
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                    Volume: 08 Issue: 02 | February - 2024                           SJIF Rating: 8.176                             ISSN: 2582-3930   

 

© 2024, IJSREM      | www.ijsrem.com                           DOI: 10.55041/IJSREM28707                      |        Page 1 

Interferons during HSV-2 Infection: Immune Regulation 

 
SANTANU KUILYA 

 

Abstract: 

Herpes simplex virus type 2 (HSV-2) infection is a prevalent sexually transmitted infection that disproportionately 

affects women worldwide. Currently, there are no vaccines or curative treatments available, leading to life-long 

infections. During HSV-2 infection, interferons (IFNs) play a crucial role in the body's antiviral defense. Type I IFNs 

(IFN-alpha and IFN-beta) and type III IFNs (IFN-lambda) are produced by host cells in response to the virus, alerting 

neighboring cells to its presence and inducing an antiviral state that limits viral replication and spread. Type III IFNs, 

produced in epithelial cells, also contribute to controlling viral replication in mucosal tissues. However, HSV-2 has 

evolved strategies to evade IFN-induced responses, allowing the virus to partially escape the host's immune response, 

establish latency, and cause recurrent infections. The delicate balance between the host's IFN response and the virus's 

immune evasion mechanisms determines the outcome of HSV-2 infection. Understanding the intricate interplay 

between HSV-2 and interferon signalling is critical for developing effective therapies and vaccines to combat this 

sexually transmitted infection. 
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Introduction: 

Genital herpes simplex virus type 2 (HSV-2) infection is a highly prevalent sexually transmitted infection, affecting 

millions of individuals worldwide. African cohorts have a significant burden of HSV-2 cases, particularly impacting 

women. Despite its prevalence, there are currently no preventive or curative treatments available, and existing 

therapies only aim to suppress viral reactivation. Moreover, antiviral resistance, especially in immunocompromised 

individuals, poses a challenge. 

Understanding the immune response required to control HSV-2 infection is crucial for developing effective 

therapeutic strategies. While extensive research has been conducted on various aspects of the immune response, the 

role of the innate immune response has recently gained significant attention. Particularly, type I interferons (IFN-a/b) 

have emerged as pivotal players in the early innate immune response to HSV-2. 

Type I IFNs play a crucial role in limiting viral replication and containing the spread of the virus to uninfected cells 

by establishing an antiviral state. Notably, in vitro studies have shown that pre-treatment of certain cell lines with 

recombinant IFN-a/b can effectively inhibit HSV-2 replication by blocking the expression of HSV-2 immediate early 

genes. Furthermore, in vivo studies have revealed a correlation between resistance to HSV-2 infection and the level 

of IFN-a/b produced upon infection in different mouse strains. 

Besides their direct antiviral effects, type I IFNs also serve as important signaling molecules to alert neighboring 

cells about the presence of the virus and induce an antiviral response in those cells. This ability to recruit other cellular 

effectors is essential for controlling viral infections. 

In conclusion, the innate immune response, particularly mediated by type I IFNs, plays a pivotal role in the early 

defense against HSV-2 infection. Understanding these mechanisms holds great promise for developing targeted 

therapeutic approaches to effectively combat HSV-2 and its associated complications. 
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Interferon pathway during HSV-2 infection: 

Type I IFNs, which include IFN-alpha and its subtypes, as well as IFN-beta, IFN-ϵ, IFN-w, and IFN-k, are essential 

signalling molecules during genital HSV-2 infection. They play a crucial role in promoting resistance to the infection 

by suppressing viral replication and enhancing antiviral immune responses. Type I IFNs initiate a signalling cascade 

through the interferon-alpha/beta receptor (IFNAR) and induce the transcription of interferon-stimulated genes 

(ISGs) to inhibit viral replication. The induction of type I IFNs is triggered by DNA sensing pattern recognition 

receptors (PRRs) like TLR9, IFI16, and cGAS, which activate the STING adaptor protein. Additionally, RIG-I and 

MDA5 recognize replication intermediate dsRNA. 

During genital HSV-2 infection, IFN-a/b is primarily produced by circulating plasmacytoid dendritic cells (pDCs) 

upon recognition by TLR9. Recurrent HSV-2 patients with genital lesions show pDC infiltration, indicating a role 

for type I IFNs in controlling HSV-2 reactivation. Classical CD8a DCs are also a significant source of IFN 

production, independent of TLR9 signalling. 

Type II IFNs, represented by IFN-g, are primarily produced by NK cells and T cells during genital HSV-2 infection, 

stimulated by type I IFN-mediated IL-18 signalling. IFN-g signalling occurs through the IFN-g receptor present on 

the majority of immune cells. IFN-g plays a critical role in mediating protection against genital HSV-2 infection. 

Dysregulated IFN-g production, associated with genetic variations in the STAT4 gene, has been linked to recurrent 

genital herpes in humans. IFN-g is necessary for HSV-2 clearance during both primary and secondary challenges. 

Type III IFNs, including IFN-l1, 2, 3, and 4 in humans, also play a crucial role in antiviral responses to HSV-2 

infection. DCs and pDCs are the primary producers of type III IFNs in response to TLR7 ligands and HSV-2 infection. 

The type III IFN receptor is not expressed on the surfaces of immune cells, leading to less inflammatory responses. 

Type III IFNs may possess direct immunoregulatory functions. 

Susceptibility to HSV-2 infection can be influenced by hormone-mediated alterations in IFN responses. For instance, 

estradiol treatment in women increases the capacity to produce type I IFN by pDCs after just one month of treatment. 

On the other hand, depot medroxyprogesterone acetate (DMPA) treatment impairs TLR9 ligand-mediated IFN-a 

production in human pDCs by inhibiting IRF7 nuclear accumulation following CpG stimulation. 

Interferons regulating innate immunity during HSV-2 infection: 

Innate immunity plays a critical role in initial viral infection and replication; however, their dysregulation can also 

be the cause of severe inflammation and tissue damage. In this section, we will explore the innate immune responses 

regulated by IFNs toward HSV-2 infection. Type I IFN signalling during HSV-2 infection critically regulates both 

the induction and control of NK cell-mediated type II IFN signalling. 

Monocytes/Macrophages: 

During HSV-2 infection, the accumulation of monocytes is crucial to control viral infection and stimulate antiviral 

immunity in the vaginal mucosa. Monocytes and macrophages increase the expression of Fas and FasL during 

infection. Type I IFN signalling can regulate the protective effects of monocytes/macrophages during HSV-2 

infection. Although type I IFN has been shown to induce FasL expression in murine immune cells during influenza 

infection, its role in regulating Fas/FasL pathways during genital HSV-2  infection is not fully defined. However, it 

is believed that type I IFN may contribute to monocyte-mediated inflammation and the induction and recruitment of 

adaptive immune responses. Type I IFN has been shown to promote inflammatory monocyte (IM) recruitment during 

murine HSV-1 and HSV-2 infections, promoting survival and antiviral responses. In addition, type I IFN signalling 

during HSV-2 infection is associated with Fas/FasL-induced inflammation, which contributes to the clearance of 

infection. In addition, type II IFNs produced by NK cells and T cells also play a role in promoting macrophage 

responses during HSV-2 infection. IFN-g signalling stimulates nitric oxide production by macrophages, and mouse 

macrophages infected with HSV-2 show increased nitric oxide release upon IFN-g stimulation. IFN-g, a Th1-
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promoting cytokine, supports macrophage M1 polarization, proinflammatory cytokine production, and increased 

MHC class II expression, facilitating effective adaptive immune responses in a murine model of HSV-2 infection. In 

conclusion, both type I and type II IFN facilitate the recruitment and activation of antiviral functions of inflammatory 

monocytes (IM) and macrophages during HSV-2 infection. 

Neutrophils: 

Neutrophils can play a protective role in HSV-2 infection by limiting early viral replication. However, dysregulated 

neutrophil responses can lead to damaging inflammatory outcomes and increased disease severity during viral 

infection. Induction of IL-36g has been shown to increase sensitivity to IFN-a/b during HSV-2 infection in mice 

through increased IFNAR expression on keratinocytes, likely contributing to the protective function of IL-36. 

Additionally, IFN-l has been demonstrated to suppress neutrophil-mediated damage in the intestinal mucosa of mice. 

Dysregulated and prolonged type I IFN signalling was recently described to promote epithelial damage in response 

to mouse HSV infection by neutrophils. 

NK Cells: 

Natural Killer (NK) and NKT cells are critically required for innate protection against HSV-2 infections. Individuals 

with severe NK cell deficiencies have been associated with recurrent HSV infections. In mouse models, NK cell-

deficient mice are highly susceptible to HSV-2 infection, with higher viral load and mortality. NK cell recruitment 

is facilitated by chemokines CXCL9 and CXCL10, and the absence of the CCR5 receptor leads to increased 

susceptibility to intravaginal HSV-2 infection in mice. Type I IFN production during infection is essential for the 

activation of NK cells. Type I IFNs are critical mediators of indirect NK cell activation and IFN-g production during 

mouse HSV-2 infection. IFN-g production during mouse HSV-2 infection is significant in providing antiviral 

defense. 

The Role of IFNs in HSV-2 Vaccine Development: 

Mouse models of HSV-2 vaccination have shown promising results with potent memory T cells and neutralizing 

antibody responses that confer protection against subsequent HSV-2 challenges. However, these preclinical findings 

have not translated into effective vaccines for humans during clinical trials. Several candidate vaccines have exhibited 

poor efficacy in clinical trials, with varying induction of neutralizing antibody or cellular responses. Unfortunately, 

most clinical studies in humans focus primarily on neutralizing antibody titers and provide a limited examination of 

CD4+ T cell specificity or IFN-g production. 

While type I IFNs may not be required for vaccine-induced memory responses in mice, HSV-2's evasion of type I 

IFN signalling in humans, as demonstrated by a lack of type I IFN in human lesion biopsies compared to mice, could 

diminish the efficacy of vaccine-induced memory responses. Multiple clinical trial failures despite successful pre-

clinical models highlight the differences between human and animal models in developing protective adaptive 

immunity to genital HSV-2 infection. Additionally, vaccination studies in mice often overlook the role of type I IFN 

in terms of the longevity of established protective immunity, as secondary challenges are administered within a month 

post-vaccination. 

The role of type III IFNs should also be considered carefully in future vaccine development. Using IFN-l3 as an 

adjuvant in a mouse vaccination model has shown enhanced humoral and cellular immune responses, resulting in 

improved vaccine efficacy. Therefore, the lack of type I, II, and III IFN induction by HSV-2 vaccination in humans 

may hinder the development of protective adaptive immunity and should be a critical consideration in future vaccine 

design. 
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Conclusion: 

The development of effective preventative and prophylactic treatments for sexually transmitted HSV-2 has been 

challenging due to the difficulty in inducing a strong, protective immune response in the genital mucosa. they also 

play a crucial role in the development of local protective innate and adaptive immune responses to viral infection. 

Type I and II IFN signalling, directly and indirectly, regulate the development of immune memory and adaptive 

responses to viral infection through the induction of innate immunity. Additionally, type III IFNs are vital in 

controlling viral replication and likely have unexplored functions in regulating innate immune responses in the genital 

mucosa. 

Impairment of type I IFN signalling during genital herpes infection can lead to a decline in type II IFN responses, 

which are essential for the development of adaptive immunity and HSV-2 clearance. As previously mentioned, 

recurrent HSV-2-infected individuals often exhibit dysregulated responses to IFN-g, which hinders their ability to 

combat the virus effectively. 

For future treatments or vaccines, it will be crucial to restore responsiveness to IFN-g signalling and elicit potent 

CD4+ T cell-derived IFN-g production. IFN-g plays a multifaceted role in immune regulation and antiviral immunity, 

making it a critical component for combating HSV-2 infection effectively. 

In summary, understanding the complex role of IFNs in regulating innate and adaptive immune responses in the 

genital mucosa is essential for developing novel and effective treatments or vaccines against HSV-2. Restoring and 

enhancing IFN-g responsiveness could be a promising avenue for improving the immune response and ultimately 

controlling and preventing HSV-2 infection. 
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