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Abstract - Both hearing and deaf people commonly face 

major communication hurdles in their daily lives. To solve, this 

study presents a real-time video calling system that uses ai 

model to recognize Indian Sign Language (ISL). Peers are 

connected via WebSockets, and video data is shared with the 

AI model for identification. Our approach captures 30 frames a 

second and buffers them as groups of 3 seconds that a backend 

AI model interprets. The application using grid fragmentation-

based splitting and k-NN prediction detects the hand 

movements very accurately and translates these movements to 

textual equivalents that other peers uses. In the meantime, 

regular video and audio communication proceeds 

uninterrupted, providing a natural conversation experience. 

The system was tested with 15 normal ISL sentences with an 

average accuracy of 97.2%. Performance measurement is 

reflected in a frame rate of 5.3 FPS, maximizing real-time 

interaction and processing efficiency. Future development will 

be in improving gesture prediction, increasing the dataset, and 

implementing speech-to-text capabilities to increase 

accessibility further. By integrating AI-powered sign language 

recognition with video calling, the app acts as a bridge between 

the deaf and hearing communities and fosters inclusivity and 

accessibility in digital communication. 

 

1. INTRODUCTION  

 
Indian Sign Language (ISL) is a visual language used by 

people with hearing and speech impairments to communicate 
with others through hand signs and gestures.  Sign language is 
the mixture of facial expressions, hand gestures and body 
posture. It portrays the inner feelings of the person just like any 
other spoken language. There is a lack of research on ISL that 
addresses the challenges of these individuals. 

The challenge is to close this communication gap. Despite 
specialised training in ISL (Indian Sign Language) can enable 
individuals to interact with the hearing- and speech-impaired, 
it is unrealistic to anticipate that the general populace will learn 
sign language. Thus, developing systems that can convert sign 
language into spoken language has emerged as a key area of 
study. 

Existing research is mostly focused on popular sign languages 
like ASL (American Sign Language), Chinese Sign Language, 
etc. However, because of its complexity, there is less research 
on Indian Sign Language. This paper proposes to fill this gap 
by presenting a method for real-time ISL identification and its 
integration into video interactions to improve remote 
communication.  

Given the complexity of ISL, our initial focus is on recognising 
numbers and alphabets and using those alphabets to form 
complete sentences with meaning. There exist 33 unique hand 
gestures (10 for digits and 23 for letters), as displayed in Fig. 1. 

This paper examines the use of machine learning and natural 
language processing (NLP) to convert gestures into structured 
text and subsequently into spoken language. It also addresses 
potential obstacles in the process, including latency and 
preserving of grammatical sequence for precise translation. 

 

Fig. 1: Hand Gestures in ISL (Indian Sign Language) 

 
In the following sections, we dive into the technical 
components of this system, including gesture detection 
algorithms, text-to-speech integration, and video call 
infrastructure. We also discuss the challenges encountered in 
the development process and propose solutions for overcoming 
them. This research focuses on developing a system capable of 
recognising Indian Sign Language in a video call and 
transcribing it into voice in real-time. 

 

2. RESEARCH MOTIVE 

 
    The goal of this research is to reduce the communication gap 
between the deaf and mute communities and the rest of society 
by integrating sign language recognition with video calls. 
While many existing studies focus only on recognizing signs 
and converting them into text or voice, they do not address 
virtual communication systems. In the contemporary world, 
where the majority of communication occurs online, a viable 
solution for deaf and mute individuals to engage in such 
contexts is absent. Our objective is to develop a hybrid model 
that recognises signs and gestures in a video call and then 
processes them through an algorithm that maintains the 
sequence using NLP (Natural Language Processing). 
Moreover, the proposed approach enables individuals with 
hearing and speech problems to fully participate in society and 
communicate effectively, ultimately promoting equal 
opportunities and accessibility for all. 

3. LITERATURE REVIEW 

 
     Some of the recent literature that can help us to build the 

proposed system is discussed below. 
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[1]C. K. M. Lee and K. K. H. Ng proposed an RNN 

identification and training methodology for ASL research. The 

study shows how successfully a Long-Short Term Memory 

(LSTM) Recurrent Neural Network and the k-Nearest-

Neighbor (KNN) approach classify ASL alphabets. With an 

accuracy of 99.44% in identifying ASL alphabets utilising 

characteristics like sphere radius, finger placements, and angles 

between fingers, the model showed the potential of real-time 

sign language applications. However, the primary focus of this 

research is on instructional applications rather than practical 

video call communication technologies. 

 

[2]Kothadiya et al. introduced a deep learning-based model for 

Indian Sign Language (ISL) recognition using LSTM (Long-

Short Term Memory) and GRU (Gated Recurrent Unit) 

networks. By employing four different sequential combinations 

of LSTM and GRU layers, the proposed model attained an 

accuracy of 97% on 11 different ISL (Indian Sign Language) 

signs using the IISL2020 dataset. This work emphasizes the 

significance of deep learning models in improving sign 

language detection but does not address real-time 

communication challenges in virtual environments. 

 

[3]After analyzing the challenges of real-time sign language 

identification, Arun Prasath and Annapurani proposed an end-

to-end multi-layer convolutional neural network (ML-CNN) 

solution. The purpose of this research is to utilize the Indian 

Sign Language database and perform the operation that 

converts signs to spoken output. The proposed ML-CNN model 

outperformed more traditional techniques like BLSTM and 

HMM with a prediction accuracy of 87.5%.  

 

[4]Asari et al.. developed a hybrid-based LSTM-CNN model 

for the detection of critical signs. Based on their research, a 

VGG-19 + LSTM architecture can perform better than 

BLSTM-based systems in terms of accuracy, achieving 

96.39%. Their research shows how successfully LSTM-based 

models preserve sign sequences to maintain fluency during live 

interactions. 

 

[5]Sharma and Tulsian proposed an audio-to-sign language 

translation system for Indian Sign Language. The primary 

objective of this system is to generate appropriate sign language 

gestures by comparing the input text or audio with a database 

of ISL (Indian Sign Language) video gestures. They used 

multiple NLP techniques to increase the accuracy of the 

system. This research mostly focused on converting speech to 

sign motion. 

 

[6]Hanmo Wang's research explores the advancements of sign 

language. He discussed the integration of computer vision and 

natural language processing to improve the result of the model 

when it converts videos into spoken language texts. This 

research underscores the necessity of combining CV and NLP 

techniques to improve sign language processing, aligning with 

the proposed approach of integrating neural networks and NLP 

for real-time communication in video calls. 

 

[7]A recent study by Abdullah Baihan and  Sunil Kumar 

Sharma focused on addressing the challenges of static and 

dynamic sign language recognition (SLR) using a modified 

deep learning and hybrid optimization approach. The study 

highlights the difficulty in creating a high-accuracy model that 

can recognize continuous signs independent of the signer due 

to variations in speed and duration. To overcome these issues, 

the proposed CNNSa-LSTM model integrates Convolutional 

Neural Networks (CNN) for spatial analysis, Self-Attention 

(SA) mechanisms for focusing on relevant features, and Long-

Short-Term Memory (LSTM) to model temporal dependencies 

effectively. Motion features are extracted using the optical flow 

approach, while spatial and geometric information is gathered 

using the Visual Geometry Group 16 (VGG16). To improve 

performance, a Hybrid Optimizer (HO) combines the 

Pathfinder Algorithm (PFA) with the Hippopotamus 

Optimization Algorithm (HOA). The proposed model's 

implementation outperforms existing methods with high 

precision (98.5%), sensitivity (98.2%), and accuracy (98.7%). 

 

[8]A real-time Indian Sign Language (ISL) recognition system 

using grid-based features has been developed to enhance 

communication for hearing and speech-impaired individuals. 

Unlike existing methods that lack real-time performance or 

accuracy, this system effectively identifies 33 hand poses and 

12 gestures using a smartphone camera, eliminating the need 

for external hardware. It uses Face Detection, Object 

Stabilization, and Skin Color Segmentation to track hands, 

while Hidden Markov Models (HMM) identify gesture 

sequences and k-Nearest Neighbors (k-NN) classify hand 

positions. The system demonstrates its effectiveness and 

dependability in real-time applications with an accuracy of 

99.7% for static postures and 97.23% for motions. 

 

 

4. IMPLEMENTATION 

 
   The term sign language recognition in video calls may seem 

complex, but breaking it down into distinct components makes 

it more feasible for implementation. There are three main 

components required to develop a system that enables sign 

recognition over video calls and generates the desired output. 

These components include implementing video calls, 

processing video frames through a pre-trained AI model, and 

passing the output through an NLP-based model to reconstruct 

the data into a communicable format. Therefore, the first step 

is to gather input data from video calls. We begin by focusing 

on the video call system's implementation, latency 

optimisation, and guaranteeing smooth network connectivity 

between various devices. 

 

 4.1 Implementation of Video call 

 
A low-latency video calling system is as crucial as the AI model 

for real-time sign language recognition. The system needs to 

capture video frames efficiently, send them with low latency, 

and provide stable connectivity under various network 

conditions. This is facilitated by WebRTC, which provides 

peer-to-peer (P2P) video communication with adaptive 

networking protocols and real-time optimization. Here is a brief 

explanation of how video calls operate, which can also help in 

more successfully implementing the AI model into video chats. 

 

4.1.1 Network Protocols for Real-Time Video Calls 

 
Reliable and efficient video transmission in real-time 

communication systems necessitates the use of specialized 

network protocols. In order to ensure synchronized, low-

http://www.ijsrem.com/
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latency, and secure video chat transmission, the following 

protocols are essential: 

 

1. Real-Time Transport Protocol (RTP): Enables the 

delivery of audio and video information over IP 

networks, including timestamping and sequence 

numbering to ensure synchronization and reduce 

packet loss. 

 

2. Datagram Transport Layer Security (DTLS): 

Provides secure key exchange for WebRTC-based 

communications, providing media integrity and 

eavesdropping protection. 

 

3. Interactive Connectivity Establishment (ICE): 

Assists in NAT traversal by selecting the most 

efficient network path between peers, improving 

connectivity in varying network conditions.  

 

These protocols combined optimize the performance of 

WebRTC-based video calls to deliver adaptive bitrate 

streaming, secure transport, and low latency, which are 

essential for real-time sign language recognition via video calls. 

 

4.1.2 System Architecture for Video Transmission 

 
The video-calling system adopts a three-layer architecture to 

capture, send, and render video streams. 

 

1. The Capture & Encoding Layer takes the task of 

capturing and optimizing the video frames to be sent 

out. The video is captured on the user's device at 30 

FPS through the use of React Native Vision Camera 

to provide stable input to the subsequent processing. 

In case to reduce the system's bandwidth usage, we 

can consider compression techniques like VP9 or 

H.265 (HEVC), which are used to compress video 

frames while maintaining quality.  

 

2. The Transmission Layer handles real-time data 

transfer and network optimization. WebRTC, in 

combination with ICE (Interactive Connectivity 

Establishment), establishes the most efficient 

transmission route between devices. It uses 

STUN/TURN servers to support NAT traversal and 

relay traffic where peer-to-peer communication is not 

possible directly. Media streams are secured using 

SRTP (Secure Real-Time Transport Protocol) for 

secure transmission support, and DTLS (Datagram 

Transport Layer Security) supports secure key 

exchange to avoid eavesdropping of data and 

unauthorized access. 

                                                                                                                                                                                               

3. The Receiving and Processing Layer decodes video 

streams and prepares them for AI analysis. It reduces 

latency and guarantees correct frame sequencing for 

seamless processing. The AI model analyzes extracted 

frames in real time, identifying motions and 

translating them into speech or text. Organizing the 

process in this manner makes video calls smooth 

without compromising the quality of visuals required 

for precise sign language interpretation. 

 

4.1.3 WebRTC: Internal Core Components 

 
WebRTC is a real-time communication framework that enables 

P2P video calling with minimal latency. The process involves: 

 

Devices communicate through the Session Description 

Protocol (SDP) to agree on connection parameters after they 

capture and compress video frames. This is succeeded by the 

Interactive Connectivity Establishment (ICE) protocol through 

STUN/TURN servers to find the optimal transmission path.  

Datagram Transport Layer Security (DTLS) provides safe key 

exchange between two devices, while safe Real-Time 

Transport Protocol (SRTP) encrypts media streams once the 

connection is made. 

 

4.1.4 ICE Servers & Connection Establishment 

 
To determine the most efficient way of connecting users, 

WebRTC makes use of ICE (Interactive Connectivity 

Establishment). It utilizes: 

 

1. STUN (Session Traversal Utilities for NAT) 

- Helps devices discover their public IP for a 

direct connection. 

- Used when both users are on open networks. 

 

2. TURN (Traversal Using Relays around NAT) 

 

- Serves as a relay server when a direct 

connection is impossible. 

- Used when one or both users are behind 

firewalls or restrictive NATs. 

 

3. Direct P2P Connection 

 

- Wherever available, WebRTC allows a 

direct link between users, avoiding relay 

servers for reduced latency.  

 

4.1.5 Low-Latency Video Call Optimizations 
 

For enhancing performance and stability, the following 

optimizations are utilized: 

 

1. Adaptive Bitrate Streaming (ABR) 

 

- Dynamically adjusts video quality based on 

network conditions. 

- Prevents buffering or lag by scaling between 

720p, 480p, and 360p. 

 

 

2. Congestion Control (Google BBR Algorithm) 

 

- Dynamically manages bandwidth to avoid 

packet loss.  

 

       The formula for congestion control: 

 

       𝐶𝑤𝑛𝑑 = 𝑚𝑖𝑛( 𝐶𝑤𝑛𝑑𝑚𝑎𝑥  , 𝐵𝑎𝑛𝑑𝑤𝑖𝑡ℎ ×  𝑅𝑇𝑇𝑚𝑖𝑛 )  

  

In Fig. 2, the WebRTC architecture illustrates the process of 

video call operations, detailing the key components and their 

interactions. 
 

http://www.ijsrem.com/
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Fig. 2: WebRTC Architecture and Workflow 

 

Now we are moving forward to our second core component 

which is our AI model that recognises the frames of gestures 

and converts them to text messages. 

 

4.2 Implementation of the AI Model 

 
From the Video call media stream, the gestures and signs 

performed by an individual using Indian Sign Language (ISL) 

are extracted, and their frames are transmitted to a server for 

processing. Before these frames can be used for recognizing 

gestures and hand poses, they must undergo pre-processing. 

Face removal, stabilization, and skin color segmentation—

which removes background details—begin this procedure. 

Then, morphological operations are applied to minimize noise. 

The system extracts and tracks the person’s hand in each frame. 

 

For hand pose recognition, relevant features are extracted from 

the hand and input into a classifier. The identified hand pose 

class is then transmitted back to the Android device. When 

classifying hand gestures, intermediate hand poses are 

recognized, and a pattern is established using these recognized 

poses and their sequential motion. This pattern is represented 

in tuples and subsequently encoded for Hidden Markov Model 

(HMM) processing. The HMM chain that achieves the highest 

score using the forward-backward algorithm determines the 

recognized gesture for the given pattern. An overview of this 

process is illustrated in Fig. 3. 

 

 
 
Fig. 3: Flow diagram for Gesture Recognition. 

 

4.2.1 Dataset used 

 
For the digits 0 to 9 in ISL, an average of 1000 images per digit 

was captured. For ISL letters, around 200 images were taken 

for each letter, making up a total of 15,200 images. Most of 

these were captured using smartphone cameras, while a smaller 

number came from webcams. The images vary in resolution. 

 

For training HMMs, 50 gesture videos were captured for each 

of the 15 one-handed pre-selected gestures (Are you Free 

Today, Can you repeat that please, Congratulations, Help Me 

Please, I am fine, I love you, Please come, Welcome, Talk 

slower please, Thank You, What Happened, What are you 

doing, What do you do, how are you, no, yes). Each video 

consists of 50 sets, where some sets use the left hand and others 

use the right hand.  

 

4.2.2 Pre-processing 

 

1. Face detection and elimination  
 In Indian Sign Language (ISL), hand poses and 

gestures are primarily represented by specific hand movements, 

making facial features unnecessary. Additionally, the presence 

of the face can make hand extraction more challenging. To 

solve this, face detection was carried out using Histogram of 

Oriented Gradients (HOG) descriptors [8], followed by a linear 

Support Vector Machine (SVM) classifier. This approach 

utilizes an image pyramid and a sliding window technique to 

detect faces in an image accurately, as described in [9]. 

 

By combining HOG feature extraction with a linear classifier, 

the false positive rate is reduced by more than an order of 

magnitude compared to the most efficient Haar wavelet-based 

detector [9]. Once the face is detected, the contour of the face 

region is identified, and the entire face-neck area is blacked out, 

as illustrated in Fig. 4. 

http://www.ijsrem.com/
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Fig. 4: Face detection and elimination operation 

 

2. Skin colour segmentation  
To detect skin-like regions within an image, skin 

colour segmentation is performed using the YUV and RGB 

colour models, which yield highly accurate results [8]. This 

model was selected as it outperformed other colour spaces, 

including HSV, YCbCr, RGB, YIQ, YUV, and various 

combinations of these [10]. The frame is first converted from 

RGB to YUV colour space using the transformation equation 

provided in [11], as specified in equation (1). 

 

(1) 

 

The resulting segmentation mask effectively minimizes noise 

and reduces false positive detections. A visual representation of 

the segmentation mask is provided in Fig. 5. 

 

3. Morphology operations 
Morphological operations were applied to eliminate 

any noise produced during the skin colour segmentation 

process. There are two types of errors in skin colour 

segmentation: 

1. False positives – Non-skin pixels mistakenly 

classified as skin. 

2. False negatives – Skin pixels incorrectly classified as 

non-skin. 

Morphology involves 2 basic sub-operations: 

1. Erosion – Reduces the size of active regions (white 

areas) in the mask 

2. Dilation – Expands the size of active regions (white 

areas) in the mask 

When non-skin regions are mistakenly picked up as skin, we 

use a technique called Morphological Opening. It starts by 

"eroding" away the small, unwanted areas and then "dilates" to 

restore the important details. To correct false negatives (when 

actual skin areas are missed), Morphological Closing is 

applied, doing dilation first, then erosion. The results of these 

operations can be seen in Fig. 5. 

 
 
Fig. 5: Skin segmentation mask and effect of morphology operations. 

(Left) Segmentation mask; (Right) Mask after application of 

Morphology operations. 

 

4. Object Alignment Using Facial Landmarks 
  To accurately track hand motion, maintaining a stable 

camera position is essential. However, hand tremors or 

unintentional movements by the person recording the video can 

introduce false motion detections. This issue is addressed 

through object stabilization. 

 

Assuming that the sign demonstrator’s face is consistently 

present in the gesture video, facial tracking is used to stabilize 

hand movements. The tracker is initialized using coordinates 

obtained from the face detection process before the face is 

removed. It then identifies the facial region and compensates 

for any detected motion by shifting the entire frame in the 

opposite direction of the face’s movement. 

 

For tracking, the system employs the Kernelized Correlation 

Filter (KCF) tracker, implemented in the OpenCV library, to 

follow the face in each frame. This tracking operation is applied 

before the face is blacked out.  

 

4.2.3 Hand extraction and tracking 

 
Since ISL hand poses and gestures rely entirely on hand 

movements, detecting and tracking the hand is a vital part of 

the system. After pre-processing each frame, a black-and-white 

image is generated, where white areas represent skin. Facial 

features are excluded, leaving only the hand and other skin-like 

regions from the original image. 

 

In each frame, either one hand is visible or both hands are 

touching, ensuring that the most prominent contour belongs to 

the hand. To identify it, the system calculates the area of all 

contours in the frame and selects the largest one. Since the most 

dominant contour represents the hand, this extracted contour 

defines the hand region. 

 

 
Fig. 6: Importance of eliminating face before, hand extraction. 

 

Fig. 6 demonstrates why removing the face is essential in this 

process. If the face were not eliminated, it would likely be the 

largest contour detected, leading to misclassification as a hand, 

as shown in the figure. 

http://www.ijsrem.com/
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For tracking hand motion, the centroid of the hand is calculated 

in each frame. If there is movement of the hand, the coordinates 

of the centroid of the hand will change. The Slope of the line 

formed by the centroid of the hand in the current frame and the 

centroid of the hand in the previous frame is then determined. 

Based on the slope value, movement is classified as follows: 

 

● If -1 < slope < 1 and the x-coordinate increases, the 

hand moves left. 

 

● If -1 < slope < 1 and the x-coordinate decreases, the 

hand moves right. 

 

● If |slope| > 1 and the y-coordinate increases, the hand 

moves up. 

 

● If |slope| > 1 and the y-coordinate decreases, the hand 

moves down. 

 

Fig. 7 illustrates this slope-based motion tracking. It is 

important to note that the motion seen by the camera appears 

opposite to the actual movement performed by the sign 

demonstrator. The system leverages the OpenCV library to 

compute the contour area and track the centroid of the hand. 

 

 
 

Fig. 7: Determining hand motion using slope. 

 

To minimize tracking noise, the system places an imaginary 

circle with a 20-pixel radius around the previous hand centroid. 

If the new centroid is within this radius, the shift is treated as 

noise, and the movement is disregarded. In this case, the 

previous centroid stays the same for comparison. 

 

However, if the new centroid moves beyond the 20-pixel 

threshold, the shift is recognized as actual hand movement. 

When movement is detected, the radius is set to 7 pixels instead 

of 20 pixels until there is no movement, after which the radius 

is restored to 20 pixels. This use of an imaginary circle reduces 

noise to a greater extent and gives highly accurate tracking of 

hand movements. As discussed in [8].

 

 
 

Fig. 8: The hand pose ‘a’ in ISL fragmented by a 3x3 grid. 

 

4.2.4 Feature Extraction Through Grid-Based    

Segmentation Method 

 
In this method, based on the approach described in [8], the 

extracted hand sample is segmented into an M × N grid, 

resulting in M × N smaller regions. A feature value is computed 

for each region, collectively forming a feature vector consisting 

of M × N elements. The feature value for each section is 

calculated based on the proportion of the hand contour it 

contains, as described in Equation (2). 

 

  (2) 

 

If no hand contour is detected in a block, the feature value is 

assigned as 0. For illustration, Figure 8 shows a 3 × 3 grid 

applied to a sample. Because each position covers a different 

number of grid sections and fragmented areas, this technique is 

highly adaptable to various hand orientations. This allows the 

feature vector to accurately capture both the shape and position 

of the hand. 

 

To get a clearer picture of the extracted features, we applied 

Principal Component Analysis (PCA) and t-Distributed 

Stochastic Neighbor Embedding (t-SNE), following a similar 

approach to [8]. We began with a 10 × 10 grid, creating 100 

features per sample. First, PCA narrowed the features down to 

40, and then t-SNE shrank the data into two dimensions, 

making it easier to see and interpret. 

 

4.2.5 Classification of Gestures 

 
4.2.5.1  Identifying ISL hand poses using the k-NN 

algorithm 

 

When we were processing the data, we observed that the data 

had a tendency to group naturally, and some of the hand poses 

had occurred more than once in the groups. To classify such 

data efficiently, we required an algorithm that was capable of 

dealing with these kinds of patterns. K-Nearest Neighbors (k-

NN) suited the best as it performs efficiently with grouped data. 

 

For each frame in the live feed, the extracted hand undergoes 

feature extraction using the previously mentioned grid-based 

fragmentation technique. This process creates an M × N  

dimensional feature map. To classify a sample, we employ 

Euclidean distance to match the sample against stored data and 

select the k closest matches from the training model. 

 

http://www.ijsrem.com/
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A simple brute-force method for calculating the distance is to 

measure the Euclidean distance between the sample and each 

stored sample and then select the k closest. However, for larger 

datasets, more efficient methods like KD-tree and Ball Tree can 

help speed up the process. Brute force works well for small 

datasets, KD-tree is effective for low-dimensional data, and 

Ball Tree performs best for high-dimensional data [12]. 

 

Finally, the classifier determines the sample’s class based on 

the most frequently occurring class among its k nearest 

neighbors. 

 

4.2.5.2  Gesture Classification using HMM 

 

Gestures often exhibit slight variations, even when performed 

by the same individual. To accommodate these inconsistencies, 

a statistical model is required. Hidden Markov Models 

(HMMs) serve as an effective statistical approach for managing 

such variations [15]. HMMs are classified into two types: 

continuous and discrete. In a continuous HMM, the number of 

potential observation symbols in each component of the 

observation sequence is unlimited, while in a discrete HMM, it 

is finite. 

 

In addition, HMMs can be designed as ergodic or left-to-right. 

In a left-to-right HMM, the transitions are in one direction only, 

i.e., once the model moves to the next state, it cannot revert to 

a previous state, as shown in Fig. 10. Conversely, an ergodic 

HMM allows transitions between any state. The initial state 

probabilities (π) and transition probabilities associated with the 

left-to-right HMM are illustrated in Fig. 9. 

 

 
Fig. 9: HMM chain for gesture with 3 hidden states (E.g. Good 

Afternoon). 

 

The human brain interprets gestures as a sequence of 

intermediate hand poses combined with specific hand 

movements arranged in a defined order. Following this 

concept, ISL gestures are composed of stationary intermediate 

hand poses combined with the transitional movements linking 

them. As a result, this system implements a discrete left-to-right 

HMM, utilizing segmented hand centroid motion and pose 

classification results to identify the provided observation 

sequence as one of the 15 predefined gestures. 

 

The input for this HMM comes from an observation sequence 

extracted from the video feed. The total number of possible 

observation symbols is determined by the sum of the tracked 

movement directions and the intermediate stationary hand 

poses used during training. In this system, four-movement 

directions are tracked, and the model is trained with nine 

intermediate stationary hand poses, including ‘Thumbs Up,’ 

‘Sign Me,’ and ‘Fist,’ as illustrated in Fig. 10. 

 

 
Fig. 10: Thumbs_Up and Sign_Me stationery hand poses. 

 

The recognition of intermediate hand poses also employs a 

grid-based feature extraction method. This process is similar to 

identifying hand poses for letters and digits but is only 

performed when no movement is detected. As a result, there are 

a total of 13 possible observation symbols, meaning the 

observation sequence can contain values ranging from 0 to 12. 

 

At each frame, a tuple is generated in the format <S, M>, where 

M represents the hand's motion relative to the previous frame, 

and S denotes the classified hand pose if no movement is 

detected. When motion is detected, it is assigned a 

corresponding observation symbol—'Upwards' (0), 

'Rightwards' (1), 'Leftwards' (2), and 'Downwards' (3). If no 

motion is present, the detected hand pose is mapped 

accordingly based on a predefined mapping system. 

 

Thus, each frame contributes an observation symbol, and the 

entire video sequence forms an observation sequence that 

encodes both motion and hand pose data. For example, the time 

series [ <Sign_Me, None>, <Sign_Me, None>, <Sign_Me, 

None>, <None, Up>, <None, Up>, <Sign_Fine, Up>, <None, 

Up>, <Sign_Thumbs_Up, None>, <Sign_Thumbs_Up, None>, 

<Sign_Thumbs_Up, None> ] corresponds to the gesture "I Am 

Fine" When converted into an observation sequence, it results 

in [ 4, 4, 4, 0, 0, 0, 5, 5, 5 ]. A visual representation of this 

gesture is provided in Fig. 11. 

 

 
Fig. 11: 3 frames of Gesture “I Am Fine”. 

 

The gesture recognition in this model makes use of 12 HMM 

chains, where each chain is used for a particular gesture. The 

number of hidden states per chain is derived from breaking 

down the gesture into a sequence of hand poses and the 

transition between them. For instance, as illustrated in Fig. 11, 

the "I Am Fine" gesture consists of three states: the ‘sign_me’ 

hand pose, the ‘sign_fine’ with ‘Upwards’ motion, and the 

‘sign_thumbs_up’ hand pose. 

 

Since all these HMM chains follow a left-to-right structure, 

their initial state probabilities and transition probabilities are 

similar to those depicted in Fig. 9. For an HMM with n hidden 

states, the state transition probability matrix is of size n × n, and 
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the emission probability matrix is of order n × 13. The emission 

probability matrices were initially fixed according to empirical 

probabilities, which were calculated by examining the 

similarity between various hand poses and their nearest 

corresponding motions. This is done to enhance the chances of 

the HMM model converging to the global maximum during 

training. This method enhances the likelihood of the HMM 

model successfully converging to the global maximum during 

training. 

 

Once all parameters are initialized as outlined in [13], the 

estimation and transition probabilities for the HMM chains are 

trained using the Baum-Welch algorithm [13, 14]. Training is 

conducted using a gesture database, the details of which are 

provided in Section III. After training, a new observation 

sequence is fed into the HMM chains, and the chain that 

produces the highest score using the forward-backward 

algorithm [13] is identified as the recognized gesture. 

 

4.2.5.3  Temporal Segmentation 

 

The gesture recognition module needs video segments with 

only the target gesture. Without temporal segmentation, it is 

impossible to recognize continuous gestures. To solve this, a 

simple rule is used: if the hand goes out of the frame, it indicates 

the end of the ongoing gesture, and recognition is done based 

on the frame sequence captured. When the hand comes back 

into the frame, it indicates the start of a new gesture. This rule 

successfully performs temporal segmentation. 

 

4.2.6 EXPERIMENTAL RESULTS 

 
The results shown in this section were obtained using a 

personal computer with 16GB RAM, an NVIDIA GTX 1650 

GPU and 4GB of VRAM, and an AMD Ryzen 5 processor. The 

operating system was Fedora Linux, and all implementations 

were carried out using Python. Image processing and 

classification were done using OpenCV, NumPy, and scikit-

learn. 

 

The dataset employed in this study comprised 15 commonly 

used ISL sentences, including: 

"Are you free today?", "Can you repeat that, please?", 

"Congratulations", "Help me, please", "I am fine", "I love you", 

"Please come, Welcome", "Talk slower, please", "Thank you", 

"What happened?", "What are you doing?", "What do you do?", 

"How are you?", "No" and "Yes". 

 

For effective hand pose classification, an appropriate grid size 

had to be determined for feature extraction. We experimented 

with six different grid sizes—5×5, 10×10, 10×15, 15×15, 

15×20, and 20×20—to extract features from the training data. 

These attributes, which had been extracted, were then applied 

to train the k-NN classifier. Identical grid dimensions were 

applied to the test data, and classification correctness was 

quantified by comparing extracted features with the trained k-

NN model. 

 

(3) 

 

An optimal grid dimension should form distinctive clusters of 

hand poses so that the k-NN classifier would be able to identify 

them accurately. The accuracy of the classifier was obtained by 

using Equation (3), and the results of the various grid sizes were 

compared in Figure 12. From the findings, the best accuracy of 

99.71% was recorded by the 10×10 grid and hence was chosen 

to perform further feature extraction. The average time required 

to extract features from an image of size 300×300 using a 

10×10 grid was approximately 1 millisecond. 

 

 
Fig. 12: Comparison of accuracy of k-NN classification on features extracted 
using various grid sizes on hand poses’ data. 

 

The testing dataset was 30% of the total dataset, and 

classification performance was analyzed using a confusion 

matrix, shown in Figure 13. The confusion matrix indicates that 

the model accurately distinguished between different hand 

poses. Table I presents the time taken per frame for each phase 

of the system. Based on these timings, our application achieves 

a frame rate of approximately 5.3 FPS. 

 

Sr. 

No 

Phase Average Time 

per Frame 

(ms) 

 

1 Data Transfer over WLAN 46.2 

2 Skin Color Segmentation and 

Morphological Operations 

10.2 

3 Face Detection and Elimination 90.8 

4 Object Stabilization 12.8 

5 Feature Extraction 7.2 

6 Hand Pose Classification 1.9 

Average Time per Frame 169.1 

 

Once the gesture frames were processed, the time series data 

was extracted for gesture recognition. The Hidden Markov 

Model (HMM), consisting of 15 HMM chains (one for each 

sentence in the dataset), was used for classification. The 

average processing time for HMM-based gesture classification 

was 3.7 ms per sequence. 

 

A 10×10 grid and k-NN classifier were used to recognize 

intermediate hand poses, similar to hand pose recognition. The 

system was evaluated with 50 real-time trials per sentence 
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under good lighting conditions, with the sign demonstrator 

wearing a full-sleeve shirt to avoid arm skin interference. With 

an overall average accuracy of 97.2%, the confusion matrix 

obtained from these tests (Fig. 13) indicates that the correct 

classification rate exceeded 94%. 

 

 
Fig. 13: Heatmap of Confusion matrix of ISL gestures. 

 

These findings validate that the hand tracking and classification 

achieved a level of precision sufficient to produce reliable time-

series data for sentence recognition using HMM. 

 

5. INTEGRATING AI MODEL AND VIDEO CALL 

FUNCTIONALITY INTO THE APPLICATION 

 
We have created a React Native app that harmoniously 

combines real-time AI-powered ISL recognition with video 

calling functionality. Using WebSockets, the application 

creates a peer-to-peer communication channel between two 

peers, providing a seamless and continuous video call 

experience. 

 

For sign language recognition, the app takes 30 frames per 

second, clusters them into 3-second video chunks. The chunks 

are then sent to a middle-layer processor, where our AI model 

inspects the frames and detects the gestures. The detected 

gestures are then translated into text and immediately 

forwarded to the peer on the other end, improving mutual 

comprehension and communication. 

 

While the AI recognizes the video frames in the backend, 

normal communication happens seamlessly between the peers. 

This means the audio and video continue as usual for both 

users, and when a gesture is recognized, it is displayed to the 

opposite peer who does not understand sign language. 

 

6. FUTURE WORK 

 
Shortly, we plan to develop the precision and performance of 

AI-based ISL recognition through additional advanced deep 

models designed for real-time operation. To enhance the 

gesture recognition process, we shall increase the volume of 

our database by including varied types of ISL gestures as well 

as structures of sentences for greater compatibility in varying 

signing forms. 

 

The second area of importance for future development is the 

implementation of AI-based gesture prediction algorithms, 

enabling the system to predict and interpret gestures even 

before the completion of a complete motion pattern. This will 

further improve real-time interaction and decrease processing 

lag. We will also explore the application of edge AI computing 

to reduce dependence on cloud processing, such that the system 

becomes more efficient and privacy-focused. 

 

Furthermore, improved low-latency support across all network 

conditions will make it further accessible. 

 

7. CONCLUSIONS 

 
This work proposes an AI-driven ISL recognition system 

integrated with live video calling to facilitate seamless 

communication between signers and non-signers. With 30 

frames per second recording and segmentation into 3-second 

blocks, our AI model processes gestures in the background in a 

seamless way while providing unbroken video and audio 

communication. The identified gestures are translated into text-

based equivalents, making conversations inclusive and 

accessible. 

 

By using grid-based fragmentation and k-NN classification, we 

obtained a mean accuracy of 97.2%, proving the efficiency of 

our solution. The use of WebSocket-based communication 

guarantees low-latency, real-time, peer-to-peer interaction. Our 

system maintains a frame rate of 5.3 FPS, with a good balance 

of accuracy and performance for fluency in user experience. 

 

By filling the gap between signers and non-signers, our app is 

an effective instrument for inclusive communication. With 

ongoing improvements in gesture prediction, speech 

integration, and multi-platform optimization, this system can 

potentially transform AI-powered sign language translation and 

render digital conversation truly barrier-free. 
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