

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46349 | Page 1

Integration of IoT and Machine Learning for Real-Time Plant Health

Monitoring and Disease Detection System

Bhosale Aditya, Patil Manali, Lohar Sanika

Department of Electronics and Telecommunication Engineering Finolex Academy of Management and Technology, Ratnagiri,

Maharashtra, India

{X210402, X210456, X210413}@famt.ac.in

Prof. Saurabh Athalye

Professor, Department of Electronics and Telecommunication Engineering Finolex Academy of Management and Technology,

Ratnagiri, Maharashtra, India

saurabh.athalye@famt.ac.in

Abstract – Agricultural yield is highly dependent on timely

disease management and optimal growing conditions. In

mango cultivation, especially for the Alphonso variety,

diseases such as anthracnose and rust cause significant

damage. This paper introduces an IoT-based system that

combines environmental monitoring with machine

learning-driven leaf disease detection. Temperature,

humidity, and soil moisture are tracked using DHT11 and

soil moisture sensors interfaced with a NodeMCU

ESP8266. This data is visualized on ThingSpeak. For

disease diagnosis, a trained Convolutional Neural Network

(CNN) model classifies mango leaves into healthy, rust-

infected, or fungal-infected categories. The model is

deployed via a Streamlit web application, offering users an

intuitive interface for image upload and result display. The

integrated system supports precision agriculture through

timely alerts and remedies, reducing manual inspection and

promoting sustainable farming.

 Keywords: Alphonso mango, Convolutional Neural

Network (CNN), IoT-based monitoring, Leaf disease

detection, Smart agriculture, Internet of Things (IoT).

I. INTRODUCTION

To address these challenges, this paper proposes a dual-

module intelligent system that integrates CNN-based leaf

disease classification with IoT-based environmental

monitoring. The objective is to develop a smart and

automated platform capable of detecting plant diseases at an

early stage while simultaneously tracking crucial

environmental conditions that influence plant health. The

image classification module employs a Convolutional Neural

Network (CNN) trained on a custom dataset of Alphonso

mango leaf images, categorized into healthy, rust-infected,

and fungal-infected classes. This model is embedded into a

user-friendly web interface, allowing farmers to upload

images for instant diagnosis.

Parallelly, the IoT module leverages a NodeMCU ESP8266

microcontroller integrated with sensors—specifically a

DHT11 sensor for temperature and humidity, and a soil

moisture sensor—to gather real-time environmental data.

This data is transmitted to the ThingSpeak IoT platform,

where it is visualized on a dynamic dashboard. The system

thus enables remote monitoring of crop health and growing

conditions, empowering farmers to make data-driven

decisions that enhance productivity and reduce crop loss.

By combining visual plant diagnostics with sensor-based

environmental awareness, this hybrid system aims to deliver

a comprehensive solution that not only detects diseases early

but also anticipates conditions conducive to disease onset.

This paper outlines the design, implementation, and

evaluation of the proposed system, emphasizing its potential

as a cost-effective, scalable, and impactful tool for

modernizing agricultural practices in India and beyond.

II. LITERATURE SURVEY

Dlodlo and Foko [1] discussed the growing impact of IoT

across various industries, setting the foundation for further

research. In agriculture, Khan and Sharma [2] integrated IoT

with cloud computing to enable smart farming solutions

through real-time monitoring. Shinde and Kulkarni [3]

emphasized sensor-based plant health monitoring systems,

while Sharma and Mehta [4] applied IoT and machine

learning to optimize resource usage in farming. Patel and

Shah [5] proposed a CNN-based system for early crop disease

detection, and Sutar [6] extended this approach by applying

AI-driven CNN models specifically for mango crop disease

detection. Furthermore, platforms like ThingSpeak™ [7]

support IoT-based agricultural systems by providing efficient

data collection, analysis, and visualization tools.

III. PROPOSED SYSTEM

 3.1 Methodology

The proposed solution is a dual-module system:

Environmental Monitoring: Collects data from temperature,

humidity, and soil moisture sensors connected to NodeMCU.

Data is sent to ThingSpeak at regular intervals.

Disease Detection: Users upload leaf images to a Streamlit-

based web app. A CNN model processes the image and

classifies it into one of three categories. Results include a

prediction label, confidence score, and suggested remedy.

This system provides holistic insight into both plant

environment and visible disease symptoms, allowing for

data-driven interventions.

http://www.ijsrem.com/
mailto:X210402@famt.ac.in,X210456@famt.ac.in,X210413@famt.ac.in
mailto:saurabh.athalye@famt.ac.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46349 | Page 2

 3.2 Details of Hardware and Software

 a) Hardware Components

NodeMCU ESP8266: Wi-Fi-enabled microcontroller used

for sensor data transmission.

DHT11 Sensor: Measures ambient temperature and humidity.

Soil Moisture Sensor: Detects moisture level in soil to

evaluate irrigation needs.

Power Supply, Breadboard, Jumper Wires: For circuit setup

and testing.

 b) Software Components

Arduino IDE: For programming and flashing code to the

NodeMCU.

ThingSpeak: Used as a cloud-based dashboard to visualize

environmental data.

Python, TensorFlow, Keras: Used for building and training

the CNN model.

Streamlit: Used to create a clean, responsive web app for

image-based disease detection.

.

 Figure 1: Block Diagram

 3.3 Design Details

The design of the proposed system combines embedded

hardware with cloud-based monitoring and machine learning-

powered disease detection. The architecture is optimized for

affordability, modularity, and ease of deployment in

agricultural fields. This section elaborates on the hardware

circuit, data processing, CNN model, software tools, and

system integration.

 a) Hardware Circuit Design

The system's physical layer includes the NodeMCU

ESP8266 microcontroller, which is chosen for its compact

form factor and built-in Wi-Fi capabilities. It serves as the

central unit interfacing with two types of sensors:

• DHT11 Sensor: A digital sensor used to monitor

ambient temperature and humidity. It is connected

to a digital GPIO pin.

• Soil Moisture Sensor: An analog sensor that

measures volumetric water content in soil and is

connected to the A0 analog input of the NodeMCU.

The components are arranged on a breadboard, powered

through a 5V USB input. Jumper wires are used to establish

connections between the sensors and the NodeMCU pins.

This circuit reads environmental parameters every 15 seconds

and transmits them to the ThingSpeak cloud platform via

HTTP POST requests using the microcontroller’s Wi-Fi

interface.

 b) Firmware and Sensor Data Processing

The firmware running on NodeMCU is developed using the

Arduino IDE and leverages the following libraries:

• ESP8266WiFi.h: Enables internet access via Wi-Fi.

• DHT.h: Reads temperature and humidity from the

DHT11 sensor.

• ThingSpeak.h: Facilitates cloud connectivity with

ThingSpeak API.

 c) Software Stack and CNN Model Architecture

The disease detection module is powered by a Convolutional

Neural Network (CNN) built using the Keras API with a

TensorFlow backend. The image classification task involves

identifying the leaf as either:

• Healthy

• Rust-Infected

• Fungal-Infected (Anthracnose)

The dataset is manually curated, consisting of clear images of

mango leaves in various lighting and background conditions.

The dataset is augmented with flipping, rotation, and scaling

techniques.

 d) Libraries Used:

• TensorFlow / Keras – Deep learning model design

and training

• NumPy – Numerical array processing

• OpenCV – Image manipulation

• Matplotlib – Visualization during model training

• PIL (Pillow) – Image loading and formatting

• Streamlit – Frontend deployment of the detection

app

e) CNN Model Layers:

• Input layer with image size 256×256×3

• 3 × Convolution layers (filters: 32, 64, 128)

• ReLU activation after each convolution

• Max Pooling layers after each convolution block

• Dropout layer (rate 0.3) for regularization

• Flatten layer

• Dense layer (128 neurons)

• Output layer with Softmax activation for 3-class

classification

The model achieves over 94% validation accuracy and is

saved as a .h5 file for later use in deployment.

 f) Image Processing and Prediction Pipeline

When a user uploads a leaf image on the Streamlit interface,

the image undergoes preprocessing:

1. Resized to 256×256

2. Normalized (pixel values scaled to 0–1)

3. Expanded into a 4D tensor

4. Passed to the model for prediction

5. The predicted class and confidence are displayed to

the user

 g) Web Interface Integration

The entire detection workflow is embedded into a Streamlit

web app, designed for ease of use by non-technical users.

The app features:

• A file uploader for mango leaf images

Soil Moisture

Sensor

DHT11 Sensor NodeMCU

(ESP8266)

ThingSpeak IoT

Dashboard

Web Interface for

Disease Detection

Machine Learning

Model

Image Upload Result

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46349 | Page 3

• Display of predicted disease class and confidence

score

• Suggested remedies or care instructions

• A button or link to navigate to the ThingSpeak

dashboard for sensor data

The web app runs on localhost or cloud services and loads the

.h5 model dynamically for quick, real-time prediction without

requiring an external API.

This integration enables the system to act as both a smart

sensor dashboard and a disease detection advisor, offering

a complete solution to farmers and agricultural researchers.

Figure 2: Flow Diagram

 3.4 Pseudo Code

 3.4.1 Sample preprocessing on NodeMCU

(pseudocode):

BEGIN

Step 1: Import required libraries

{

 Import ESP8266WiFi.h // For Wi-Fi connection

 Import DHT.h // For temperature and humidity sensor

}

Step 2: Define Wi-Fi and ThingSpeak parameters

{

 Set API Key for ThingSpeak

 Define Wi-Fi SSID and Password

 Define ThingSpeak server address

}

Step 3: Initialize DHT sensor and Wi-Fi connection

{

 Begin serial communication

 Initialize DHT11 sensor

 Connect to Wi-Fi network

 While Wi-Fi not connected:

 Print connection status

}

Step 4: Start main loop

{

 Read humidity and temperature values from DHT sensor

 If sensor reading is not valid:

 Print error message

 Return to start of loop

}

Step 5: Connect to ThingSpeak server

{

 If connection successful:

 Create HTTP POST request

 Attach temperature and humidity data

 Send data to ThingSpeak

}

Step 6: Display sensor data on serial monitor

{

 Print temperature value

 Print humidity value

}

Step 7: Close connection

{

 Stop client connection

}

Step 8: Add delay before next data transmission

{

 Wait for 1 second (1000 milliseconds)

}

END

 3.4.2 Pseudo Code for Model Training

BEGIN

Step 1: Import required libraries

{

 Import TensorFlow, Keras layers, ImageDataGenerator

 Import NumPy, Matplotlib, OpenCV, Pickle

 Import train_test_split, LabelBinarizer from sklearn

}

Step 2: Define parameters

{

 Set epochs, learning rate, batch size, and image

dimensions

}

Step 3: Load and preprocess images

{

 Define function to read images and convert them to arrays

 Resize images to 256×256 pixels

 Normalize pixel values

 Label images according to disease class

}

Step 4: Encode labels

{

 Apply LabelBinarizer to convert disease names into

binary format

 Save the label binarizer using Pickle

}

Step 5: Split dataset

{

 Split images and labels into training and testing sets

(80%-20%)

}

Step 6: Data augmentation

{

 Apply random rotations, flips, shifts, and zooms to

images using ImageDataGenerator

}

Step 7: Build CNN model

Show Results & Remedies

Load CNN & Predict

User Uploads Image?

Read and Upload Sensor Data to ThingSpeak

Initialize Sensors/WiFi

Start System

 Yes

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46349 | Page 4

{

 Initialize a Sequential model

 Add convolutional, activation, batch normalization,

pooling, and dropout layers

 Flatten output

 Add fully connected dense layers

 Use Softmax activation at the output layer

}

Step 8: Compile model

{

 Set loss function to binary_crossentropy

 Use Adam optimizer and monitor accuracy

}

Step 9: Train model

{

 Train the model using the training set

 Validate using the test set

}

Step 10: Plot training and validation performance

{

 Plot graphs for accuracy and loss over epochs

}

Step 11: Evaluate model

{

 Calculate final test accuracy

 Print test results

}

Step 12: Save the trained model

{

 Serialize the model using Pickle

}

Step 13: Load model and predict

{

 Load saved model

 Preprocess a new image

 Predict disease class and probability

 Print predicted disease name and confidence

}

END

 3.4.3 Pseudo Code for Web Interface Deployment:

BEGIN

Step 1: Import required libraries

{

 Import Streamlit for web UI components

 Import TensorFlow/Keras to load trained CNN model

 Import NumPy for numerical processing

 Import PIL (Pillow) for image handling

}

Step 2: Load the trained CNN model

{

 Use Kerasload_model() function to load the .h5 model

file

}

Step 3: Define preprocessing function for uploaded images

{

 Resize image to 256×256 pixels

 Normalize pixel values to 0–1 scale

 Expand dimensions to match model input shape

}

Step 4: Create Streamlit web application layout

{

 Set page title and sidebar navigation

 Create file uploader widget for leaf image upload

}

Step 5: Handle user input

{

 If image is uploaded:

 Preprocess the image

 Predict the disease class using CNN model

 Display predicted disease name

 Display confidence score

}

Step 6: Provide additional user information

{

 Suggest basic remedies for the detected disease

 Provide a navigation link/button to the ThingSpeak IoT

dashboard

}

END

IV. EXPERIMENTAL RESULTS

1. The IoT system was implemented and tested using the

NodeMCU ESP8266 microcontroller with DHT11 and soil

moisture sensors. Real-time data on temperature, humidity,

and soil moisture was successfully transmitted to the

ThingSpeak cloud platform every 15 seconds.

2. For the disease detection module, a Convolutional Neural

Network (CNN) model was trained using a curated dataset of

mango leaf images categorized into healthy, rust-affected,

and fungal-infected types. The model reached a training

accuracy of 96.2% and a validation accuracy of 94%,

delivering predictions with high confidence. When tested

with new images, the model consistently provided results

within one second, ensuring suitability for real-time

detection.

3. The complete system was deployed through a user-friendly

web application developed using Streamlit. Users could

upload leaf images and instantly receive disease classification

results along with care suggestions. The integration of live

sensor data with AI-powered diagnosis provided a practical

and efficient tool for monitoring plant health, suitable for use

in real agricultural environments.

Figure 3: Main Page of Web Interface

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46349 | Page 5

Figure 4: Leaf Disease Detection Interface

Figure 5: Disease Detection Result for Fungal Infection

Figure 6: Disease Detection Result for Rust Infection

Figure 7: IoT Dashboard Link and Monitoring Interface

Figure 8(a): IoT Sensor Data Output 1

Figure 8(b): IoT Sensor Data Output 2

V. CHALLENGES FACED

1. Limited Dataset Availability: There was a lack of

publicly available, high-quality mango leaf images

categorized by specific diseases. This required

manual collection and labeling of images, increasing

the time and effort needed for training the machine

learning model.

2. Unstable Network Connectivity: Maintaining

consistent Wi-Fi connectivity in rural or farm

environments was challenging, occasionally

interrupting the data transmission to the ThingSpeak

cloud platform and affecting real-time monitoring.

3. Sensor Inconsistencies: The DHT11 sensor

produced slight fluctuations in temperature and

humidity readings. To improve accuracy, additional

filtering techniques and averaging methods had to be

implemented in the firmware.

VI. REFERENCES

[1] Dlodlo, N., and Foko, T., 2012, The State of Affairs in

Internet of Things Research, Springer, New York.

[2] Khan, M., and Sharma, R., 2021, “Smart Agriculture

Using IoT and Cloud Computing,” International Journal of

Recent Technology and Engineering (IJRTE), 9(6), pp. 34–

39.

[3] Shinde, S., and Kulkarni, R., 2022, “Analysis of Sensor-

Based Plant Health Monitoring Using IoT,” Journal of

Emerging Technologies and Innovative Research (JETIR),

9(5), pp. 102–108.

[4] Sharma, R., and Mehta, A., 2023, “Optimizing Resource

Usage in Smart Farming with IoT and ML,” International

Journal of Computer Applications, 185(42), pp. 19–25.

[5] Patel, K., and Shah, M., 2020, “IoT-Based Crop Disease

Prediction System Using Convolutional Neural Networks,”

International Conference on Intelligent Computing and

Control Systems (ICICCS), IEEE, pp. 570–574.

[6] Sutar, A., 2023, “Implementation of AI-Driven Disease

Detection in Mango Crops Using CNN,” M.Tech. Thesis,

Vellore Institute of Technology, Vellore, India.

[7] ThingSpeak™, “ThingSpeak™ Documentation,”

[Online]. Available: https://thingspeak.com/docs/.

[Accessed: Apr. 9, 2025].

http://www.ijsrem.com/

