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Abstract – Agricultural yield is highly dependent on timely 

disease management and optimal growing conditions. In 

mango cultivation, especially for the Alphonso variety, 

diseases such as anthracnose and rust cause significant 

damage. This paper introduces an IoT-based system that 

combines environmental monitoring with machine 

learning-driven leaf disease detection. Temperature, 

humidity, and soil moisture are tracked using DHT11 and 

soil moisture sensors interfaced with a NodeMCU 

ESP8266. This data is visualized on ThingSpeak. For 

disease diagnosis, a trained Convolutional Neural Network 

(CNN) model classifies mango leaves into healthy, rust-

infected, or fungal-infected categories. The model is 

deployed via a Streamlit web application, offering users an 

intuitive interface for image upload and result display. The 

integrated system supports precision agriculture through 

timely alerts and remedies, reducing manual inspection and 

promoting sustainable farming. 
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I. INTRODUCTION 

 

To address these challenges, this paper proposes a dual-

module intelligent system that integrates CNN-based leaf 

disease classification with IoT-based environmental 

monitoring. The objective is to develop a smart and 

automated platform capable of detecting plant diseases at an 

early stage while simultaneously tracking crucial 

environmental conditions that influence plant health. The 

image classification module employs a Convolutional Neural 

Network (CNN) trained on a custom dataset of Alphonso 

mango leaf images, categorized into healthy, rust-infected, 

and fungal-infected classes. This model is embedded into a 

user-friendly web interface, allowing farmers to upload 

images for instant diagnosis. 

Parallelly, the IoT module leverages a NodeMCU ESP8266 

microcontroller integrated with sensors—specifically a 

DHT11 sensor for temperature and humidity, and a soil 

moisture sensor—to gather real-time environmental data. 

This data is transmitted to the ThingSpeak IoT platform, 

where it is visualized on a dynamic dashboard. The system 

thus enables remote monitoring of crop health and growing 

conditions, empowering farmers to make data-driven 

decisions that enhance productivity and reduce crop loss. 

By combining visual plant diagnostics with sensor-based 

environmental awareness, this hybrid system aims to deliver 

a comprehensive solution that not only detects diseases early 

but also anticipates conditions conducive to disease onset. 

This paper outlines the design, implementation, and 

evaluation of the proposed system, emphasizing its potential 

as a cost-effective, scalable, and impactful tool for 

modernizing agricultural practices in India and beyond. 

 

II. LITERATURE SURVEY 

 

Dlodlo and Foko [1] discussed the growing impact of IoT 

across various industries, setting the foundation for further 

research. In agriculture, Khan and Sharma [2] integrated IoT 

with cloud computing to enable smart farming solutions 

through real-time monitoring. Shinde and Kulkarni [3] 

emphasized sensor-based plant health monitoring systems, 

while Sharma and Mehta [4] applied IoT and machine 

learning to optimize resource usage in farming. Patel and 

Shah [5] proposed a CNN-based system for early crop disease 

detection, and Sutar [6] extended this approach by applying 

AI-driven CNN models specifically for mango crop disease 

detection. Furthermore, platforms like ThingSpeak™ [7] 

support IoT-based agricultural systems by providing efficient 

data collection, analysis, and visualization tools. 

 

III. PROPOSED SYSTEM 

 

      3.1 Methodology 

The proposed solution is a dual-module system: 

Environmental Monitoring: Collects data from temperature, 

humidity, and soil moisture sensors connected to NodeMCU. 

Data is sent to ThingSpeak at regular intervals. 

Disease Detection: Users upload leaf images to a Streamlit-

based web app. A CNN model processes the image and 

classifies it into one of three categories. Results include a 

prediction label, confidence score, and suggested remedy. 

This system provides holistic insight into both plant 

environment and visible disease symptoms, allowing for 

data-driven interventions. 
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      3.2 Details of Hardware and Software  

      a) Hardware Components 

NodeMCU ESP8266: Wi-Fi-enabled microcontroller used 

for sensor data transmission. 

DHT11 Sensor: Measures ambient temperature and humidity. 

Soil Moisture Sensor: Detects moisture level in soil to 

evaluate irrigation needs. 

Power Supply, Breadboard, Jumper Wires: For circuit setup 

and testing. 

      b) Software Components 

Arduino IDE: For programming and flashing code to the 

NodeMCU. 

ThingSpeak: Used as a cloud-based dashboard to visualize 

environmental data. 

Python, TensorFlow, Keras: Used for building and training 

the CNN model. 

Streamlit: Used to create a clean, responsive web app for 

image-based disease detection. 

. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

             Figure 1: Block Diagram 

 

      3.3 Design Details 

The design of the proposed system combines embedded 

hardware with cloud-based monitoring and machine learning-

powered disease detection. The architecture is optimized for 

affordability, modularity, and ease of deployment in 

agricultural fields. This section elaborates on the hardware 

circuit, data processing, CNN model, software tools, and 

system integration. 

      a) Hardware Circuit Design 

The system's physical layer includes the NodeMCU 

ESP8266 microcontroller, which is chosen for its compact 

form factor and built-in Wi-Fi capabilities. It serves as the 

central unit interfacing with two types of sensors: 

• DHT11 Sensor: A digital sensor used to monitor 

ambient temperature and humidity. It is connected 

to a digital GPIO pin. 

• Soil Moisture Sensor: An analog sensor that 

measures volumetric water content in soil and is 

connected to the A0 analog input of the NodeMCU. 

The components are arranged on a breadboard, powered 

through a 5V USB input. Jumper wires are used to establish 

connections between the sensors and the NodeMCU pins. 

This circuit reads environmental parameters every 15 seconds 

and transmits them to the ThingSpeak cloud platform via 

HTTP POST requests using the microcontroller’s Wi-Fi 

interface. 

      b) Firmware and Sensor Data Processing 

The firmware running on NodeMCU is developed using the 

Arduino IDE and leverages the following libraries: 

• ESP8266WiFi.h: Enables internet access via Wi-Fi. 

• DHT.h: Reads temperature and humidity from the 

DHT11 sensor. 

• ThingSpeak.h: Facilitates cloud connectivity with 

ThingSpeak API. 

      c) Software Stack and CNN Model Architecture 

The disease detection module is powered by a Convolutional 

Neural Network (CNN) built using the Keras API with a 

TensorFlow backend. The image classification task involves 

identifying the leaf as either: 

• Healthy 

• Rust-Infected 

• Fungal-Infected (Anthracnose) 

The dataset is manually curated, consisting of clear images of 

mango leaves in various lighting and background conditions. 

The dataset is augmented with flipping, rotation, and scaling 

techniques. 

      d) Libraries Used: 

• TensorFlow / Keras – Deep learning model design 

and training 

• NumPy – Numerical array processing 

• OpenCV – Image manipulation 

• Matplotlib – Visualization during model training 

• PIL (Pillow) – Image loading and formatting 

• Streamlit – Frontend deployment of the detection 

app 

e) CNN Model Layers: 

• Input layer with image size 256×256×3 

• 3 × Convolution layers (filters: 32, 64, 128) 

• ReLU activation after each convolution 

• Max Pooling layers after each convolution block 

• Dropout layer (rate 0.3) for regularization 

• Flatten layer 

• Dense layer (128 neurons) 

• Output layer with Softmax activation for 3-class 

classification 

The model achieves over 94% validation accuracy and is 

saved as a .h5 file for later use in deployment. 

      f) Image Processing and Prediction Pipeline 

When a user uploads a leaf image on the Streamlit interface, 

the image undergoes preprocessing: 

1. Resized to 256×256 

2. Normalized (pixel values scaled to 0–1) 

3. Expanded into a 4D tensor 

4. Passed to the model for prediction 

5. The predicted class and confidence are displayed to 

the user 

      g) Web Interface Integration 

The entire detection workflow is embedded into a Streamlit 

web app, designed for ease of use by non-technical users. 

The app features: 

• A file uploader for mango leaf images 

Soil Moisture 

Sensor 

DHT11 Sensor NodeMCU 

(ESP8266) 

ThingSpeak IoT 

Dashboard 

Web Interface for 

Disease Detection 

Machine Learning 

Model 

Image Upload Result 
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• Display of predicted disease class and confidence 

score 

• Suggested remedies or care instructions 

• A button or link to navigate to the ThingSpeak 

dashboard for sensor data 

The web app runs on localhost or cloud services and loads the 

.h5 model dynamically for quick, real-time prediction without 

requiring an external API. 

This integration enables the system to act as both a smart 

sensor dashboard and a disease detection advisor, offering 

a complete solution to farmers and agricultural researchers. 

 

 
Figure 2: Flow Diagram 

      3.4 Pseudo Code 

      3.4.1 Sample preprocessing on NodeMCU 

(pseudocode): 

BEGIN 

Step 1: Import required libraries 

{ 

    Import ESP8266WiFi.h // For Wi-Fi connection 

    Import DHT.h // For temperature and humidity sensor 

} 

Step 2: Define Wi-Fi and ThingSpeak parameters 

{ 

    Set API Key for ThingSpeak 

    Define Wi-Fi SSID and Password 

    Define ThingSpeak server address 

} 

Step 3: Initialize DHT sensor and Wi-Fi connection 

{ 

    Begin serial communication 

    Initialize DHT11 sensor 

    Connect to Wi-Fi network 

    While Wi-Fi not connected: 

        Print connection status 

} 

Step 4: Start main loop 

{ 

    Read humidity and temperature values from DHT sensor 

    If sensor reading is not valid: 

        Print error message 

        Return to start of loop 

} 

Step 5: Connect to ThingSpeak server 

{ 

    If connection successful: 

        Create HTTP POST request 

        Attach temperature and humidity data 

        Send data to ThingSpeak 

} 

Step 6: Display sensor data on serial monitor 

{ 

    Print temperature value 

    Print humidity value 

} 

Step 7: Close connection 

{ 

    Stop client connection 

} 

Step 8: Add delay before next data transmission 

{ 

    Wait for 1 second (1000 milliseconds) 

} 

END 

 

      3.4.2 Pseudo Code for Model Training 

BEGIN 

Step 1: Import required libraries 

{ 

    Import TensorFlow, Keras layers, ImageDataGenerator 

    Import NumPy, Matplotlib, OpenCV, Pickle 

    Import train_test_split, LabelBinarizer from sklearn 

} 

Step 2: Define parameters 

{ 

    Set epochs, learning rate, batch size, and image 

dimensions 

} 

Step 3: Load and preprocess images 

{ 

    Define function to read images and convert them to arrays 

    Resize images to 256×256 pixels 

    Normalize pixel values 

    Label images according to disease class 

} 

Step 4: Encode labels 

{ 

    Apply LabelBinarizer to convert disease names into 

binary format 

    Save the label binarizer using Pickle 

} 

Step 5: Split dataset 

{ 

    Split images and labels into training and testing sets 

(80%-20%) 

} 

Step 6: Data augmentation 

{ 

    Apply random rotations, flips, shifts, and zooms to 

images using ImageDataGenerator 

} 

Step 7: Build CNN model 

Show Results & Remedies

Load CNN & Predict

User Uploads Image?

Read and Upload Sensor Data to ThingSpeak

Initialize Sensors/WiFi

Start System

  Yes 

http://www.ijsrem.com/
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{ 

    Initialize a Sequential model 

    Add convolutional, activation, batch normalization, 

pooling, and dropout layers 

    Flatten output 

    Add fully connected dense layers 

    Use Softmax activation at the output layer 

} 

Step 8: Compile model 

{ 

    Set loss function to binary_crossentropy 

    Use Adam optimizer and monitor accuracy 

} 

Step 9: Train model 

{ 

    Train the model using the training set 

    Validate using the test set 

} 

Step 10: Plot training and validation performance 

{ 

    Plot graphs for accuracy and loss over epochs 

} 

Step 11: Evaluate model 

{ 

    Calculate final test accuracy 

    Print test results 

} 

Step 12: Save the trained model 

{ 

    Serialize the model using Pickle 

} 

Step 13: Load model and predict 

{ 

    Load saved model 

    Preprocess a new image 

    Predict disease class and probability 

    Print predicted disease name and confidence 

} 

END 

 

      3.4.3 Pseudo Code for Web Interface Deployment: 

BEGIN 

Step 1: Import required libraries 

{ 

    Import Streamlit for web UI components 

    Import TensorFlow/Keras to load trained CNN model 

    Import NumPy for numerical processing 

    Import PIL (Pillow) for image handling 

} 

Step 2: Load the trained CNN model 

{ 

    Use Kerasload_model() function to load the .h5 model 

file 

} 

Step 3: Define preprocessing function for uploaded images 

{ 

    Resize image to 256×256 pixels 

    Normalize pixel values to 0–1 scale 

    Expand dimensions to match model input shape 

} 

Step 4: Create Streamlit web application layout 

{ 

    Set page title and sidebar navigation 

    Create file uploader widget for leaf image upload 

} 

Step 5: Handle user input 

{ 

    If image is uploaded: 

        Preprocess the image 

        Predict the disease class using CNN model 

        Display predicted disease name 

        Display confidence score 

} 

Step 6: Provide additional user information 

{ 

    Suggest basic remedies for the detected disease 

    Provide a navigation link/button to the ThingSpeak IoT 

dashboard 

} 

END 

 

IV. EXPERIMENTAL RESULTS 

 

1. The IoT system was implemented and tested using the 

NodeMCU ESP8266 microcontroller with DHT11 and soil 

moisture sensors. Real-time data on temperature, humidity, 

and soil moisture was successfully transmitted to the 

ThingSpeak cloud platform every 15 seconds.  

2. For the disease detection module, a Convolutional Neural 

Network (CNN) model was trained using a curated dataset of 

mango leaf images categorized into healthy, rust-affected, 

and fungal-infected types. The model reached a training 

accuracy of 96.2% and a validation accuracy of 94%, 

delivering predictions with high confidence. When tested 

with new images, the model consistently provided results 

within one second, ensuring suitability for real-time 

detection. 

3. The complete system was deployed through a user-friendly 

web application developed using Streamlit. Users could 

upload leaf images and instantly receive disease classification 

results along with care suggestions. The integration of live 

sensor data with AI-powered diagnosis provided a practical 

and efficient tool for monitoring plant health, suitable for use 

in real agricultural environments. 

Figure 3:  Main Page of Web Interface 
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Figure 4: Leaf Disease Detection Interface 

Figure 5:  Disease Detection Result for Fungal Infection 

Figure 6:  Disease Detection Result for Rust Infection 

 
Figure 7: IoT Dashboard Link and Monitoring Interface 

 

 
Figure 8(a): IoT Sensor Data Output 1 

 
Figure 8(b): IoT Sensor Data Output 2 

 

V. CHALLENGES FACED 

 

1. Limited Dataset Availability: There was a lack of 

publicly available, high-quality mango leaf images 

categorized by specific diseases. This required 

manual collection and labeling of images, increasing 

the time and effort needed for training the machine 

learning model. 

2. Unstable Network Connectivity: Maintaining 

consistent Wi-Fi connectivity in rural or farm 

environments was challenging, occasionally 

interrupting the data transmission to the ThingSpeak 

cloud platform and affecting real-time monitoring. 

3. Sensor Inconsistencies: The DHT11 sensor 

produced slight fluctuations in temperature and 

humidity readings. To improve accuracy, additional 

filtering techniques and averaging methods had to be 

implemented in the firmware. 
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