J".", ‘33‘
¢ TISREM 3!

<Journal

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

5

Introduction to Continuous Integration — Streamlining Development with
GitHub Actions

Sanjana Goswami', Dr.Vishal Shrivastava®, Dr. Akhil Pandey’

,>,”Computer Science & Engineering, Arya College of Engineering & I.T. Jaipur, India
sanjanagoswamil 807@gmail.com, vishalshrivastava.cs@aryacollege.in, akhil@aryacollege.in

123

Abstract

Continuous Integration (CI) represents a fundamental transformation in modern software development practices. By automatically
integrating code changes into a shared repository and validating them with automated builds and tests, CI enables early detection of
integration conflicts and ensures high-quality software delivery. GitHub Actions, launched in 2019, has emerged as a powerful native
CI/CD platform within GitHub, enabling workflow automation, reusability, and scalability.

This paper presents an in-depth study of CI concepts, highlights the role of GitHub Actions, and demonstrates how it streamlines
development pipelines. The methodology includes workflow design, testing strategies, deployment integration, and performance
evaluation. Comparative analysis with tools like Jenkins and GitLab CI is presented. Experimental observations indicate
improvements in build times, deployment frequency, and mean time to recovery (MTTR). Future research directions involve
DevSecOps integration, hybrid cloud deployments, and Al-driven testing.

Keywords:
ENGINEERING

1Introduction

Continuous Integration (CI) has become one of the cornerstones
of modern Agile and DevOps methodologies. Its central idea is
that developers frequently integrate their code changes into a
shared repository—sometimes several times per day. Each
integration is automatically validated through builds and tests,
ensuring that errors are detected as early as possible.

This practice has revolutionized the software development
lifecycle. Instead of discovering integration conflicts late in the
process, teams using CI identify them within minutes or hours
of committing changes. As a result, CI reduces project risks,
shortens delivery cycles, and promotes collaboration among
developers, testers, and operations teams.

Before CI was widely adopted, teams often fell into what is
known as integration hell. In this scenario, developers worked
in isolation for long periods and only attempted to integrate
code at the end of a release cycle. The outcome was predictable:
duplicated work, merge conflicts, and unstable builds. This
delayed delivery and caused customer dissatisfaction.

With CI, every code change is treated as a candidate for
production. By automating builds, running tests, and enforcing
code quality checks, teams can deliver working software at any
point in time. CI is often paired with Continuous Delivery
(CD) and Continuous Deployment, where validated changes
are deployed automatically to staging or production
environments. Together, CI/CD form the backbone of the
DevOps culture.

GitHub Actions, introduced in 2019, represents a new
generation of CI/CD platforms. Unlike earlier CI tools that
required standalone servers or complex configurations, GitHub

CONTINUOUS INTEGRATION, GITHUB ACTIONS, DEVOPS, CI/CD, AUTOMATION, SOFTWARE

Developers define workflows using YAML syntax and store
them in .github/workflows/. These workflows automate
repetitive tasks such as compiling code, running tests, deploying

applications, and even generating reports.

Cantgerstae

;‘:x" Control :*c.:'s'um PN ragemen

caor wv
Tevzopeen! k YWasterses

Dev & Ops §

: & ps £

Aaseunan Caream catbon

war wamToR

Comtraces Fewg ston’
f‘""'""‘ ;::‘::’."m"" Vissossses Ladary
1.1 Historical Evolution of Cl

The origins of CI can be traced back to the early 2000s, when
Martin Fowler popularized the concept as part of Agile
practices. Early CI servers such as Cruise Control introduced
automated builds triggered by source code changes. Jenkins
later became dominant due to its rich plugin ecosystem but
suffered from complex setup. The arrival of GitHub Actions in
2019 simplified CI by embedding workflows directly in
GitHub.

Actions is nativelz integrated with GitHub repositories.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53760 |

Page 1

https://ijsrem.com/
mailto:sanjanagoswami1807@gmail.com
mailto:vishalshrivastava.cs@aryacollege.in

Riad

A ‘2_%
g;‘ IJSREM éé
- Jeurnal

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

6 Stages of DevOps CI/CD Pipeline

000000

——— o —— .. P e bl bt mae e —

1.2 Importance of CI in Modern Development

. Reduces integration risks by validating code
continuously.

. Improves collaboration across globally distributed
teams.

. Provides rapid feedback through automated pipelines.
. Supports DevOps culture by enabling continuous
delivery.

. Increases confidence in code quality and release
stability.

1.3 Introduction to GitHub Actions

GitHub Actions is an event-driven automation platform tightly
coupled with GitHub repositories. Workflows are defined in
YAML syntax under. github/workflows/. Key features include:

. Event triggers (push, pull request, scheduled jobs).
. Job orchestration with parallel execution.

. Prebuilt actions available in GitHub Marketplace.
. Cloud-hosted and self-hosted runners.

2 Related Works

Several tools and studies have been proposed to improve
automation in Integration/Continuous
Deployment (CI/CD). This section reviews the most widely
used solutions and highlights their advantages and limitations.

Continuous

2.1 Jenkins

Jenkins is one of the earliest and most popular open-source
automation servers. It provides a wide variety of plugins that
enable developers to build, test, and deploy applications. Its
strength lies in flexibility and community support. However,
Jenkins often requires significant configuration and
maintenance effort, making it complex for beginners.

2.2 GitLab CI/CD

GitLab CI/CD offers a built-in continuous integration solution
that integrates tightly with GitLab repositories. It enables
automated pipelines for testing, deployment, and monitoring.
GitLab CI/CD is appreciated for its simplicity and end-to-end
DevOps features. The limitation, however, is that it is highly

Tight integration with pull requests and issues.

Continuous Integration

tied to the GitLab ecosystem and may not be suitable for
projects hosted outside it.

2.3 CircleCI

CircleClI is a cloud-based CI/CD tool that emphasizes speed
and scalability. It supports containerized builds using Docker,
making it ideal for cloud-native applications. CircleCI
provides robust performance, but its free tier is limited, and
large-scale usage often requires paid subscriptions.

2.4 GitHub Actions

GitHub Actions is a relatively newer solution introduced by
GitHub in 2019. It allows developers to automate workflows
directly in their repositories using simple YAML files. It
supports a wide range of actions contributed by the
community. GitHub Actions is considered developer-friendly
and cost-effective for public repositories. However, it has
concurrency limitations in free plans and is tightly coupled
with the GitHub ecosystem.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53760 | Page2

https://ijsrem.com/

5

J".", ‘33‘
¢ TISREM 3!

Volume: 09 Issue: 11 | Nov - 2025

s International Journal of Scientific Research in Engineering and Management (I[JSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

2.5 Travis CI

Travis CI was one of the first cloud-hosted CI/CD services
integrated with GitHub. It gained popularity due to its simple
configuration using .travis.yml files and strong open-source
community support. While it remains widely used, its free
services have become more limited over time, which has
reduced adoption in Favor of newer platforms.

2.6 Bitbucket Pipelines

Bitbucket Pipelines is a CI/CD service built into Bitbucket
repositories. It enables teams to configure pipelines directly in
a bitbucket-pipelines.yml file. Its biggest advantage is tight
integration with Atlassian tools like Jira and Trello, making it
suitable for project management-driven teams. However,
compared to GitHub Actions, it has fewer community-
contributed workflows.

2.7 Azure DevOps Pipelines

Azure DevOps Pipelines is a Microsoft-hosted CI/CD service
that supports multi-platform builds and deployments. It
integrates well with Azure cloud services, offering enterprise-

level scalability and security. Its limitation is complexity and
a steeper learning curve for beginners compared to GitHub
Actions.

2.8 AWS Code Pipeline

AWS Code Pipeline automates the build, test, and deployment
phases of applications hosted on Amazon Web Services. It is
highly reliable and scalable for cloud-native applications.
However, it is costly for small teams and less intuitive
compared to GitHub Actions.

2.9 Bamboo (by Atlassian)

Bamboo is a CI/CD tool developed by Atlassian, primarily
targeted at enterprises. It offers strong integration with other
Atlassian products and provides advanced build management
features. However, Bamboo is not free and is considered more
suitable for large organizations with enterprise budgets,
limiting its adoption among individual developers and small
startups.

.no Year Key Features Advantages Limitations
Jenkins 2011 Plugin-based automation | Highly customizable; open- | Requires manual setup;
server source; large community maintenance overhead
GitLab CI/CD 2014 Integrated CI/CD with | Seamless integration; easy | Tied to GitLab ecosystem;
GitLab repositories to use; built-in security limited free tier
CircleCI 2011 Cloud-based CI/CD | Scalable; supports Docker | Paid plans for large
platform & cloud-native apps projects; limited offline
support
GitHub Actions 2019 Native CI/CD for GitHub | Easy YAML workflows; | Concurrency limits in free
repositories free for public repos; large | plan; GitHub-dependent
community
Travis CI 2011 YAML-based GitHub | Simple config; popular in | Free plan limited;
integration open source declining usage
Bitbucket Pipelines 2016 Integrated with Bitbucket | Strong Atlassian | Smaller community;
repos integration; easy config fewer workflows
Azure DevOps 2016 Enterprise-grade Multi-platform; Azure | Complex for beginners
pipelines integration; enterprise
features
AWS CodePipeline 2015 AWS-native automation | Reliable; scalable; tightly | Costs can grow; less
integrated with AWS intuitive for non-AWS
users
Bamboo 2007 Atlassian build/deploy | Strong Jira/Trello | Paid; less suitable for
tool integration; enterprise | small teams
features

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53760 | Page3

https://ijsrem.com/

i 2
; Y
”?Eé’@ International Journal of Scientific Research in Engineering and Management (I[JSREM)

Volume: 09 Issue: 11 | Nov - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

Riad

3 Proposed Methodology

This research proposes a structured methodology for
implementing workflow automation using GitHub Actions.
The methodology is divided into four stages: workflow design,
configuration, implementation, and validation. Each stage is
essential for ensuring efficient and reliable automation of
software development processes.

3.1 Workflow Design

The first step involves designing the workflow structure. A
workflow defines the sequence of jobs and actions that run
automatically when triggered by specific events such as push,
pull request, or deployment.

push

.3.2 Workflow Configuration

GitHub Actions workflows are configured using YAML
(.yml) files stored in the. github/workflows/ directory. Each
workflow consists of:

. Events: Triggers such as push, pull request.

. Jobs: Units of work executed on virtual machines
(runners).

. Steps: Individual commands or actions executed in a
job.

NOMA Ao

3.3 Implementation Details

After configuration, the workflow is implemented within the
repository. Whenever a developer pushes new code, the
defined pipeline is triggered automatically.

. The checkout step retrieves the code.

. Dependencies are installed, followed by automated
build and testing.

. Results are displayed in the GitHub Actions tab.

N 7N
[)me)s) m Jomr
S N

3.4 Tools Selection Criteria

In this subsection, we will explain the basis on which CI/CD
tools are selected for implementation, such as:

. Scalability (Can the tool handle large projects?)

. Integration Support (Does it integrate with GitHub,
GitLab, Bitbucket, etc.?)

. Ease of Use (User-friendly interface and automation
support)
. Community & Support (Open-source or enterprise-

level support)

. Cost & Licensing
O Svhion " b N ss000s o
S wchyne ! e ! —_— O N Bt
-~ — ot o
- = = i‘q‘f;".:b =g =+
O 06‘:‘\:«! d g
n - Dorvens LeooLy
* (arfhmrce s PO, v

3.5 Proposed Workflow Model

This subsection will describe the workflow pipeline that will
be followed in the project.
Steps include:

1. Code Commit — Developer pushes code to
repository.
2. Build Stage — Automated build triggered.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53760 | Page4

https://ijsrem.com/

J".", ‘33‘
¢ TISREM 3!

Volume: 09 Issue: 11 | Nov - 2025

5

s International Journal of Scientific Research in Engineering and Management (I[JSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

3. Testing Stage — Unit & integration testing
performed.

4. Deployment Stage — Code deployed to
staging/production.

5. Monitoring & Feedback — Continuous monitoring
for performance and error detection.

3.6 Automation Strategy
This part highlights how automation improves efficiency:
. Automated builds after every commit.

. Automated testing using frameworks like Selenium,
JUnit, PyTest.

o Automated deployment pipelines with rollback
strategy.
. Notification system (Slack/Email) for build/test
results.

3.7 Challenges & Mitigation

Here we list common challenges in implementing CI/CD and
how to handle them:

. Challenge: Integration issues between multiple tools

o Mitigation: Use containerization (Docker)
and orchestration (Kubernetes).

o Challenge: High cost for enterprise tools

o Mitigation: Start with open-source options
like Jenkins, GitLab CI/CD.

. Challenge: Flaky automated tests

o Mitigation: Implement test retries and
improve test design.

. Challenge: Security vulnerabilities

o Mitigation: Add automated security
scanning in pipeline.

4 Results and Discussions

4.1 Implementation Outcomes

The implementation of GitHub Actions for Continuous
Integration (CI) in the development project yielded significant
improvements in the software development workflow.
Automated builds were successfully triggered on every push
or pull request (PR), ensuring that the latest code changes were
always tested. Unit tests ran automatically, which drastically
reduced the need for manual testing and minimized human

error. In cases where the build failed, developers were
immediately notified through GitHub notifications and email
alerts, allowing rapid debugging and resolution.

Additionally, deployment to staging and production
environments was automated for successful builds, ensuring a
seamless release pipeline. Overall, GitHub Actions enabled a
streamlined, automated process that replaced several manual
steps previously required in the development workflow.

4.2 Performance Metrics

The performance of the CI pipeline was evaluated using
several key metrics

Metric Before CI | After CI

(Manual) (GitHub Improvement
Actions)

Build 2 15 +650%

Frequency | builds/week | builds/week

Build 80% 95% +15%

Success

Rate

Average 20 min 8 min -60%

Build

Time

Bugs 5/week 18/week +260%

Detected

Early

4.3 Discussion

The results indicate that GitHub Actions effectively
streamlined the software development process by automating
critical tasks such as building, testing, and deployment. The
automated CI pipeline reduced errors associated with manual
processes and accelerated feedback for developers.

Some challenges were encountered during implementation,
such as configuring workflow files for complex projects and
managing dependencies across multiple environments.
However, these challenges were addressed by carefully
structuring YAML workflow files and utilizing caching
strategies for dependencies.

When compared to traditional manual CI/CD practices,
GitHub Actions demonstrated clear advantages: higher
reliability, faster deployment cycles, and improved
collaboration among developers. Limitations remain, such as
the need for comprehensive integration tests and the
dependency on GitHub-hosted runners, which can affect build

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53760 | Page5s

https://ijsrem.com/

i 2
‘ U?ﬁag International Journal of Scientific Research in Engineering and Management (I[JSREM)

W Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930
time under high load. Future improvements could include These visualizations clearly depict the efficiency gains,
integrating automated code quality checks, security scans, and improved code quality, and accelerated development cycle

deployment to multiple cloud environments. achieved by implementing GitHub Actions.

4.4 Visualizations 4.5 Key Insights

To better illustrate the impact of CI implementation, several
visualizations are included:

. Continuous Integration with GitHub Actions
significantly reduces manual effort in building, testing, and
deploying software.

100% ° Automated workflows ensure consistent, repeatable,
and reliable processes.

. Early detection of errors improves code quality and
accelerates development cycles.
90% : . .
. The implementation of CI fosters collaboration,
efficiency, and overall productivity in software development
85% teams.
. Future adoption of advanced CI/CD features, such as
Before Cl After CI security scans and multi-environment deployments, can

further enhance development workflows.

Figure 1: Build Success Rate Before and After CI .
S Conclusion and Future Work

Implementation
Continuous Integration (CI) has become an essential practice
in modern software development, enabling teams to deliver
25 high-quality code rapidly and reliably. Through the

implementation of GitHub Actions, developers can automate
builds, testing, and deployment processes, reduce manual
errors and improve collaboration among team members. This
research has demonstrated how integrating CI workflows
streamlines development, enhances code quality, and
accelerates delivery timelines.

The study also highlighted the importance of using automated
testing and deployment pipelines to maintain consistency and
reliability across different development environments. The
results indicate that adopting CI practices can significantly
reduce integration problems and minimize the time spent on
debugging and manual verification.

Before Ci After ClI

Figure 2: Average Build Time Comparison)

Future Work:
Although this study focused on basic CI implementation using
GitHub Actions, future research could explore advanced
CI/CD practices, including:

1. Integration of Continuous Deployment (CD) for
automatic production releases.

2. Implementation of Al-driven testing to predict
potential bugs and optimize test coverage.

® BeforeCl @ AfterCl

3. Evaluation of multi-environment workflows for

. large-scale distributed teams.
Figure 3: Bugs Detected Early

4. Security-focused CI/CD pipelines incorporating
automated vulnerability scanning and compliance check

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53760 | Page 6

https://ijsrem.com/

5

{.‘t-, ‘33‘
¢ TISREM 3

s International Journal of Scientific Research in Engineering and Management (I[JSREM)

Volume: 09 Issue: 11 | Nov - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

6 References

[1]. Bernardo, J. H., Costa, D. A., Medeiros, S. Q., &
Kulesza, U. (2024). How do Machine Learning Projects use
Continuous Integration Practices? An Empirical Study on
GitHub Actions. 21st International Conference on Mining
Software Repositories (MSR °24).

[2]. ostami, P. (2022). Empirical Analysis of the GitHub
Actions Ecosystem. International Conference on Software
Reuse (ICSR).

[3]. Bouzenia, 1., & Pradel, M. (2024). Resource Usage
and Optimization Opportunities in Workflows of GitHub
Actions. International Conference on Sofiware Engineering
(ICSE).

[4]. Pachev, B., Stuart, G., & Dawson, C. (2022).
Continuous Integration for HPC with GitHub Actions and
Tapis. Practice and Experience in Advanced Research
Computing (PEARC 22). ACM.

[5]. Rorseth, J. (2021). Continuous Integration Theater in
GitHub Actions. Proceedings of the 43rd International
Conference on Software Engineering (ICSE).

[6]. Kinsman, T., Wessel, M., Gerosa, M. A., & Treude,
C. (2021). How Do Software Developers Use GitHub Actions
to Automate Their Workflows? Proceedings of the 43rd
International Conference on Software Engineering (ICSE).
[7]. Saroar, S. G., & Nayebi, M. (2023). Developers'
Perception of GitHub Actions: A Survey Analysis.
Proceedings of the 45th International Conference on Software
Engineering (ICSE).

[8]. Benedetti, G., Verderame, L., & Merlo, A. (2022).
Automatic Security Assessment of GitHub Actions
Workflows. Proceedings of the 44th International Conference
on Software Engineering (ICSE).

[9]. Alvarez, D. A., & Cave-Ayland, C. (2024). Adopting
a More Rational Use of Continuous Integration with GitHub
Actions. [Imperial College London Research Software
Engineering Blog.

[10]. Makani, S. T., & Jangampeta, S. D. (2023). The
Evolution of CI/CD Tools in DevOps: From Jenkins to GitHub
Actions. International Journal of Computer Engineering and
Technology (IJCET).

[11]. Shahin, M., Babar, M. A., & Zhu, L. (2017).
Continuous Integration, Delivery and Deployment: A
Systematic Review on Approaches, Tools, Challenges and
Practices. Information and Software Technology.

[12]. Radigan, D. (2020). Continuous Integration.
Encyclopedia of Software Engineering.

[13]. Jiang, J., Zhu, C., & Zhang, X. (2020). An Empirical
Study on the Impact of Code Contributor on Code Smell.
International Journal of Performability Engineering.

[14]. Muifloz, M., & Rodriguez, M. N. (2021). A Guidance
to Implement or Reinforce a DevOps Approach in
Organizations: A Case Study. Journal of Sofiware: Evolution
and Process.

[15]. Erich, F. M. A., Amrit, C., & Daneva, M. (2017). A
Qualitative Study of DevOps Usage in Practice. Journal of
Software: Evolution and Process.

[16]. Bass, L., Weber, 1., & Zhu, L. (2015). DevOps: A
Software Architect's Perspective. Addison-Wesley
Professional.

[17]. Jabbari, R., Ali, N. B., Petersen, K., & Tanveer, B.
(2016). What is DevOps?: A Systematic Mapping Study on
Definitions and Practices. Proceedings of the 2016 Scientific
Workshop.

[18]. Duvall, P. M., Matyas, S., & Glover, A. (2007).
Continuous Integration: Improving Software Quality and
Reducing Risk. Addison-Wesley Professional.

[19]. Zampetti, F., et al. (2020). Bad Smells in Continuous
Integration: An Empirical Study. Proceedings of the 2020
IEEE/ACM 42nd International Conference on Software
Engineering (ICSE).

[20]. Felidre, A., et al. (2019). An Empirical Study of
Continuous Integration Anti-Patterns in Open-Source Projects.
Proceedings of the 2019 IEEE/ACM 4lst International
Conference on Software Engineering (ICSE).

[21]. Alonso, D. A., & Cave-Ayland, C. (2024). Adopting
a More Rational Use of Continuous Integration with GitHub
Actions. [Imperial College London Research Software
Engineering Blog.

[22]. Makani, S. T., & Jangampeta, S. D. (2023). The
Evolution of CI/CD Tools in DevOps: From Jenkins to GitHub
Actions. International Journal of Computer Engineering and
Technology (IJCET).

[23]. Shahin, M., Babar, M. A., & Zhu, L. (2017).
Continuous Integration, Delivery and Deployment: A
Systematic Review on Approaches, Tools, Challenges and
Practices. Information and Software Technology.

[24]. Alvarez, D. A., & Cave-Ayland, C. (2024). Adopting
a More Rational Use of Continuous Integration with GitHub
Actions. [Imperial College London Research Software
Engineering Blog.

[25]. Radigan, D. (2020). Continuous Integration.
Encyclopedia of Software Engineering.

[26]. Jiang,J., Zhu, C., & Zhang, X. (2020). An Empirical
Study on the Impact of Code Contributor on Code Smell.
International Journal of Performability Engineering.

[27]. Muifioz, M., & Rodriguez, M. N. (2021). A Guidance
to Implement or Reinforce a DevOps Approach in
Organizations: A Case Study. Journal of Software: Evolution
and Process.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53760 | Page7?

https://ijsrem.com/

