
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42865 | Page 1

Integrating Indian Sign Language Recognition with Real-Time Speech

Synthesis for video conferences

Biswajit Dey 1 , Rajdeep paul 2

1Department of Computer Application, Techno India University, Kolkata, India
2Department of Computer Application, Techno India University, Kolkata, India

---***---
Abstract - Both hearing and deaf people commonly face

major communication hurdles in their daily lives. To solve, this

study presents a real-time video calling system that uses ai

model to recognize Indian Sign Language (ISL). Peers are

connected via WebSockets, and video data is shared with the

AI model for identification. Our approach captures 30 frames a

second and buffers them as groups of 3 seconds that a backend

AI model interprets. The application using grid fragmentation-

based splitting and k-NN prediction detects the hand

movements very accurately and translates these movements to

textual equivalents that other peers uses. In the meantime,

regular video and audio communication proceeds

uninterrupted, providing a natural conversation experience.

The system was tested with 15 normal ISL sentences with an

average accuracy of 97.2%. Performance measurement is

reflected in a frame rate of 5.3 FPS, maximizing real-time

interaction and processing efficiency. Future development will

be in improving gesture prediction, increasing the dataset, and

implementing speech-to-text capabilities to increase

accessibility further. By integrating AI-powered sign language

recognition with video calling, the app acts as a bridge between

the deaf and hearing communities and fosters inclusivity and

accessibility in digital communication.

1. INTRODUCTION

Indian Sign Language (ISL) is a visual language used by

people with hearing and speech impairments to communicate
with others through hand signs and gestures. Sign language is
the mixture of facial expressions, hand gestures and body
posture. It portrays the inner feelings of the person just like any
other spoken language. There is a lack of research on ISL that
addresses the challenges of these individuals.

The challenge is to close this communication gap. Despite
specialised training in ISL (Indian Sign Language) can enable
individuals to interact with the hearing- and speech-impaired,
it is unrealistic to anticipate that the general populace will learn
sign language. Thus, developing systems that can convert sign
language into spoken language has emerged as a key area of
study.

Existing research is mostly focused on popular sign languages
like ASL (American Sign Language), Chinese Sign Language,
etc. However, because of its complexity, there is less research
on Indian Sign Language. This paper proposes to fill this gap
by presenting a method for real-time ISL identification and its
integration into video interactions to improve remote
communication.

Given the complexity of ISL, our initial focus is on recognising
numbers and alphabets and using those alphabets to form
complete sentences with meaning. There exist 33 unique hand
gestures (10 for digits and 23 for letters), as displayed in Fig. 1.

This paper examines the use of machine learning and natural
language processing (NLP) to convert gestures into structured
text and subsequently into spoken language. It also addresses
potential obstacles in the process, including latency and
preserving of grammatical sequence for precise translation.

Fig. 1: Hand Gestures in ISL (Indian Sign Language)

In the following sections, we dive into the technical
components of this system, including gesture detection
algorithms, text-to-speech integration, and video call
infrastructure. We also discuss the challenges encountered in
the development process and propose solutions for overcoming
them. This research focuses on developing a system capable of
recognising Indian Sign Language in a video call and
transcribing it into voice in real-time.

2. RESEARCH MOTIVE

 The goal of this research is to reduce the communication gap
between the deaf and mute communities and the rest of society
by integrating sign language recognition with video calls.
While many existing studies focus only on recognizing signs
and converting them into text or voice, they do not address
virtual communication systems. In the contemporary world,
where the majority of communication occurs online, a viable
solution for deaf and mute individuals to engage in such
contexts is absent. Our objective is to develop a hybrid model
that recognises signs and gestures in a video call and then
processes them through an algorithm that maintains the
sequence using NLP (Natural Language Processing).
Moreover, the proposed approach enables individuals with
hearing and speech problems to fully participate in society and
communicate effectively, ultimately promoting equal
opportunities and accessibility for all.

3. LITERATURE REVIEW

 Some of the recent literature that can help us to build the

proposed system is discussed below.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42865 | Page 2

[1]C. K. M. Lee and K. K. H. Ng proposed an RNN

identification and training methodology for ASL research. The

study shows how successfully a Long-Short Term Memory

(LSTM) Recurrent Neural Network and the k-Nearest-

Neighbor (KNN) approach classify ASL alphabets. With an

accuracy of 99.44% in identifying ASL alphabets utilising

characteristics like sphere radius, finger placements, and angles

between fingers, the model showed the potential of real-time

sign language applications. However, the primary focus of this

research is on instructional applications rather than practical

video call communication technologies.

[2]Kothadiya et al. introduced a deep learning-based model for

Indian Sign Language (ISL) recognition using LSTM (Long-

Short Term Memory) and GRU (Gated Recurrent Unit)

networks. By employing four different sequential combinations

of LSTM and GRU layers, the proposed model attained an

accuracy of 97% on 11 different ISL (Indian Sign Language)

signs using the IISL2020 dataset. This work emphasizes the

significance of deep learning models in improving sign

language detection but does not address real-time

communication challenges in virtual environments.

[3]After analyzing the challenges of real-time sign language

identification, Arun Prasath and Annapurani proposed an end-

to-end multi-layer convolutional neural network (ML-CNN)

solution. The purpose of this research is to utilize the Indian

Sign Language database and perform the operation that

converts signs to spoken output. The proposed ML-CNN model

outperformed more traditional techniques like BLSTM and

HMM with a prediction accuracy of 87.5%.

[4]Asari et al.. developed a hybrid-based LSTM-CNN model

for the detection of critical signs. Based on their research, a

VGG-19 + LSTM architecture can perform better than

BLSTM-based systems in terms of accuracy, achieving

96.39%. Their research shows how successfully LSTM-based

models preserve sign sequences to maintain fluency during live

interactions.

[5]Sharma and Tulsian proposed an audio-to-sign language

translation system for Indian Sign Language. The primary

objective of this system is to generate appropriate sign language

gestures by comparing the input text or audio with a database

of ISL (Indian Sign Language) video gestures. They used

multiple NLP techniques to increase the accuracy of the

system. This research mostly focused on converting speech to

sign motion.

[6]Hanmo Wang's research explores the advancements of sign

language. He discussed the integration of computer vision and

natural language processing to improve the result of the model

when it converts videos into spoken language texts. This

research underscores the necessity of combining CV and NLP

techniques to improve sign language processing, aligning with

the proposed approach of integrating neural networks and NLP

for real-time communication in video calls.

[7]A recent study by Abdullah Baihan and Sunil Kumar

Sharma focused on addressing the challenges of static and

dynamic sign language recognition (SLR) using a modified

deep learning and hybrid optimization approach. The study

highlights the difficulty in creating a high-accuracy model that

can recognize continuous signs independent of the signer due

to variations in speed and duration. To overcome these issues,

the proposed CNNSa-LSTM model integrates Convolutional

Neural Networks (CNN) for spatial analysis, Self-Attention

(SA) mechanisms for focusing on relevant features, and Long-

Short-Term Memory (LSTM) to model temporal dependencies

effectively. Motion features are extracted using the optical flow

approach, while spatial and geometric information is gathered

using the Visual Geometry Group 16 (VGG16). To improve

performance, a Hybrid Optimizer (HO) combines the

Pathfinder Algorithm (PFA) with the Hippopotamus

Optimization Algorithm (HOA). The proposed model's

implementation outperforms existing methods with high

precision (98.5%), sensitivity (98.2%), and accuracy (98.7%).

[8]A real-time Indian Sign Language (ISL) recognition system

using grid-based features has been developed to enhance

communication for hearing and speech-impaired individuals.

Unlike existing methods that lack real-time performance or

accuracy, this system effectively identifies 33 hand poses and

12 gestures using a smartphone camera, eliminating the need

for external hardware. It uses Face Detection, Object

Stabilization, and Skin Color Segmentation to track hands,

while Hidden Markov Models (HMM) identify gesture

sequences and k-Nearest Neighbors (k-NN) classify hand

positions. The system demonstrates its effectiveness and

dependability in real-time applications with an accuracy of

99.7% for static postures and 97.23% for motions.

4. IMPLEMENTATION

 The term sign language recognition in video calls may seem

complex, but breaking it down into distinct components makes

it more feasible for implementation. There are three main

components required to develop a system that enables sign

recognition over video calls and generates the desired output.

These components include implementing video calls,

processing video frames through a pre-trained AI model, and

passing the output through an NLP-based model to reconstruct

the data into a communicable format. Therefore, the first step

is to gather input data from video calls. We begin by focusing

on the video call system's implementation, latency

optimisation, and guaranteeing smooth network connectivity

between various devices.

 4.1 Implementation of Video call

A low-latency video calling system is as crucial as the AI model

for real-time sign language recognition. The system needs to

capture video frames efficiently, send them with low latency,

and provide stable connectivity under various network

conditions. This is facilitated by WebRTC, which provides

peer-to-peer (P2P) video communication with adaptive

networking protocols and real-time optimization. Here is a brief

explanation of how video calls operate, which can also help in

more successfully implementing the AI model into video chats.

4.1.1 Network Protocols for Real-Time Video Calls

Reliable and efficient video transmission in real-time

communication systems necessitates the use of specialized

network protocols. In order to ensure synchronized, low-

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42865 | Page 3

latency, and secure video chat transmission, the following

protocols are essential:

1. Real-Time Transport Protocol (RTP): Enables the

delivery of audio and video information over IP

networks, including timestamping and sequence

numbering to ensure synchronization and reduce

packet loss.

2. Datagram Transport Layer Security (DTLS):

Provides secure key exchange for WebRTC-based

communications, providing media integrity and

eavesdropping protection.

3. Interactive Connectivity Establishment (ICE):

Assists in NAT traversal by selecting the most

efficient network path between peers, improving

connectivity in varying network conditions.

These protocols combined optimize the performance of

WebRTC-based video calls to deliver adaptive bitrate

streaming, secure transport, and low latency, which are

essential for real-time sign language recognition via video calls.

4.1.2 System Architecture for Video Transmission

The video-calling system adopts a three-layer architecture to

capture, send, and render video streams.

1. The Capture & Encoding Layer takes the task of

capturing and optimizing the video frames to be sent

out. The video is captured on the user's device at 30

FPS through the use of React Native Vision Camera

to provide stable input to the subsequent processing.

In case to reduce the system's bandwidth usage, we

can consider compression techniques like VP9 or

H.265 (HEVC), which are used to compress video

frames while maintaining quality.

2. The Transmission Layer handles real-time data

transfer and network optimization. WebRTC, in

combination with ICE (Interactive Connectivity

Establishment), establishes the most efficient

transmission route between devices. It uses

STUN/TURN servers to support NAT traversal and

relay traffic where peer-to-peer communication is not

possible directly. Media streams are secured using

SRTP (Secure Real-Time Transport Protocol) for

secure transmission support, and DTLS (Datagram

Transport Layer Security) supports secure key

exchange to avoid eavesdropping of data and

unauthorized access.

3. The Receiving and Processing Layer decodes video

streams and prepares them for AI analysis. It reduces

latency and guarantees correct frame sequencing for

seamless processing. The AI model analyzes extracted

frames in real time, identifying motions and

translating them into speech or text. Organizing the

process in this manner makes video calls smooth

without compromising the quality of visuals required

for precise sign language interpretation.

4.1.3 WebRTC: Internal Core Components

WebRTC is a real-time communication framework that enables

P2P video calling with minimal latency. The process involves:

Devices communicate through the Session Description

Protocol (SDP) to agree on connection parameters after they

capture and compress video frames. This is succeeded by the

Interactive Connectivity Establishment (ICE) protocol through

STUN/TURN servers to find the optimal transmission path.

Datagram Transport Layer Security (DTLS) provides safe key

exchange between two devices, while safe Real-Time

Transport Protocol (SRTP) encrypts media streams once the

connection is made.

4.1.4 ICE Servers & Connection Establishment

To determine the most efficient way of connecting users,

WebRTC makes use of ICE (Interactive Connectivity

Establishment). It utilizes:

1. STUN (Session Traversal Utilities for NAT)

- Helps devices discover their public IP for a

direct connection.

- Used when both users are on open networks.

2. TURN (Traversal Using Relays around NAT)

- Serves as a relay server when a direct

connection is impossible.

- Used when one or both users are behind

firewalls or restrictive NATs.

3. Direct P2P Connection

- Wherever available, WebRTC allows a

direct link between users, avoiding relay

servers for reduced latency.

4.1.5 Low-Latency Video Call Optimizations

For enhancing performance and stability, the following

optimizations are utilized:

1. Adaptive Bitrate Streaming (ABR)

- Dynamically adjusts video quality based on

network conditions.

- Prevents buffering or lag by scaling between

720p, 480p, and 360p.

2. Congestion Control (Google BBR Algorithm)

- Dynamically manages bandwidth to avoid

packet loss.

 The formula for congestion control:

 𝐶𝑤𝑛𝑑 = 𝑚𝑖𝑛(𝐶𝑤𝑛𝑑𝑚𝑎𝑥 , 𝐵𝑎𝑛𝑑𝑤𝑖𝑡ℎ × 𝑅𝑇𝑇𝑚𝑖𝑛)

In Fig. 2, the WebRTC architecture illustrates the process of

video call operations, detailing the key components and their

interactions.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42865 | Page 4

Fig. 2: WebRTC Architecture and Workflow

Now we are moving forward to our second core component

which is our AI model that recognises the frames of gestures

and converts them to text messages.

4.2 Implementation of the AI Model

From the Video call media stream, the gestures and signs

performed by an individual using Indian Sign Language (ISL)

are extracted, and their frames are transmitted to a server for

processing. Before these frames can be used for recognizing

gestures and hand poses, they must undergo pre-processing.

Face removal, stabilization, and skin color segmentation—

which removes background details—begin this procedure.

Then, morphological operations are applied to minimize noise.

The system extracts and tracks the person’s hand in each frame.

For hand pose recognition, relevant features are extracted from

the hand and input into a classifier. The identified hand pose

class is then transmitted back to the Android device. When

classifying hand gestures, intermediate hand poses are

recognized, and a pattern is established using these recognized

poses and their sequential motion. This pattern is represented

in tuples and subsequently encoded for Hidden Markov Model

(HMM) processing. The HMM chain that achieves the highest

score using the forward-backward algorithm determines the

recognized gesture for the given pattern. An overview of this

process is illustrated in Fig. 3.

Fig. 3: Flow diagram for Gesture Recognition.

4.2.1 Dataset used

For the digits 0 to 9 in ISL, an average of 1000 images per digit

was captured. For ISL letters, around 200 images were taken

for each letter, making up a total of 15,200 images. Most of

these were captured using smartphone cameras, while a smaller

number came from webcams. The images vary in resolution.

For training HMMs, 50 gesture videos were captured for each

of the 15 one-handed pre-selected gestures (Are you Free

Today, Can you repeat that please, Congratulations, Help Me

Please, I am fine, I love you, Please come, Welcome, Talk

slower please, Thank You, What Happened, What are you

doing, What do you do, how are you, no, yes). Each video

consists of 50 sets, where some sets use the left hand and others

use the right hand.

4.2.2 Pre-processing

1. Face detection and elimination
 In Indian Sign Language (ISL), hand poses and

gestures are primarily represented by specific hand movements,

making facial features unnecessary. Additionally, the presence

of the face can make hand extraction more challenging. To

solve this, face detection was carried out using Histogram of

Oriented Gradients (HOG) descriptors [8], followed by a linear

Support Vector Machine (SVM) classifier. This approach

utilizes an image pyramid and a sliding window technique to

detect faces in an image accurately, as described in [9].

By combining HOG feature extraction with a linear classifier,

the false positive rate is reduced by more than an order of

magnitude compared to the most efficient Haar wavelet-based

detector [9]. Once the face is detected, the contour of the face

region is identified, and the entire face-neck area is blacked out,

as illustrated in Fig. 4.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42865 | Page 5

Fig. 4: Face detection and elimination operation

2. Skin colour segmentation
To detect skin-like regions within an image, skin

colour segmentation is performed using the YUV and RGB

colour models, which yield highly accurate results [8]. This

model was selected as it outperformed other colour spaces,

including HSV, YCbCr, RGB, YIQ, YUV, and various

combinations of these [10]. The frame is first converted from

RGB to YUV colour space using the transformation equation

provided in [11], as specified in equation (1).

(1)

The resulting segmentation mask effectively minimizes noise

and reduces false positive detections. A visual representation of

the segmentation mask is provided in Fig. 5.

3. Morphology operations
Morphological operations were applied to eliminate

any noise produced during the skin colour segmentation

process. There are two types of errors in skin colour

segmentation:

1. False positives – Non-skin pixels mistakenly

classified as skin.

2. False negatives – Skin pixels incorrectly classified as

non-skin.

Morphology involves 2 basic sub-operations:

1. Erosion – Reduces the size of active regions (white

areas) in the mask

2. Dilation – Expands the size of active regions (white

areas) in the mask

When non-skin regions are mistakenly picked up as skin, we

use a technique called Morphological Opening. It starts by

"eroding" away the small, unwanted areas and then "dilates" to

restore the important details. To correct false negatives (when

actual skin areas are missed), Morphological Closing is

applied, doing dilation first, then erosion. The results of these

operations can be seen in Fig. 5.

Fig. 5: Skin segmentation mask and effect of morphology operations.

(Left) Segmentation mask; (Right) Mask after application of

Morphology operations.

4. Object Alignment Using Facial Landmarks
 To accurately track hand motion, maintaining a stable

camera position is essential. However, hand tremors or

unintentional movements by the person recording the video can

introduce false motion detections. This issue is addressed

through object stabilization.

Assuming that the sign demonstrator’s face is consistently

present in the gesture video, facial tracking is used to stabilize

hand movements. The tracker is initialized using coordinates

obtained from the face detection process before the face is

removed. It then identifies the facial region and compensates

for any detected motion by shifting the entire frame in the

opposite direction of the face’s movement.

For tracking, the system employs the Kernelized Correlation

Filter (KCF) tracker, implemented in the OpenCV library, to

follow the face in each frame. This tracking operation is applied

before the face is blacked out.

4.2.3 Hand extraction and tracking

Since ISL hand poses and gestures rely entirely on hand

movements, detecting and tracking the hand is a vital part of

the system. After pre-processing each frame, a black-and-white

image is generated, where white areas represent skin. Facial

features are excluded, leaving only the hand and other skin-like

regions from the original image.

In each frame, either one hand is visible or both hands are

touching, ensuring that the most prominent contour belongs to

the hand. To identify it, the system calculates the area of all

contours in the frame and selects the largest one. Since the most

dominant contour represents the hand, this extracted contour

defines the hand region.

Fig. 6: Importance of eliminating face before, hand extraction.

Fig. 6 demonstrates why removing the face is essential in this

process. If the face were not eliminated, it would likely be the

largest contour detected, leading to misclassification as a hand,

as shown in the figure.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42865 | Page 6

For tracking hand motion, the centroid of the hand is calculated

in each frame. If there is movement of the hand, the coordinates

of the centroid of the hand will change. The Slope of the line

formed by the centroid of the hand in the current frame and the

centroid of the hand in the previous frame is then determined.

Based on the slope value, movement is classified as follows:

● If -1 < slope < 1 and the x-coordinate increases, the

hand moves left.

● If -1 < slope < 1 and the x-coordinate decreases, the

hand moves right.

● If |slope| > 1 and the y-coordinate increases, the hand

moves up.

● If |slope| > 1 and the y-coordinate decreases, the hand

moves down.

Fig. 7 illustrates this slope-based motion tracking. It is

important to note that the motion seen by the camera appears

opposite to the actual movement performed by the sign

demonstrator. The system leverages the OpenCV library to

compute the contour area and track the centroid of the hand.

Fig. 7: Determining hand motion using slope.

To minimize tracking noise, the system places an imaginary

circle with a 20-pixel radius around the previous hand centroid.

If the new centroid is within this radius, the shift is treated as

noise, and the movement is disregarded. In this case, the

previous centroid stays the same for comparison.

However, if the new centroid moves beyond the 20-pixel

threshold, the shift is recognized as actual hand movement.

When movement is detected, the radius is set to 7 pixels instead

of 20 pixels until there is no movement, after which the radius

is restored to 20 pixels. This use of an imaginary circle reduces

noise to a greater extent and gives highly accurate tracking of

hand movements. As discussed in [8].

Fig. 8: The hand pose ‘a’ in ISL fragmented by a 3x3 grid.

4.2.4 Feature Extraction Through Grid-Based

Segmentation Method

In this method, based on the approach described in [8], the

extracted hand sample is segmented into an M × N grid,

resulting in M × N smaller regions. A feature value is computed

for each region, collectively forming a feature vector consisting

of M × N elements. The feature value for each section is

calculated based on the proportion of the hand contour it

contains, as described in Equation (2).

 (2)

If no hand contour is detected in a block, the feature value is

assigned as 0. For illustration, Figure 8 shows a 3 × 3 grid

applied to a sample. Because each position covers a different

number of grid sections and fragmented areas, this technique is

highly adaptable to various hand orientations. This allows the

feature vector to accurately capture both the shape and position

of the hand.

To get a clearer picture of the extracted features, we applied

Principal Component Analysis (PCA) and t-Distributed

Stochastic Neighbor Embedding (t-SNE), following a similar

approach to [8]. We began with a 10 × 10 grid, creating 100

features per sample. First, PCA narrowed the features down to

40, and then t-SNE shrank the data into two dimensions,

making it easier to see and interpret.

4.2.5 Classification of Gestures

4.2.5.1 Identifying ISL hand poses using the k-NN

algorithm

When we were processing the data, we observed that the data

had a tendency to group naturally, and some of the hand poses

had occurred more than once in the groups. To classify such

data efficiently, we required an algorithm that was capable of

dealing with these kinds of patterns. K-Nearest Neighbors (k-

NN) suited the best as it performs efficiently with grouped data.

For each frame in the live feed, the extracted hand undergoes

feature extraction using the previously mentioned grid-based

fragmentation technique. This process creates an M × N

dimensional feature map. To classify a sample, we employ

Euclidean distance to match the sample against stored data and

select the k closest matches from the training model.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42865 | Page 7

A simple brute-force method for calculating the distance is to

measure the Euclidean distance between the sample and each

stored sample and then select the k closest. However, for larger

datasets, more efficient methods like KD-tree and Ball Tree can

help speed up the process. Brute force works well for small

datasets, KD-tree is effective for low-dimensional data, and

Ball Tree performs best for high-dimensional data [12].

Finally, the classifier determines the sample’s class based on

the most frequently occurring class among its k nearest

neighbors.

4.2.5.2 Gesture Classification using HMM

Gestures often exhibit slight variations, even when performed

by the same individual. To accommodate these inconsistencies,

a statistical model is required. Hidden Markov Models

(HMMs) serve as an effective statistical approach for managing

such variations [15]. HMMs are classified into two types:

continuous and discrete. In a continuous HMM, the number of

potential observation symbols in each component of the

observation sequence is unlimited, while in a discrete HMM, it

is finite.

In addition, HMMs can be designed as ergodic or left-to-right.

In a left-to-right HMM, the transitions are in one direction only,

i.e., once the model moves to the next state, it cannot revert to

a previous state, as shown in Fig. 10. Conversely, an ergodic

HMM allows transitions between any state. The initial state

probabilities (π) and transition probabilities associated with the

left-to-right HMM are illustrated in Fig. 9.

Fig. 9: HMM chain for gesture with 3 hidden states (E.g. Good

Afternoon).

The human brain interprets gestures as a sequence of

intermediate hand poses combined with specific hand

movements arranged in a defined order. Following this

concept, ISL gestures are composed of stationary intermediate

hand poses combined with the transitional movements linking

them. As a result, this system implements a discrete left-to-right

HMM, utilizing segmented hand centroid motion and pose

classification results to identify the provided observation

sequence as one of the 15 predefined gestures.

The input for this HMM comes from an observation sequence

extracted from the video feed. The total number of possible

observation symbols is determined by the sum of the tracked

movement directions and the intermediate stationary hand

poses used during training. In this system, four-movement

directions are tracked, and the model is trained with nine

intermediate stationary hand poses, including ‘Thumbs Up,’

‘Sign Me,’ and ‘Fist,’ as illustrated in Fig. 10.

Fig. 10: Thumbs_Up and Sign_Me stationery hand poses.

The recognition of intermediate hand poses also employs a

grid-based feature extraction method. This process is similar to

identifying hand poses for letters and digits but is only

performed when no movement is detected. As a result, there are

a total of 13 possible observation symbols, meaning the

observation sequence can contain values ranging from 0 to 12.

At each frame, a tuple is generated in the format <S, M>, where

M represents the hand's motion relative to the previous frame,

and S denotes the classified hand pose if no movement is

detected. When motion is detected, it is assigned a

corresponding observation symbol—'Upwards' (0),

'Rightwards' (1), 'Leftwards' (2), and 'Downwards' (3). If no

motion is present, the detected hand pose is mapped

accordingly based on a predefined mapping system.

Thus, each frame contributes an observation symbol, and the

entire video sequence forms an observation sequence that

encodes both motion and hand pose data. For example, the time

series [<Sign_Me, None>, <Sign_Me, None>, <Sign_Me,

None>, <None, Up>, <None, Up>, <Sign_Fine, Up>, <None,

Up>, <Sign_Thumbs_Up, None>, <Sign_Thumbs_Up, None>,

<Sign_Thumbs_Up, None>] corresponds to the gesture "I Am

Fine" When converted into an observation sequence, it results

in [4, 4, 4, 0, 0, 0, 5, 5, 5]. A visual representation of this

gesture is provided in Fig. 11.

Fig. 11: 3 frames of Gesture “I Am Fine”.

The gesture recognition in this model makes use of 12 HMM

chains, where each chain is used for a particular gesture. The

number of hidden states per chain is derived from breaking

down the gesture into a sequence of hand poses and the

transition between them. For instance, as illustrated in Fig. 11,

the "I Am Fine" gesture consists of three states: the ‘sign_me’

hand pose, the ‘sign_fine’ with ‘Upwards’ motion, and the

‘sign_thumbs_up’ hand pose.

Since all these HMM chains follow a left-to-right structure,

their initial state probabilities and transition probabilities are

similar to those depicted in Fig. 9. For an HMM with n hidden

states, the state transition probability matrix is of size n × n, and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42865 | Page 8

the emission probability matrix is of order n × 13. The emission

probability matrices were initially fixed according to empirical

probabilities, which were calculated by examining the

similarity between various hand poses and their nearest

corresponding motions. This is done to enhance the chances of

the HMM model converging to the global maximum during

training. This method enhances the likelihood of the HMM

model successfully converging to the global maximum during

training.

Once all parameters are initialized as outlined in [13], the

estimation and transition probabilities for the HMM chains are

trained using the Baum-Welch algorithm [13, 14]. Training is

conducted using a gesture database, the details of which are

provided in Section III. After training, a new observation

sequence is fed into the HMM chains, and the chain that

produces the highest score using the forward-backward

algorithm [13] is identified as the recognized gesture.

4.2.5.3 Temporal Segmentation

The gesture recognition module needs video segments with

only the target gesture. Without temporal segmentation, it is

impossible to recognize continuous gestures. To solve this, a

simple rule is used: if the hand goes out of the frame, it indicates

the end of the ongoing gesture, and recognition is done based

on the frame sequence captured. When the hand comes back

into the frame, it indicates the start of a new gesture. This rule

successfully performs temporal segmentation.

4.2.6 EXPERIMENTAL RESULTS

The results shown in this section were obtained using a

personal computer with 16GB RAM, an NVIDIA GTX 1650

GPU and 4GB of VRAM, and an AMD Ryzen 5 processor. The

operating system was Fedora Linux, and all implementations

were carried out using Python. Image processing and

classification were done using OpenCV, NumPy, and scikit-

learn.

The dataset employed in this study comprised 15 commonly

used ISL sentences, including:

"Are you free today?", "Can you repeat that, please?",

"Congratulations", "Help me, please", "I am fine", "I love you",

"Please come, Welcome", "Talk slower, please", "Thank you",

"What happened?", "What are you doing?", "What do you do?",

"How are you?", "No" and "Yes".

For effective hand pose classification, an appropriate grid size

had to be determined for feature extraction. We experimented

with six different grid sizes—5×5, 10×10, 10×15, 15×15,

15×20, and 20×20—to extract features from the training data.

These attributes, which had been extracted, were then applied

to train the k-NN classifier. Identical grid dimensions were

applied to the test data, and classification correctness was

quantified by comparing extracted features with the trained k-

NN model.

(3)

An optimal grid dimension should form distinctive clusters of

hand poses so that the k-NN classifier would be able to identify

them accurately. The accuracy of the classifier was obtained by

using Equation (3), and the results of the various grid sizes were

compared in Figure 12. From the findings, the best accuracy of

99.71% was recorded by the 10×10 grid and hence was chosen

to perform further feature extraction. The average time required

to extract features from an image of size 300×300 using a

10×10 grid was approximately 1 millisecond.

Fig. 12: Comparison of accuracy of k-NN classification on features extracted
using various grid sizes on hand poses’ data.

The testing dataset was 30% of the total dataset, and

classification performance was analyzed using a confusion

matrix, shown in Figure 13. The confusion matrix indicates that

the model accurately distinguished between different hand

poses. Table I presents the time taken per frame for each phase

of the system. Based on these timings, our application achieves

a frame rate of approximately 5.3 FPS.

Sr.

No

Phase Average Time

per Frame

(ms)

1 Data Transfer over WLAN 46.2

2 Skin Color Segmentation and

Morphological Operations

10.2

3 Face Detection and Elimination 90.8

4 Object Stabilization 12.8

5 Feature Extraction 7.2

6 Hand Pose Classification 1.9

Average Time per Frame 169.1

Once the gesture frames were processed, the time series data

was extracted for gesture recognition. The Hidden Markov

Model (HMM), consisting of 15 HMM chains (one for each

sentence in the dataset), was used for classification. The

average processing time for HMM-based gesture classification

was 3.7 ms per sequence.

A 10×10 grid and k-NN classifier were used to recognize

intermediate hand poses, similar to hand pose recognition. The

system was evaluated with 50 real-time trials per sentence

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42865 | Page 9

under good lighting conditions, with the sign demonstrator

wearing a full-sleeve shirt to avoid arm skin interference. With

an overall average accuracy of 97.2%, the confusion matrix

obtained from these tests (Fig. 13) indicates that the correct

classification rate exceeded 94%.

Fig. 13: Heatmap of Confusion matrix of ISL gestures.

These findings validate that the hand tracking and classification

achieved a level of precision sufficient to produce reliable time-

series data for sentence recognition using HMM.

5. INTEGRATING AI MODEL AND VIDEO CALL

FUNCTIONALITY INTO THE APPLICATION

We have created a React Native app that harmoniously

combines real-time AI-powered ISL recognition with video

calling functionality. Using WebSockets, the application

creates a peer-to-peer communication channel between two

peers, providing a seamless and continuous video call

experience.

For sign language recognition, the app takes 30 frames per

second, clusters them into 3-second video chunks. The chunks

are then sent to a middle-layer processor, where our AI model

inspects the frames and detects the gestures. The detected

gestures are then translated into text and immediately

forwarded to the peer on the other end, improving mutual

comprehension and communication.

While the AI recognizes the video frames in the backend,

normal communication happens seamlessly between the peers.

This means the audio and video continue as usual for both

users, and when a gesture is recognized, it is displayed to the

opposite peer who does not understand sign language.

6. FUTURE WORK

Shortly, we plan to develop the precision and performance of

AI-based ISL recognition through additional advanced deep

models designed for real-time operation. To enhance the

gesture recognition process, we shall increase the volume of

our database by including varied types of ISL gestures as well

as structures of sentences for greater compatibility in varying

signing forms.

The second area of importance for future development is the

implementation of AI-based gesture prediction algorithms,

enabling the system to predict and interpret gestures even

before the completion of a complete motion pattern. This will

further improve real-time interaction and decrease processing

lag. We will also explore the application of edge AI computing

to reduce dependence on cloud processing, such that the system

becomes more efficient and privacy-focused.

Furthermore, improved low-latency support across all network

conditions will make it further accessible.

7. CONCLUSIONS

This work proposes an AI-driven ISL recognition system

integrated with live video calling to facilitate seamless

communication between signers and non-signers. With 30

frames per second recording and segmentation into 3-second

blocks, our AI model processes gestures in the background in a

seamless way while providing unbroken video and audio

communication. The identified gestures are translated into text-

based equivalents, making conversations inclusive and

accessible.

By using grid-based fragmentation and k-NN classification, we

obtained a mean accuracy of 97.2%, proving the efficiency of

our solution. The use of WebSocket-based communication

guarantees low-latency, real-time, peer-to-peer interaction. Our

system maintains a frame rate of 5.3 FPS, with a good balance

of accuracy and performance for fluency in user experience.

By filling the gap between signers and non-signers, our app is

an effective instrument for inclusive communication. With

ongoing improvements in gesture prediction, speech

integration, and multi-platform optimization, this system can

potentially transform AI-powered sign language translation and

render digital conversation truly barrier-free.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to the research

community and open-source developers whose contributions

have been invaluable to this work. Their tools and frameworks,

including React Native, OpenCV, and NumPy, played a

crucial role in the development of this project.

I also acknowledge the work of Kartik Shenoy, Tejas

Dastane, Varun Rao, and Devendra Vyavaharkar from the

Department of Computer Engineering, K. J. Somaiya

College of Engineering, University of Mumbai. Their

research paper, "Real-time Indian Sign Language (ISL)

Recognition", provided key insights that helped shape my

approach and methodology.

A special thanks to my friends, peers, and family for their

constant support, encouragement, and helpful discussions

throughout this process.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42865 | Page 10

REFERENCES

1. C. K. M. Lee, K. K. H. Ng, C.-H. Chen, H. C. W. Lau, S. Y.

Chung, and T. Tsoi, “American sign language recognition

and training method with recurrent neural network,” Expert

Systems with Applications, vol. 167, p. 114403, Apr. 2021,

doi: 10.1016/j.eswa.2020.114403.

2. D. Kothadiya, C. Bhatt, K. Sapariya, K. Patel, A.-B. Gil-

González, and J. M. Corchado, “Deepsign: Sign Language

Detection and Recognition Using Deep Learning,”

Electronics, vol. 11, no. 11, p. 1780, Jun. 2022, doi:

10.3390/electronics11111780.

3. G. Arun Prasath and K. Annapurani, “Prediction of sign

language recognition based on multi layered CNN,”

Multimedia Tools and Applications, vol. 82, no. 19, pp.

29649–29669, Mar. 2023, doi: 10.1007/s11042-023-14548-

1.

4. M. A. As’ari, N. A. J. Sufri, and G. S. Qi, “Emergency sign

language recognition from variant of convolutional neural

network (CNN) and long short term memory (LSTM)

models,” International Journal of Advances in Intelligent

Informatics, vol. 10, no. 1, p. 64, Feb. 2024, doi:

10.26555/ijain.v10i1.1170.

5. P. Sharma, D. Tulsian, P. Sharma, and N. Nancy, “Indian

Sign Language Generation using Natural Language

Processing and Audio Speech,” Research Square Platform

LLC, Jun. 2022. Accessed: Feb. 11, 2025. [Online].

Available: https://doi.org/10.21203/rs.3.rs-1676438/v1

6. H. Wang, “Overview of Sign Language Translation Based

on Natural Language Processing,” ITM Web of Conferences,

vol. 70, p. 02010, 2025, doi:

10.1051/itmconf/20257002010.

7. A. Baihan, A. I. Alutaibi, M. Alshehri, and S. K. Sharma,

“Sign language recognition using modified deep learning

network and hybrid optimization: a hybrid optimizer (HO)

based optimized CNNSa-LSTM approach,” Scientific

Reports, vol. 14, no. 1, Oct. 2024, doi: 10.1038/s41598-024-

76174-7.

8. K. Shenoy, T. Dastane, V. Rao, and D. Vyavaharkar, “Real-

time Indian Sign Language (ISL) Recognition,” in 2018

9th International Conference on Computing,

Communication and Networking Technologies (ICCCNT),

IEEE, Jul. 2018, pp. 1–9. Accessed: Feb. 11, 2025. [Online].

Available: https://doi.org/10.1109/icccnt.2018.8493808

9. Y. Xiao et al.., “Low-Latency Video Conferencing via

Optimized Packet Routing and Reordering,” in 2024

IEEE/ACM 32nd International Symposium on Quality of

Service (IWQoS), IEEE, Jun. 2024, pp.. 1–10. Accessed:

Feb. 19, 2025. [Online]. Available:

https://doi.org/10.1109/iwqos61813.2024.10682858

10. Z. H. Al-Tairi, R. W. Rahmat, M.I. Saripan and P.S.

Sulaiman, “Skin Segmentation Using YUV and RGB Color

Spaces,” J Inf Process Syst, vol. 10, no. 2, pp. 283-299, June

2014.

11. B. C. Ennehar, O. Brahim, and T. Hicham, “An appropriate

color space to improve human skin detection,” INFOCOMP

Journal of Computer Science, vol. 9, no. 4, pp. 1-10, 2010.

12. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O.Grisel et al., “1.6. Nearest Neighbours – scikit-

learn 0.19.1 documentation,”2011. [Online]. Available:

http://scikit-

learn.org/stable/modules/neighbors.html#nearest-neighbor-

algorithms. [Accessed: 12- Sep- 2017].

13. L. R. Rabiner, “A Tutorial on Hidden Markov Models and

Selected Applications in Speech Recognition,” Proceedings

of the IEEE, vol. 77, no. 2, February 1989.

14. L. Baum, “An Inequality and Associated Maximization

Technique in Statistical Estimation for Probabilistic

Functions of Markov Process,” Inequalities III: Proceedings

of the Third Symposium on Inequalities, ssvol. 3, pp. 1-8,

1972.

15. C. Vogler, D. Metaxas, “Handshapes and movements:

Multiple channel ASL Recognition,” Gesture-Based

Communication in Human- Computer Interaction, pp. 247-

258, 2004.

http://www.ijsrem.com/
https://doi.org/10.21203/rs.3.rs-1676438/v1

