by Cao’s, Qian’s Huang’s, Tang’s, Joshi’s, Dabouei’s, 
and our methods on the IIIT-Delhi MOLF database over the three reference databases (a) ‘C’, (b) ‘S’, and (c) ‘L’, respectively. 

 

other experimental settings are the same as those described in Section 

IV.A.2, except stated otherwise. 

1) The Advantage of Embedding the U-Shaped Network in a 

GAN: To demonstrate the effectiveness of embedding the U-shaped 

network in a GAN, we conduct the following ablation study. We use 

only the proposed U-shaped network for latent fingerprint 

enhancement without using the discriminator, and name this method 

FingerGAN-noDiscriminator. Specifically, we train the U-shaped 

network using only the reconstruction loss in (7) with only the 

fingerprint skeleton maps as the ground truths. Fig. 12 compares the 

CMC curves achieved using the proposed FingerGAN and the 

FingerGAN-noDiscriminator. As can be seen, the rank-1 accuracy 

achieved using the FingerGAN (76.36%) is significantly higher than 

that achieved using the FingerGAN-noDiscriminator (70.54%). This 

demonstrates the 

effectiveness of embedding the U-shaped network in a GAN and 

supports our claim that the proposed FingerGAN can force its 

generated enhanced latent fingerprints indistinguishable from the 

ground truths. 

In addition, we provide an illustrative example in Fig. 13 for 

visually inspecting the enhanced latent fingerprints generated by the 

two models. As can be seen, the enhanced fingerprint generated by 

the FingerGAN is richer in ridge/valley details than that generated by 

the FingerGAN-noDiscriminator, as shown in the zoomed 

rectangles. This also results in more genuine minutiae being 

extracted from the enhanced latent fingerprint generated by the 

FingerGAN. This can be explained by the fact that the FingerGAN-

noDiscriminator has only the Lr loss, which makes it focus only on 

the overall error of the cor- responding pixels of the enhanced 

latent fingerprint and the 

http://www.ijsrem.com/
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Fig. 12. Comparison of CMC curves achieved using the proposed 
FingerGAN and the FingerGAN-noDiscriminator. 

Fig. 14. Comparison of CMC curves achieved using FingerGAN-

gray, FingerGAN-binary, and the proposed FingerGAN. 

 

 

 
 

Fig. 13. Example of the comparison of the enhanced latent 
fingerprints generated by the FingerGAN-noDiscriminator and the 
FingerGAN. (a) Latent fingerprint U288 from the NIST SD27 
database, where the manually marked minutiae are labeled as red 
circles or crosses, (b) and (c) enhanced latent fingerprints generated 
by FingerGAN-noDiscriminator and the FingerGAN, respectively, 
where the recovered genuine minutiae are labeled as red circles or 
crosses, and introduced fake minutiae are labeled as blue circles or 
crosses. Some regions of interest are highlighted in zoomed 
rectangles. 

 

 

ground truth, while the FingerGAN has an additional La    loss to 

force the overall pattern of the enhanced latent fingerprint 

indistinguishable from that of the ground truth. It is well known that 

minutiae are salient features of fingerprints. They will affect fingerprint 

distinguishability significantly. Therefore, with the discriminator, the 

FingerGAN can facilitate better ridge/valley reconstruction, leading to 

better minutiae details. 

2) The Advantage of Using the Skeleton Map: To demon- strate 

the effectiveness of using the fingerprint skeleton map as ground 

truth, we conduct the following ablation studies. We use 

fingerprint gray images and binary images instead of fingerprint 

skeleton maps as the ground truths respectively to train the 

FingerGAN, and name these two methods FingerGAN- gray and 

FingerGAN-binary respectively. Fig. 14 compares the CMC curves 

achieved using the proposed FingerGAN, the FingerGAN-gray, and 

the FingerGAN-binary. As can be seen, 

 
Fig. 15. Example of the comparison of the enhanced latent 
fingerprints gen- erated by the FingerGAN-gray, FingerGAN-binary, 
and the FingerGAN. (a) Latent fingerprint U255 from the NIST 
SD27 database, where the manually marked minutiae are labeled as 
red circles or crosses, (b), (c), and (d) enhanced latent fingerprints 
generated by FingerGAN-gray, FingerGAN-binary, and the 
FingerGAN, respectively, where the recovered genuine minutiae are 
labeled as red circles or crosses, and introduced fake minutiae are 
labeled as blue circles or crosses. Some regions of interest are 
highlighted in zoomed rectangles. 

 

 

 

the rank-1 accuracy achieved using the proposed FingerGAN 

(76.36%) is significantly higher than those achieved using the 

FingerGAN-gray (70.15%) and FingerGAN-binary (71.32%). This 

demonstrates the effectiveness of using the fingerprint skeleton map 

as ground truth and supports our claim that the skeleton map 

facilitates ridge/valley reconstruction. 

In addition, we provide an illustrative example in Fig. 15 for visually 

inspecting the enhanced latent fingerprints generated by these three 

models. As can be seen, compared with the enhanced fingerprint 

generated by the FingerGAN-gray and FingerGAN-binary, the one 

generated by FingerGAN is much clearer in ridges/valleys, as shown 

in the zoomed rectangles, resulting in more minutiae being identified 

from it. This can be explained by the fact that minutia is defined on the 

skeleton map [29], thus using the skeleton map as the ground truth can 

directly 

http://www.ijsrem.com/
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Fig. 16. Comparison of CMC curves achieved using the proposed 
FingerGAN and the FingerGAN-noWeight. 

 

 
Fig. 17. Example of the comparison of the enhanced latent 
fingerprints gen- erated by the FingerGAN-noWeight and the 
FingerGAN. (a) Latent fingerprint B164 from the NIST SD27 
database, where the manually marked minutiae are labeled as red 
circles or crosses, (b) and (c) enhanced latent fingerprints generated 
by FingerGAN-noWeight and the FingerGAN, respectively, where the 
recovered genuine minutiae are labeled as red circles or crosses, and 
introduced fake minutiae are labeled as blue circles or crosses. Some 
regions of interest are highlighted in zoomed rectangles. 

 

 

optimize the skeleton map of the enhanced latent fingerprint, leading 

to more accurate minutiae recovery. 

3) The Advantage of the Gaussian Minutia Weight: To 

demonstrate the effectiveness of using the Gaussian-based minu- tia 

weight map, we conduct the following ablation study. We train the 

FingerGAN using a loss function without the Gaussian- based minutia 

weight map and name this method FingerGAN- noWeight. That is, 

we remove w in the (7) and make the 

reconstruction loss as Lr(G) = El∈L[||g − G(l)||1] to train the 

FingerGAN. Fig. 16 compares the CMC curves achieved using 

the proposed FingerGAN and the FingerGAN-noWeight. As can be 

seen, the rank-1 accuracy achieved using the proposed FingerGAN 

(76.36%) is significantly higher than that achieved using the 

FingerGAN-noWeight (62.02%). This demonstrates the effectiveness 

of using the Gaussian-based minutia weight map and supports our 

claim that the FingerGAN can perform latent fingerprint 

enhancement in the context of optimizing minutia information. 

In addition, we provide an illustrative example in Fig. 17 for 

visually inspecting the enhanced latent fingerprints gen- erated by the 

two models. As can be seen, the enhanced 

 

Fig. 18. Comparison of CMC curves achieved using the proposed 
FingerGAN and the FingerGAN-noOF. 

 

 

 
Fig. 19. Example of the comparison of the enhanced latent 
fingerprints generated by the FingerGAN-noOF and the FingerGAN. 
(a) Latent fingerprint B142 from the NIST SD27 database, where the 
manually marked minutiae are labeled as red circles or crosses, (b) 
and (c) enhanced latent fingerprints generated by FingerGAN-noOF 
and the FingerGAN, respectively, where the recovered genuine 
minutiae are labeled as red circles or crosses, and introduced fake 
minutiae are labeled as blue circles or crosses. Some regions of interest 
are highlighted in zoomed rectangles. 

 

 

fingerprint generated by the FingerGAN obtains better 

ridge/valley reconstruction, especially around minutiae, as shown in 

the zoomed rectangles. This results in obviously more minutiae being 

identified from it. This can be explained by the fact that the weighted 

reconstruction loss Lr forces the network to focus on the 

reconstruction of the weighted areas. 

4) The Advantage of Using Orientation Field: To demon- strate 

the effectiveness of using the FOMFE-based orientation field, we 

conduct the following ablation study. We train the FingerGAN 

without using the FOMFE-based orientation field and name this 

method FingerGAN-noOF. Fig. 18 compares the CMC curves 

achieved using the proposed FingerGAN and the FingerGAN-noOF. 

As can be seen, the rank-1 accuracy achieved using the proposed 

FingerGAN (76.36%) is significantly higher than that achieved using 

the FingerGAN-noOF (71.72%). This demonstrates the effectiveness 

of using the FOMFE-based ori- entation field and supports our claim 

that the FOMFE-based orientation field acts as an additional 

constraint to guide the generation of enhanced latent fingerprints. 

In addition, we provide an illustrative example in Fig. 19 for 

visually inspecting the enhanced latent fingerprints generated by the 

two models. As can be seen, the enhanced fingerprint 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 08 Issue: 06 | June - 2024                         SJIF Rating: 8.448                                    ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM36022                          |        Page 13 

generated by the FingerGAN is better in ridge/valley details than that 

generated by the FingerGAN-noOF, as shown in the zoomed 

rectangles. This results in more genuine minutiae being extracted from 

the enhanced latent fingerprint generated by the FingerGAN. This 

can be explained by the fact that the FingerGAN-noOF has only the 

skeleton map constraint, while the FingerGAN incorporates an 

additional orientation constraint to make the enhanced latent 

fingerprint generation more con- strained and more reliable. 

 

V CONCLUSION 

This paper proposed a FingerGAN for latent fingerprint en- 

hancement, which formulates latent fingerprint enhancement as a 

constrained fingerprint generation problem. It can enforce its 

generated enhanced latent fingerprint indistinguishable from the 

corresponding ground truth instance in terms of the fingerprint 

skeleton map weighted by minutia locations and the orientation field 

regularized by the FOMFE model. Because minutia is the primary 

feature for recognition and minutia can be retrieved directly from the 

fingerprint skeleton map, we offer a holistic framework that can 

perform latent fingerprint enhancement in the context of directly 

optimizing minutia information. This will help improve latent 

fingerprint identification performance sig- nificantly. Experimental 

results on two public latent fingerprint databases demonstrate that our 

method outperforms the state of the arts significantly. 
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