

Intelligent Blood and Organ Donation Management Platform

Mrs A.Nandhini¹, Sathishkumar D²

¹Assistant professor , Department of Computer Applications, Nehru College of Management, Coimbatore, Tamil Nadu, India.

nandhinimca20@gmail.com

²Student of II MCA, Department of Computer Applications, Nehru College of Management, Coimbatore, Tamil Nadu, India.

sathishst2004@gmail.com

Abstract

Intelligent Blood and organ Donation Management Platform develop by using web application front as REACT and back end as NODE.JS tool. Blood donation and blood availability management are critical components of modern healthcare systems. Conventional blood bank operations often depend on manual processes, resulting in delayed donor communication, inefficient blood stock utilization, and lack of transparency for patients. To overcome these limitations, this project presents an Intelligent Blood Donation Management Platform. The proposed system is a web-based application that enables efficient management of donors, blood inventory, organ donation records, and patient blood/organ requests through role-based access. The platform supports four primary user roles: Admin, blood Donor, Patient, and Organ Donor. The admin manages blood donor records, organ donor data, blood stock, patient requests, and approval processes. Donors can securely access their profiles, track donation history, check eligibility, and receive automated email notifications when they become eligible for the next donation. Patients can register, log in, view blood availability, search blood groups, and request required blood units. Additionally, the platform includes an Organ Donation Module to manage organ donor registrations and organ transplant requests separately due to their sensitive nature. Automated notification mechanisms and approval workflows ensure timely communication, transparency, and efficient coordination between donors, patients, organ donors, and administrators. This system improves reliability, reduces manual effort, enhances accessibility, and supports both blood and organ donation management, making it suitable for hospitals, blood banks, and healthcare organizations.

Keywords: Inventory Management, Role-Based

Access Control, Web Application, Automated Email Notifications, Scalable Architecture, Donation Eligibility Tracking, React.js, Node.js.

1. INTRODUCTION

Blood and organ donation play a vital role in saving lives and supporting modern healthcare systems. The timely availability of safe blood and suitable organs is essential for emergency treatments, surgeries, accident cases, and critical medical conditions. However, many healthcare institutions still rely on manual record-keeping and traditional administrative processes for managing donor information, blood inventory, and patient requests. These conventional systems often result in delays, data inconsistencies, lack of transparency, inefficient communication, and poor donor follow-up.

With the rapid advancement of web technologies, there is a growing need for intelligent and automated healthcare management solutions that can streamline donation processes and improve coordination among stakeholders. A centralized, role-based, and real-time digital platform can significantly enhance efficiency, accuracy, and accessibility in blood and organ donation management.

To address these challenges, this research proposes the development of an Intelligent Blood and Organ Donation Management Platform, a web-based application built using React for the frontend, Node.js for the backend, and MySQL as the database. The system integrates blood donor management, blood inventory tracking, patient blood requests, organ donor registration, and organ transplant request handling within a single unified platform. It incorporates role-based access control for Admin, Donor, Patient, and Organ Donor users to ensure secure and organized

operations.

The platform automates key processes such as donor eligibility calculation, real-time blood stock updates, request approval workflows, and automated email notifications. By providing transparency in request tracking and secure handling of sensitive organ donation data, the system reduces manual workload, minimizes errors, and enhances communication between donors, patients, and administrators. Overall, the proposed solution aims to improve healthcare service efficiency, ensure timely availability of life-saving resources, and support hospitals and blood banks in delivering effective donation management services.

2. LITERATURE REVIEW

Blood and organ donation management systems have been widely studied in recent years due to the increasing demand for timely and efficient healthcare services. Traditional blood bank systems primarily rely on manual record maintenance and isolated databases, which often lead to delays in communication, inaccurate inventory tracking, and inefficient donor management. Several researchers have emphasized the importance of automating blood donation processes to improve transparency, reliability, and response time during emergencies.

Various web-based Blood Bank Management Systems (BBMS) have been proposed to address issues related to donor registration, blood stock monitoring, and patient request handling. These systems typically include modules for donor information storage, blood inventory management, and request approval mechanisms. Studies show that integrating centralized databases with web technologies significantly reduces paperwork and minimizes human errors. However, many existing systems focus only on blood donation and do not incorporate organ donation management within the same platform.

Recent advancements in full-stack web development technologies such as React and Node.js have enabled the development of scalable, responsive, and real-time healthcare applications. Research indicates that RESTful API-based architectures improve communication between frontend and backend systems, allowing seamless data exchange and better user experience. Moreover, the use of relational database management systems like MySQL ensures structured data storage and referential integrity.

Some proposed systems include notification mechanisms using email or SMS to inform donors about donation schedules or urgent blood requirements. Automated donor eligibility tracking based on medical guidelines has also been explored to improve donor engagement and retention. Despite these advancements, most existing solutions lack comprehensive integration of blood and organ donation management in a single intelligent platform. Organ donation systems are often handled separately due to their sensitive and regulated nature, leading to fragmented data management.

Security and privacy remain critical concerns in healthcare applications. Previous studies highlight the importance of implementing role-based access control, authentication mechanisms, and data encryption to protect sensitive donor and patient information. Systems without proper security frameworks risk unauthorized access and data breaches.

Based on the analysis of existing literature, there is a clear need for a unified, secure, and intelligent web-based platform that integrates blood and organ donation management with automated workflows, real-time inventory updates, and transparent request tracking. The proposed Intelligent Blood and Organ Donation Management Platform addresses these research gaps by combining automation, centralized data management, role-based security, and notification mechanisms within a single scalable system.

3. PROPOSED SYSTEM

The proposed system is an Intelligent Blood Donation Management Platform developed as a web-based application using React, Node.js, and MySQL. It aims to automate and centralize blood and organ donation management processes to improve efficiency and transparency. The system provides role-based access for Admin, Donor, Patient, and Organ Donor to ensure secure and organized operations. The Admin manages donor records, blood inventory, organ donation data, and request approvals through a centralized dashboard. Donors can log in, update their profiles, track donation history, and check their next eligible donation date. The system automatically calculates eligibility and sends email notifications to donors when they can donate again. Patients can search available blood groups, submit blood requests, and track the status of their requests in real time. The Organ

Donation Module allows organ donor registration, organ type selection, and secure request management. Blood and organ requests go through proper verification and approval workflows to ensure safety and compliance. Overall, the proposed system enhances communication, reduces manual errors, and ensures timely availability of blood and organs for patients in need.

3.1 Objectives

The main objectives of the proposed system are as follows:

- Manual record-keeping increases the risk of data entry errors and information loss. Lack of real-time blood stock updates leads to inaccurate inventory management.
- Delayed communication between donors, patients, and administrators.
- No automated donor eligibility tracking or notification system.
- Time-consuming approval process for blood and organ requests.
- Limited transparency in request status tracking for patients.
- Separate and unintegrated management of blood and organ donation records.

3.2 Functional Components

a. User Authentication and Role Management

- Secure registration and login for Admin, Donor, Patient, and Organ Donor.
- Role-based access control to restrict functionalities based on user type.
- Secure password management and session handling.

b. Admin Module

- Add, update, and view blood donor details.
- Manage blood stock inventory (add, edit, delete, and view units).
- View and manage registered patient records.
- Approve or reject blood requests.

c. Blood Donor Module

- Donor registration and profile management.
- View personal details and donation history.
- Automatic calculation of next eligible donation date.
- View eligibility status (Eligible / Not Eligible).

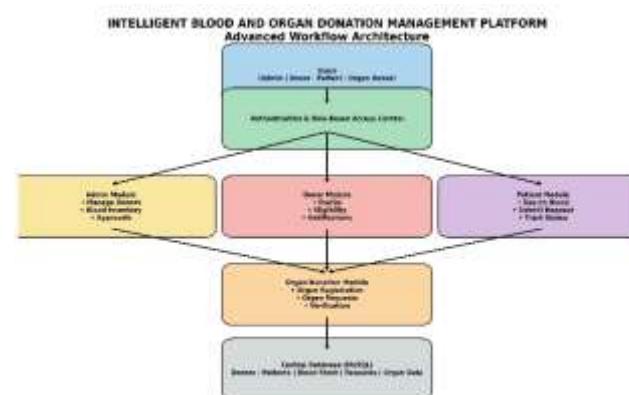
d. Donor Notification Module

- Automated email notifications to donors when eligible for next donation.
- Status tracking of sent notifications.

e. Patient Module

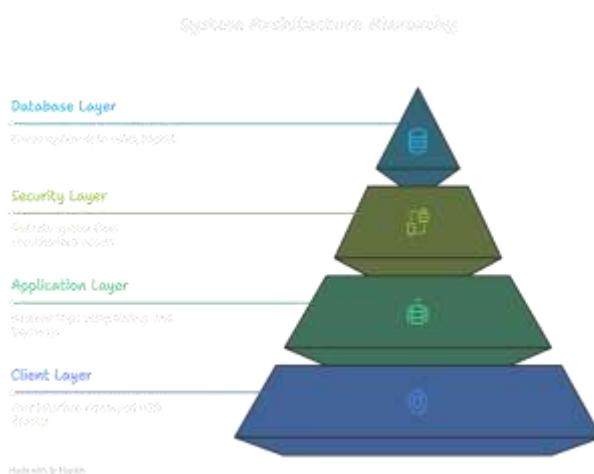
- Patient registration and secure login.
- Search available blood groups.
- View real-time blood stock availability.
- Submit blood requests with required units and reason.
- Track request status (Pending, Approved, Rejected).

f. Blood Inventory Management Module


- Maintain blood stock records by blood group.
- Automatic stock update after approval of blood requests.
- Real-time availability display.

g. Organ Donation Module

- Organ donor registration with consent details.
- Organ type selection (Kidney, Liver, Heart, etc.).
- Organ request submission by patients.
- Admin verification and approval workflow.
- Secure handling of sensitive organ data.


h. Reporting and Dashboard Module

- Admin dashboard with summary of donors, patients, and stock.
- Donor dashboard with eligibility and history details.
- Patient dashboard with request tracking.
- Status-based reports and structured data display.

4. SYSTEM ARCHITECTURE

The Intelligent Blood and Organ Donation Management Platform follows a layered three-tier architecture consisting of Client Layer (Presentation Layer), Application Layer Security Layer Database Layer. This architecture ensures scalability, security, maintainability, and efficient data management.

1.Client Layer (Frontend – React.js)

The Client Layer represents the user interface of the system. It is developed using **React.js**, which provides a responsive and dynamic web interface.

Main Responsibilities:

- User registration and login interface
- Dashboard display for Admin, Donor, Patient, and Organ Donor
- Blood stock visualization
- Blood and organ request submission forms
- Real-time request status tracking
- Donation history display
- Eligibility status display

Application Layer(Backend – Node.js + Express.js)

The Application Layer handles the core business logic of the system. It is developed using Node.js and Express.js.

Main Responsibilities:

- REST API development
- Processing client requests
- Managing blood stock operations
- Handling request approval workflows
- Eligibility calculation (90-day rule for blood donation)
- Email notification service integration
- Data validation and processing

3.Security Layer

The Security Layer ensures protection of sensitive healthcare data.

Security Mechanisms Implemented:

- Role-Based Access Control (RBAC)
- Password encryption (crypt)
- Secure login authentication
- Input validation (frontend + backend)
- Session management
- Restricted access to organ-related sensitive data

Database Layer (MySQL)

The Database Layer is implemented using **MySQL**, a relational database management system.

5.METHODOLOGY

The development of the Intelligent Blood and Organ Donation Management Platform follows a structured and systematic methodology to ensure reliability, scalability, and security. The project adopts the Agile Software Development Methodology combined with a modular design approach.

1. Requirement Analysis Phase

In this phase, system requirements were collected and analyzed from blood banks, hospitals, donors, and patients.

Functional Requirements:

- User registration and login (Admin, Donor, Patient, Organ Donor)
- Blood stock management
- Blood request and approval system
- Organ donor registration and request management
- Automated eligibility tracking
- Email notification system

Non-Functional Requirements:

- Data security and privacy
- System scalability
- High availability
- User-friendly interface
- Fast response time

2.System Design Phase

The system architecture was designed using a three-tier layered architecture:

- Presentation Layer (React.js Frontend)
- Business Logic Layer (Node.js + Express.js Backend)
- Data Layer (MySQL Database)

Design tools used:

- System Architecture Diagram
- Workflow Diagram
- Database ER Diagram
- Use Case Diagram

3. Database Design

A relational database structure was designed using MySQL.

Key Tables:

- Admin
- Blood Donor
- Donation History

- Blood Stock
- Patient
- Blood Request
- Organ Donor
- Organ Request
- Notification

Primary and foreign keys were implemented to maintain data integrity and relationships.

4. Frontend Development

The frontend was developed using React.js with component-based architecture.

Features implemented:

- Role-based dashboards
- Form validation
- Responsive design
- API integration using Axios
- Real-time data updates

5. Backend Development

The backend was developed using Node.js and Express.js.

Responsibilities:

- REST API development
- Business logic implementation
- Blood eligibility calculation (90-day rule)
- Approval workflow processing
- Email notification integration
- Data validation and security checks

6. Security Implementation

Security mechanisms implemented include:

- Role-Based Access Control (RBAC)
- Secure authentication system
- Input validation (frontend & backend)

7. Testing Phase

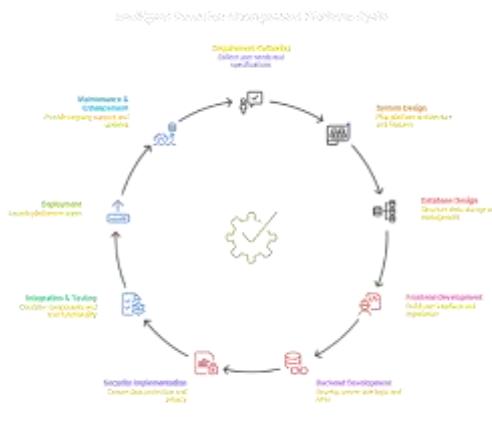
Multiple testing strategies were used:

- Unit Testing
- Integration Testing
- System Testing
- User Acceptance Testing (UAT)

Testing ensured system accuracy, reliability, and performance.

8. Deployment Phase

The system was deployed on a web server environment.

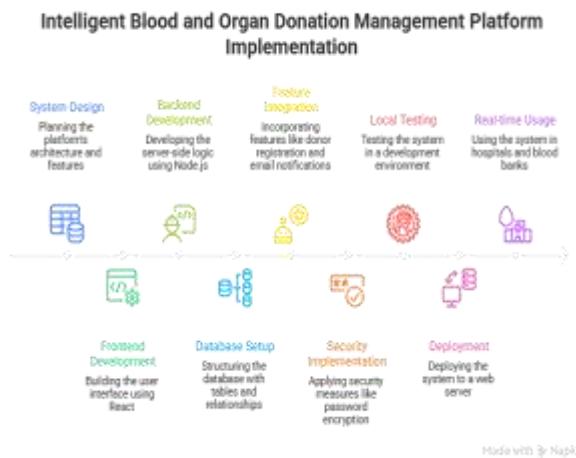

Deployment steps:

- Backend server setup
- Database configuration
- Environment variable configuration

9. Maintenance and Enhancement

Post-deployment monitoring was conducted to:

- Fix bugs
- Improve performance
- Update security patches
- Add new features when required

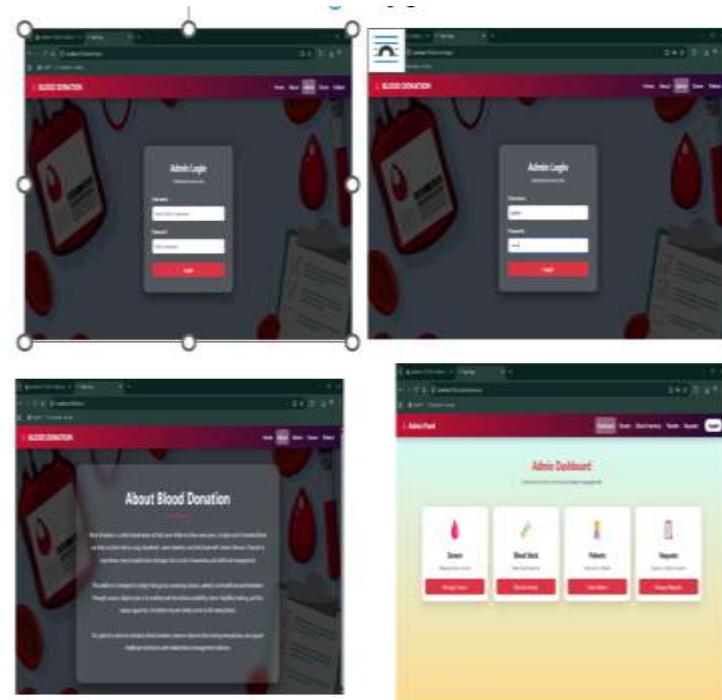


6. IMPLEMENTATION

System implementation is the phase where the Intelligent Blood and Organ Donation Management Platform is developed and deployed using the selected technologies. The system is implemented as a web-based application using React for the frontend, Node.js for the backend, and MySQL as the database. The frontend is designed with responsive user interfaces to ensure easy navigation for Admin, Donor, Patient, and Organ Donor roles. The backend is developed using RESTful APIs to handle business logic, data processing, authentication, and communication with the database. Proper routing and middleware are implemented to manage role-based access control and secure data transactions.

The database is structured with well-defined tables and relationships to maintain data integrity and consistency. During implementation, features such as donor registration, blood stock management, eligibility calculation, request approval workflows, and automated email notifications are integrated into the system. Security measures including password encryption, input validation, and session management are applied to protect sensitive information. The system is tested in a local development environment before deployment on a web server. After successful testing, the application is deployed for real-time usage in hospitals or blood banks. Overall, system implementation ensures that the

designed architecture is converted into a fully functional, secure, and reliable healthcare management platform.



7.RESULTS AND DISCUSSION

The Intelligent Blood and Organ Donation Management Platform was successfully developed and implemented using React.js for the frontend, Node.js with Express.js for the backend, and MySQL as the database management system. The system was tested across multiple user roles including Admin, Blood Donor, Patient, and Organ Donor to ensure proper functionality and secure access control. The results demonstrate that the platform effectively manages blood donor registration, blood inventory tracking, patient blood requests, organ donor registration, and approval workflows. Real-time blood stock updates were successfully implemented, ensuring accurate availability information. The automated donor eligibility calculation based on the 90-day donation rule functioned correctly, and email notifications were triggered appropriately for eligibility updates and request approvals. The role-based access control mechanism restricted unauthorized access and ensured secure handling of sensitive medical and personal data.

The discussion highlights that the proposed system significantly improves efficiency compared to traditional manual blood bank operations. By digitizing donor records, request processing, and approval mechanisms, the system reduces administrative workload and minimizes human error. The centralized database enhances data accuracy, transparency, and traceability of transactions. Patients benefit from real-time visibility of blood availability and request status tracking, improving trust and accessibility. The separate organ donation module ensures proper management of highly sensitive organ-related data. Furthermore, the

modular architecture supports scalability and future enhancements such as mobile application integration, cloud deployment, and AI-based donor prediction systems. Although the current system is web-based and relies primarily on email notifications, it provides a strong foundation for a secure, efficient, and transparent blood and organ donation management solution suitable for hospitals and healthcare organizations.

8.CONCLUSION

The Intelligent Blood and Organ Donation Management Platform provides an efficient and secure solution for managing blood and organ donation activities in healthcare institutions. The system replaces traditional manual processes with a centralized web-based application developed using React, Node.js, and MySQL. It enables effective management of donors, patients, blood stock, and organ donation records through role-based access control. Automated features such as donor eligibility calculation and email notifications improve donor engagement and ensure timely donations. The platform allows patients to search blood availability, submit requests, and track request status transparently. The Admin module ensures proper monitoring, approval workflows, and real-time inventory updates. The Organ Donation Module securely handles sensitive organ donor data and verification procedures. Comprehensive testing ensures reliability, security, and smooth system performance. The system reduces manual errors, delays, and administrative workload significantly. Overall, the

platform enhances healthcare coordination and contributes to saving lives through efficient blood and organ donation management.

9. REFERENCES

1. World Health Organization (WHO), Blood Safety and Availability, WHO Fact Sheet, 2023.
2. World Health Organization (WHO), Global Status Report on Blood Safety and Availability, Geneva, Switzerland, 2022.
3. K. Sharma and R. Gupta, "Design and Implementation of Blood Bank Management System Using Web Technology," International Journal of Computer Applications, vol. 179, no. 21, pp. 12–17, 2018.
4. M. R. Patil and S. P. Kulkarni, "Web-Based Blood Donation Management System," International Journal of Advanced Research in Computer Science and Software Engineering, vol. 7, no. 4, pp. 234–238, 2017.
5. J. Smith and L. Brown, "Role-Based Access Control in Healthcare Information Systems," IEEE Access, vol. 6, pp. 12345–12356, 2018.
6. S. K. Singh, "Secure Web Application Development Using Node.js and Express," International Journal of Engineering Research & Technology, vol. 9, no. 5, pp. 456–461, 2020.
7. React Documentation, "React – A JavaScript Library for Building User Interfaces," Meta Platforms Inc., 2023. [Online]. Available: <https://react.dev>
8. Node.js Foundation, "Node.js Official Documentation," 2023. [Online]. Available: <https://nodejs.org>
9. Oracle Corporation, "MySQL 8.0 Reference Manual," 2023. [Online]. Available: <https://dev.mysql.com/doc/>
10. P. Devi and R. Kumar, "Organ Donation Management System Using Web Technology," International Journal of Innovative Technology and Exploring Engineering, vol. 9, no. 2, pp. 2100–2105, 2019.