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ABSTRACT 
Continuous miniaturization in VLSI fabrication has enhanced integration density and computational capability but has 

also intensified challenges related to energy efficiency and thermal reliability. Conventional design strategies such as 

voltage scaling, clock gating, power gating, and multi-threshold CMOS remain vital for managing dynamic and leakage 

power. However, growing circuit complexity and heterogeneous workloads limit the effectiveness of traditional 

methods alone. Consequently, leading semiconductor industries are investing extensively in low-power design research, 

highlighting its industrial importance. 

 

This paper presents an integrated approach that combines traditional low-power strategies with Artificial Intelligence 

(AI) and Machine Learning (ML) to achieve higher optimization efficiency in VLSI chips. ML-based predictive models 

estimate power-performance trade-offs and optimize resource allocation, while reinforcement learning dynamically 

controls parameters such as voltage and frequency. The comparative evaluation demonstrates that this hybrid integration 

improves scalability, flexibility, and efficiency—signaling a promising direction for next-generation VLSI design. 
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1. INTRODUCTION 

VLSI technology enables the integration of millions of transistors on a single chip, driving continuous improvements in 

performance and functionality. Yet, as devices scale, power consumption becomes a major concern affecting thermal 

stability and overall reliability. Power dissipation in VLSI circuits generally consists of dynamic power—caused by signal 

transitions and capacitive charging—and static or leakage power, which stems from subthreshold and gate leakage 

currents. 

Accurate power estimation remains crucial. Circuit-level tools like SPICE deliver high accuracy but are computationally 

demanding for large designs, while RTL-level methods are faster but less precise. Classic techniques such as voltage 

scaling, clock gating, power gating, and multi-threshold CMOS continue to play key roles, though their impact diminishes 

as circuits grow in complexity. 

To address these limitations, machine learning has emerged as a data-driven solution for optimizing power, performance, 

and area (PPA). Predictive models such as random forests, gradient boosting, and neural networks have shown strong 

capability in estimating power directly from design attributes. Reinforcement learning further allows real-time 

https://ijsrem.com/
mailto:1mlsharma@mait.ac.in
mailto:2satvirdeswal@hotmail.com
mailto:3sunilkumar@mait.ac.in
mailto:3sunilkumar@mait.ac.in
mailto:4chittralrw@gmail.com
mailto:5garv9325@gmail.com
mailto:5garv9325@gmail.com


             International Journal of Scientific Research in Engineering and Management (IJSREM) 
                         Volume: 09 Issue: 11 | Nov - 2025                               SJIF Rating: 8.586                                       ISSN: 2582-3930                                                                                                        

  

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM53987                                              |        Page 2 
 

optimization of design parameters like placement and gate sizing, supporting adaptive trade-off management across large 

design spaces. Integrating these ML methods with established circuit-level approaches offers a scalable path toward low-

power, high-efficiency VLSI systems. 

. 

 

 

2. Machine Learning and its implication : 

 

        Machine Learning (ML) refers to computational approaches that identify relationships within data and enhance 

performance through experience rather than explicit programming. ML techniques include supervised, unsupervised, and 

reinforcement learning. 

In supervised learning, algorithms such as regression models, decision trees, SVMs, and KNN learn mappings from 

labeled data to predict unknown outcomes. Unsupervised learning methods like clustering (K-Means) and 

dimensionality reduction (PCA) reveal hidden structures in unlabeled datasets. Reinforcement learning (RL) involves 

an agent improving its strategy through interaction and reward feedback, proving effective in dynamic optimization tasks 

such as energy control in VLSI systems. 

Advances in GPUs and high-performance computing have expanded ML applications across electronic design automation 

(EDA), enabling its integration with conventional low-power methodologies to enhance predictive accuracy and 

automation. 

 

3. Previously and Currently used Low-Power Techniques used 

Early VLSI circuits employed strategies such as clock gating, logic optimization, and transistor sizing to limit dynamic 

power consumption. As technology entered deep-submicron regimes, leakage power became significant, leading to the 

adoption of power gating and multi-threshold CMOS (MTCMOS). Power gating disconnects inactive modules from 

the supply rail to reduce leakage, while MTCMOS uses high-threshold transistors in idle states and low-threshold ones in 

active operation to balance performance and power. 

Dynamic Voltage and Frequency Scaling (DVFS) leverages the quadratic dependence of dynamic power on supply 

voltage, lowering voltage and frequency under light workloads to conserve energy. Modern systems often combine several 

approaches—voltage islands, substrate biasing, operand isolation, and DVFS—to achieve optimal performance–

efficiency trade-offs across diverse SoC applications. 
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4. Methodologies in ML-Based Power Analysis 

Integrating machine learning into the VLSI design process seeks to enhance traditional optimization workflows rather 

than replace them. The growing complexity of design spaces and the limitations of purely analytical models have 

encouraged researchers to embed ML models at multiple abstraction levels—ranging from pre-synthesis estimation to 

post-layout optimization. Each level offers unique trade-offs in data granularity, accuracy, and computational cost. The 

following subsections present three prominent approaches—graph-based neural networks, attribute-driven ensemble 

learning, and deep reinforcement learning—that together form a comprehensive framework for intelligent power analysis 

and optimization. 

4.1 Pre-Synthesis Estimation via Graph-Based Neural Networks 

 

Power estimation in the earliest design stages remains a persistent challenge because register-transfer-level (RTL) or 

behavioral descriptions provide little structural correlation with final physical layouts. Traditional high-level estimators 

either oversimplify switching activity or rely on exhaustive simulation, both of which compromise accuracy or efficiency. 

To bridge this gap, researchers have introduced graph-centric representations, most notably the Simple Operator Graph 

(SOG). The SOG translates the HDL into a fine-grained, bit-level graph whose nodes represent fundamental logic 

operations and storage elements. This structure captures the eventual synthesis topology while remaining abstract enough 

for early-stage analysis. Each node can be annotated with data such as toggle rates, capacitances, and load information 

extracted from technology libraries. 

These annotated graphs serve as direct input to Graph Convolutional Networks (GCNs), which learn complex spatial 

dependencies between circuit components. By propagating information through graph convolutions, a GCN can infer how 

local gate interactions contribute to global power consumption. When trained on diverse circuit datasets, such models 

have achieved prediction accuracies exceeding 90 % relative to detailed simulation benchmarks. The result is a fast, 

learning-based estimator that eliminates the need for time-consuming SPICE or RTL power simulations while retaining 

strong correlation with post-synthesis measurements. 

Beyond accuracy, the graph-based approach provides interpretability: saliency analysis on trained GCNs highlights which 

nodes or subcircuits dominate energy usage, enabling designers to target critical regions early in the design flow. This 

feature makes graph-based neural estimation a valuable complement to conventional EDA power tools. 
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4.2 High-Level Estimation via Attribute-Based Random Forest 

 

While graph-based techniques rely on structural information, an alternative strategy abstracts the circuit into a feature 

vector of descriptive parameters. The Random Forest (RF) algorithm, an ensemble of decision trees, is particularly 

effective for this level of modeling because it captures non-linear relationships between design attributes and measured 

power values. 

The attribute set typically includes quantities such as total gate count, number of inputs and outputs, counts of flip-flops, 

and distributions of logic gate types (AND, OR, NAND, NOR, etc.). These metrics are extracted automatically from RTL 

or gate-level representations and normalized across multiple benchmarks to form a consistent dataset. The RF model 

learns how combinations of these features influence total power and can generalize to unseen circuits with high fidelity. 

To achieve optimal performance, hyperparameters—number of trees, maximum depth, and feature subset size—are tuned 

using multi-objective evolutionary algorithms such as NSGA-II. This tuning balances prediction accuracy against 

model complexity and training time. When properly optimized, the RF estimator provides near-perfect correlation 

coefficients (R ≈ 0.999) compared to simulation ground truth while requiring only milliseconds for inference. 

Because it does not depend on structural connectivity data, the RF approach scales well for large SoCs and allows 

designers to perform what-if analyses rapidly. For instance, changes in module count or gate distribution can be evaluated 

almost instantly to predict their effect on total power consumption. Thus, attribute-based ensemble learning provides a 

practical, high-speed solution for architectural exploration and early design-space screening. 
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4.3 Active Optimization via Deep Reinforcement Learning 

Unlike estimation models, which passively predict power, Deep Reinforcement Learning (DRL) actively drives 

optimization by learning how to modify design parameters to achieve minimal power consumption. The central idea is 

to treat power optimization as a Markov Decision Process (MDP), where an intelligent agent interacts with a virtual 

design environment. 

 

State (S): Represents the current configuration of the design, defined by metrics such as total power, timing slack, and 

chip area. 

 

Actions (A): Correspond to available low-power techniques—gate sizing, threshold voltage swapping, placement 

refinement, and cell clustering. 

 

Reward (R): A numerical signal evaluating how beneficial an action is, expressed as: 

 

  

R(s,a)=−(αT+βP+γA)  

 

The Deep Q-Network (DQN) serves as the learning agent, iteratively exploring the design space and receiving feedback 

from the environment after each action. Over millions of iterations, it constructs an optimal policy that maximizes 

cumulative rewards, effectively learning how and when to apply traditional low-power techniques. 

 

Experimental studies have demonstrated that such DRL-based frameworks can reduce overall power by up to 22%, 

improve timing by around 18%, and cut area by nearly 12%, depending on the dataset and process node. The approach’s 

major advantage lies in its ability to perform non-greedy, global optimization—the agent can sometimes increase power 

locally in one block to enable larger system-level savings later. 

 

Moreover, DRL drastically improves computational tractability. Traditional “what-if” optimization scripts might take 

days due to repeated synthesis iterations, while a trained RL agent can perform equivalent evaluations in seconds 

through inference. The framework’s scalability also enables it to adapt to new technologies or constraints through fine-

tuning rather than retraining from scratch. 

 

By integrating the reinforcement learning paradigm with classical circuit techniques, this methodology converts manual 

design tuning into an autonomous, learning-driven optimization loop, paving the way for intelligent, energy-aware VLSI 

design automation. 
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5. Proposed Framework: Deep Reinforcement Learning for Power Optimization 

Building upon the methodologies extant in the literature, we propose a framework that centers on the Deep Reinforcement 

Learning (RL) approach for active power optimization. This method is singled out because it directly integrates and 

automates the application of traditional, proven low-power design techniques, using ML as an intelligent control policy 

to navigate the vast, multi-dimensional design space. 

5.1 The MDP Formulation for Power Optimization 

 

Building upon the methodologies discussed above, this work proposes an integrated Deep Reinforcement Learning 

(DRL) framework that automates the application of traditional low-power design techniques through adaptive policy 

learning. Rather than relying on static heuristics or hand-crafted scripts, the DRL agent dynamically explores the design 

space to identify the sequence of actions that minimizes power while meeting performance and area constraints. 

5.1 MDP Formulation for VLSI Power Optimization 

At the heart of the framework lies the Markov Decision Process (MDP) representation of the physical design 

environment. The design is modeled as a set of measurable states, allowable actions, and scalar rewards that guide the 

learning process. 

• State (S): Describes the current status of the chip, represented by metrics such as total power, timing violations 

(worst negative slack or total negative slack), and occupied silicon area. These attributes collectively define the 

environment’s current condition. 

• Actions (A): Denote discrete modifications that the agent can apply—such as resizing a gate, changing threshold 

voltage levels, adjusting cell placement, or inserting clock-gating elements. 

• Transition (T): Defines how an action changes the state of the design; for example, downsizing a non-critical 

gate might reduce power but slightly degrade timing. 
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• Reward (R): Provides quantitative feedback for each action. A multi-objective function balances power 

reduction, timing preservation, and area efficiency: 

R(s,a)=−(αT+βP+γA)R(s,a)=-(\alpha T+\beta P+\gamma A)R(s,a)=−(αT+βP+γA)  

During training, the agent interacts with a simulation-based design environment, repeatedly applying actions and 

observing their effects. Over time, the DRL model learns the mapping between design states and optimal optimization 

actions that maximize long-term cumulative reward. 

 

 

 

 

5.2 Integrating Traditional Techniques via the Reward Function 

The DRL framework does not discard conventional approaches; rather, it encodes them as learnable actions within its 

policy space. Techniques such as gate sizing, power gating, and threshold-voltage adjustment become atomic moves that 

the agent learns to combine adaptively. 

The reward-driven formulation ensures that the RL agent automatically identifies where each technique is most beneficial. 

For example, the model learns that applying high-Vt cells on non-critical paths reduces leakage without violating timing, 

or that clock gating is most effective in modules exhibiting high idle ratios. This adaptive capability allows the system to 

replicate expert-level design intuition without explicit rule encoding. 

Simulation results from similar research frameworks have demonstrated that DRL agents can achieve simultaneous 

improvements across multiple metrics—reducing total power by more than 20 %, improving timing margins by around 

15–18 %, and lowering silicon area by roughly 10–12 %. Such outcomes confirm that reinforcement learning can 

internalize the intricate dependencies among PPA parameters that traditional static optimization overlooks. 

5.3 Advantages over Conventional Optimization 

This RL-based framework provides a clear path to overcoming the limitations of both manual design and computationally 

expensive heuristics. 

● Holistic, Non-Greedy Optimization: Conventional optimization scripts often follow greedy heuristics, focusing 

on short-term gains and missing global trade-offs. The DRL agent, trained through exploration, develops a long-term 

strategy that balances multiple objectives. It can, for example, temporarily increase area in one region to relieve timing 

bottlenecks that later yield larger power reductions elsewhere. 

● Computational Tractability:  Traditional “what-if” analyses require multiple synthesis and place-and-route 

iterations, consuming days of computation. Once trained, a DRL agent can evaluate thousands of virtual design scenarios 

in seconds, delivering near-real-time decision support for designers..   

● Scalability and Resilience: The learned policy is generalizable—it can be fine-tuned for different designs or 

process nodes with minimal retraining. This makes the framework resilient to process, voltage, and temperature (PVT) 

variations and reusable across product generations.    

6. CONCLUSION 

With technology nodes shrinking and transistor counts soaring, controlling power consumption has become one of the 

most critical challenges in modern VLSI design. While traditional low-power design strategies—such as voltage scaling, 

clock gating, power gating, and multi-threshold CMOS—remain fundamental, they increasingly struggle to deliver 

optimal results under the complexity of heterogeneous and high-performance workloads. 

https://ijsrem.com/


             International Journal of Scientific Research in Engineering and Management (IJSREM) 
                         Volume: 09 Issue: 11 | Nov - 2025                               SJIF Rating: 8.586                                       ISSN: 2582-3930                                                                                                        

  

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM53987                                              |        Page 8 
 

This paper presented a comprehensive framework that merges conventional low-power techniques with Machine 

Learning (ML) and Artificial Intelligence (AI) to achieve more effective power optimization. Through the discussion 

of methodologies and the proposed DRL-based approach, several important conclusions emerge: 

• Early-Stage Power Estimation: ML models such as Graph Convolutional Networks (GCNs) and Random Forest 

(RF) estimators enable fast and accurate power prediction without time-consuming simulations, maintaining high 

correlation with ground-truth results. 

• Adaptive Optimization: Deep Reinforcement Learning (DRL) provides an automated mechanism to apply 

traditional power-saving actions intelligently, learning how to trade off between power, performance, and area. 

• Synergistic Integration: Rather than competing with conventional techniques, ML complements them—guiding 

their application more efficiently and allowing broader exploration of design possibilities. 

The study underscores that AI/ML integration represents not just a technological enhancement but a paradigm shift in 

how low-power VLSI systems are conceived and optimized. As design sizes continue to grow, these intelligent 

frameworks will be indispensable in achieving sustainable energy efficiency without compromising performance 

7. FUTURE WORK 

Future research will aim to advance and refine the proposed Deep Reinforcement Learning (DRL) framework across 

several critical dimensions: 

1. Expanded Action Space: 

 The current model primarily focuses on physical design optimizations such as gate sizing, cell placement, and threshold 

voltage adjustment. In upcoming studies, the agent’s action space will be broadened to incorporate higher-level 

techniques, including Dynamic Voltage and Frequency Scaling (DVFS) and adaptive clock gating. Integrating these 

methods will enable the agent to develop power-efficient strategies that operate cohesively across both design-time and 

runtime domains. 

2. Transfer Learning and Scalability: 

 Enhancing the scalability of the DRL framework is another key objective. Future efforts will explore the use of 

Transfer Learning, allowing a policy trained on one circuit to be effectively reused and fine-tuned for different or larger 

designs with minimal retraining overhead. This direction is crucial for extending the framework’s applicability to 

modern, industrial-scale Systems-on-Chip (SoCs) while maintaining computational efficiency. 
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