
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42130 | Page 1

Intrusion Detection Using Machine Learning Classification and Regression

Pinaki Shashishekhar Mathan

B.Tech (Hons)
Computer Science & Engineering

OmDayal Group of Institutions, Uluberia, Howrah, West Bengal, India

---***---
Abstract - An Intrusion Detection System (IDS) is a crucial

security mechanism designed to protect computer networks

from unauthorized access and cyber threats. With the rapid

expansion of Internet-based data transmission, ensuring

network security has become increasingly challenging. IDS

continuously monitors and analyzes network traffic to detect

malicious activities, relying on datasets like KDD Cup 1999 for

training and evaluation. Effective IDS development involves

preprocessing steps such as feature selection, normalization,

and addressing data imbalance to enhance detection accuracy.

Various machine learning techniques, including Decision

Trees, Support Vector Machines, Neural Networks, Bayesian

Networks, and ensemble methods, are employed to classify

network traffic as normal or malicious. IDS performance is

assessed using accuracy, precision, recall, and F1-score, with

cross-validation and hyperparameter tuning improving model

robustness. Key challenges include handling dynamic network

traffic, achieving real-time scalability, and minimizing false

positives and false negatives. As cyber threats continue to

evolve, advancements in artificial intelligence and deep

learning are driving the development of adaptive IDS capable

of detecting and responding to emerging attacks in real time.

Keywords: Network Security, KDD Cup 1999 dataset,

Machine Learning, Data Mining, Anomaly Detection,

Cybersecurity, Preprocessing, Classification Algorithms,

Accuracy Metrics, Model Validation, Ensemble Methods,

False Positives, False Negatives, Scalability, Dynamic

Network Traffic, Hyperparameter Tuning, Real-time

Monitoring, Evolving Intrusion Tactics

1. INTRODUCTION
An Intrusion Detection System (IDS) is a security mechanism

that monitors network traffic for malicious activities and

potential threats. It detects unauthorized access attempts and

alerts administrators or a centralized security system for

immediate response. IDS can be classified into signature-based

and anomaly-based detection methods, each with its strengths

and challenges. While signature-based IDS detects known

threats, anomaly-based IDS can identify new and evolving

attack patterns. As cyber threats grow in complexity, IDS plays

a critical role in ensuring network security by providing real-

time monitoring and threat detection capabilities.

Researchers have explored deep learning approaches such as

convolutional neural networks (CNNs) and recurrent neural

networks (RNNs) to improve IDS performance. These models

can automatically learn complex patterns in network traffic

data, reducing the need for manual feature selection. However,

computational complexity and the need for extensive training

data remain challenges in deploying deep learning-based IDS

in real-world environments.

Fig -1: Intrusion Detection System (IDS)

1.1 Importance and Working
The field of intrusion detection has been extensively

researched, with numerous studies focusing on improving

detection accuracy and minimizing false alarms. Traditional

IDS methods rely on signature-based detection and anomaly-

based detection. Signature-based IDS identifies known attack

patterns but struggles to detect new threats, whereas anomaly-

based IDS monitors deviations from normal behavior and can

detect previously unknown attacks. However, anomaly-based

methods often generate higher false positive rates.

Recent advancements in machine learning have significantly

contributed to the development of more effective IDS solutions.

Various classification techniques, including Bayesian

networks, Naïve Bayes classifiers, decision trees, k-nearest

neighbors (KNN), and ensemble methods, have been applied to

enhance intrusion detection capabilities. The KDD Cup 1999

dataset remains one of the most widely used benchmarks for

IDS evaluation, providing a rich set of network traffic data to

train and test machine learning models.

Fig -2: Diagram depicting the functionality of an IDS

1.2 Classification

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42130 | Page 2

a. A Network Intrusion Detection System (NIDS) monitors

network traffic at a strategic point, analyzing data packets and

comparing them with known attack patterns. If suspicious

activity is detected, it alerts the administrator. For example, it

can be placed near a firewall to detect unauthorized access

attempts.

b. A Host Intrusion Detection System (HIDS) runs on

individual devices, monitoring network traffic and system files

for unauthorized changes. It takes periodic snapshots of files

and alerts administrators if modifications occur. This is useful

for critical systems that should remain unchanged.

c. A Protocol-Based Intrusion Detection System (PIDS)

monitors communication protocols between users and servers,

ensuring requests follow expected behavior. It is commonly

used on web servers to analyze HTTPS traffic and detect

protocol-based attacks.

d. An Application Protocol-Based Intrusion Detection

System (APIDS) analyzes communication within applications,

focusing on specific protocols like SQL queries in web

applications. It helps detect attacks such as SQL injection by

monitoring application-level interactions.

e. A Hybrid Intrusion Detection System (Hybrid IDS)

combines multiple IDS methods for enhanced security. By

integrating host and network monitoring, it provides a broader

detection scope. An example is Prelude, which improves

accuracy by using multiple detection techniques.

1.3 Detection Method of IDS Deployment
The Signature-based IDS identifies threats by matching

network traffic patterns with predefined attack signatures, such

as specific byte sequences or malicious instruction sets. It

effectively detects known threats but struggles with new,

unidentified malware due to the absence of existing signatures.

The Anomaly-based IDS addresses this limitation by using

machine learning to establish a model of normal activity. Any

deviation from this model is flagged as suspicious. This

approach is more adaptable than signature-based IDS, as it can

be trained to detect unknown threats based on system behavior

and configuration.

1.4 IDS Evasion Techniques
Intruders use various strategies to bypass intrusion detection

systems (IDS), making it difficult to identify malicious

activities. One such technique is fragmentation, where

attackers split data into smaller packets that evade signature

detection. These packets are later reassembled at the

destination, allowing the attack to go unnoticed.

Another approach is flooding, which overwhelms IDS by

generating excessive traffic, leading to failure in detection

mechanisms. Attackers often exploit protocols like UDP and

ICMP to disguise harmful activities within the flood of data.

Obfuscation is another method where attackers modify code

or data to make it harder to interpret, reducing the effectiveness

of reverse engineering or static analysis. Similarly, encryption

helps conceal malicious activities by securing data in a way that

prevents IDS from analyzing its contents.

Attackers can also manipulate source routing, forcing packets

to take specific paths that avoid IDS monitoring points.

Additionally, source port manipulation exploits security

loopholes in improperly configured IDS, allowing malicious

traffic to pass unchecked through commonly trusted ports like

port 80.

2. PROBLEM STATEMENT
Intrusion detection plays a crucial role in cybersecurity,

stepping in where firewalls fall short. While preventing

unauthorized access is ideal, it is not always feasible, making

real-time monitoring essential for identifying vulnerabilities

and ongoing attacks. A reliable, accurate, and secure intrusion

detection system (IDS) is necessary to ensure robust protection.

However, a major challenge with existing IDS technologies is

filtering out false alarms, which can overwhelm security teams.

IDS continuously monitors and analyzes system or network

events to detect security violations or threats. Meanwhile,

intrusion prevention goes a step further by actively blocking

identified threats.

Intrusion Detection and Prevention Systems (IDPS) not only

detect and log incidents but also attempt to mitigate attacks and

alert security administrators. Organizations use IDPS for policy

enforcement, threat documentation, and deterrence against

security breaches. Given the growing complexity of cyber

threats, there is a pressing need to develop a stronger and more

efficient detection mechanism to enhance network security.

3. LITERATURE SURVEY
Nilamadhab Mishra, Sarojananda Mishra, Engineering,

Biju Patnaik University of Technology, Rourkela, Odisha,

India [1] A network intrusion occurs when an unauthorized

entity gains access to a computer network, posing a threat to

data security and system integrity. The primary objective of

intrusion detection is to safeguard networks from unauthorized

access, including threats from both external and internal users.

To achieve this, a local network discovery mechanism is

essential to differentiate between normal network activity and

potentially harmful intrusions.

Machine learning has emerged as a powerful tool for intrusion

detection, enabling automated classification of network traffic.

By analyzing patterns in data, machine learning models can

effectively distinguish between legitimate connections and

suspicious activities. The focus is on developing classification

techniques that enhance both training and testing processes,

ensuring improved accuracy and efficiency.

Various machine learning algorithms have been explored to

identify the most effective model for intrusion detection,

considering factors such as detection time and accuracy. By

comparing multiple classification methods, it is possible to

determine the best-performing approach for securing computer

networks. The integration of machine learning into intrusion

detection systems enhances their ability to detect and respond

to cyber threats in real time, making networks more resilient

against attacks.

Bisyron Wahyudi, Kalamullah Ramli, and Hendri Murfi,

Universitas Indonesia, Indonesia [2] Intrusion Detection

Systems (IDS) play a crucial role in network security by

identifying and mitigating cyber threats. Machine learning has

been widely adopted to enhance IDS accuracy, making the

selection of suitable methods essential.

This research presents an IDS built using a machine-learning

approach, utilizing a 28-feature subset from the Knowledge

Discovery in Databases (KDD) dataset, excluding content

features. The model demonstrates 99.9% accuracy in both

binary and multiclass classification. Experimental results

confirm its effectiveness in detecting real-world network

attacks.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42130 | Page 3

Ahmed M. Mahfouz, Deepak Venugopal, and Sajjan G.

Shiva, The University of Memphis, Memphis TN 38152,

USA [3] As network-based applications expand rapidly, new

security challenges emerge, requiring enhanced mechanisms

for speed and accuracy. Despite advancements in security tools,

the rise of sophisticated cyber threats continues to pose risks.

Intrusion Detection Systems (IDS) play a crucial role in

identifying malicious activities within network traffic. Machine

learning has become a key approach in IDS by distinguishing

between normal and abnormal traffic patterns. However, a

thorough evaluation of machine learning algorithms for

intrusion detection remains limited.

This study presents a detailed analysis of machine learning

classifiers in detecting network intrusions. It explores various

aspects such as feature selection, hyperparameter sensitivity,

and class imbalance—factors critical to IDS performance.

Using the NSL-KDD dataset, we assess multiple classifiers

through extensive experimentation to determine their

effectiveness in intrusion detection.

Sapna S. Kaushik, Dr. Prof.P.R.Deshmukh, M.E. II Year,

Computer Science and Engg., Sipna College of Engg.

Amravati, INDIA [4] Intrusion detection involves identifying

unauthorized or malicious activities within a network or device.

An Intrusion Detection System (IDS) acts as a security layer

that continuously monitors network traffic for suspicious

patterns and alerts administrators when potential threats are

detected. For an IDS to be effective, it must accurately identify

threats while handling large volumes of network data

efficiently.

Network-based IDS is one of the most widely used detection

systems, deployed either as software or a dedicated hardware

appliance. Many IDS solutions not only generate real-time

alerts but also log detected events for further analysis, allowing

security teams to refine policies and mitigate risks. This study

examines different types of cyber attacks that can be detected

in a simulated network environment, including Probe attacks,

Remote-to-Local (R2L) intrusions, Denial-of-Service (DoS)

attacks, and User-to-Root (U2R) exploits.

Kajal Rai, M. Syamala Devi, Ajay Guleria, Panjab

University, Chandigarh, India [5] An Intrusion Detection

System (IDS) plays a crucial role in monitoring computer

network activities and identifying unauthorized access attempts

that could compromise an organization’s data security. With

the increasing sophistication of cyber threats, ensuring robust

network protection has become a priority for organizations.

IDS can generally be categorized into signature-based and

anomaly-based systems, each serving a unique role in

identifying threats. In this study, a decision tree-based intrusion

detection approach is developed using the C4.5 algorithm,

which effectively addresses key challenges such as feature

selection and split value determination. The model selects the

most relevant features through information gain and determines

split values to ensure an unbiased classification process.

Experimental evaluation is conducted using the NSL-KDD

dataset, analyzing the impact of selected features on detection

accuracy and model training time. The results demonstrate that

the proposed Decision Tree Split (DTS) algorithm effectively

enhances signature-based intrusion detection, providing a

reliable mechanism for identifying and mitigating network

threats.

Yasmeen S. Almutairi, Bader Alhazmi, Amr A. Munshi,

Computer Engineering Department, Umm Al-Qura

University, Makkah 21961, Saudi Arabia [6] Intrusion

Detection Systems (IDS) play a critical role in securing modern

communication networks by identifying suspicious activities

and preventing potential threats. Traditional IDS primarily

relied on predefined signatures and rule-based detection, but

with the rise of sophisticated cyberattacks, machine learning

and deep learning techniques have emerged as powerful

alternatives. These intelligent models can effectively

differentiate between normal and anomalous network behavior,

enhancing detection capabilities. In this study, the NSL-KDD

dataset is utilized to evaluate the performance of various

machine learning algorithms, including Support Vector

Machine, J48, Random Forest, and Naïve Bayes, in both binary

and multi-class classification tasks. The experimental results

demonstrate the effectiveness of these approaches in improving

network security, with notable advancements over previous

methodologies. The findings highlight the potential of machine

learning-driven IDS to enhance threat detection and response

mechanisms in evolving network environments.

Ansam Khraisat, Iqbal Gondal, Peter Vamplew and

Joarder Kamruzzaman [7] With the increasing complexity of

cyber-attacks, detecting intrusions accurately has become a

significant challenge. Failure to identify and prevent these

attacks can compromise essential security services such as data

confidentiality, integrity, and availability. To address these

threats, various intrusion detection methods have been

developed, primarily categorized as Signature-based Intrusion

Detection Systems (SIDS) and Anomaly-based Intrusion

Detection Systems (AIDS). SIDS rely on predefined attack

signatures, while AIDS detect deviations from normal

behavior, making them more effective against unknown threats.

This study provides an in-depth analysis of modern IDS,

reviewing recent advancements and widely used evaluation

datasets. It also explores evasion strategies employed by

attackers to bypass detection and highlights future research

directions to strengthen security mechanisms. By enhancing

detection techniques and countering evasion tactics, IDS can

play a crucial role in safeguarding computer systems against

evolving cyber threats.

Rachid Tahri, Youssef Balouki, Abdessamad Jarrar, and

Abdellatif Lasbahani, National School of Applied Sciences,

Sultan Moulay Slimane University, Bni Mellale [8] The

internet has revolutionized the way people interact, offering

seamless communication and connectivity. While it enables

individuals to maintain social and professional networks, it also

exposes them to security risks that can compromise personal

and organizational data. As digital dependency continues to

grow, safeguarding sensitive information becomes increasingly

critical. Intrusion Detection Systems (IDS) serve as a crucial

defense mechanism against cyber threats by continuously

monitoring network traffic for suspicious activities and issuing

alerts when potential attacks are detected. This study explores

the effectiveness of machine learning algorithms in enhancing

IDS performance, focusing on Naïve Bayes (NB), Support

Vector Machine (SVM), and K-Nearest Neighbors (KNN).

Initially, the accuracy of these algorithms is evaluated using the

UNSW-NB15 dataset to determine the most effective model.

The selected algorithm is then further analyzed using additional

datasets, including NSL-KDD and UNSW-NB15, to validate

its reliability. By comparing multiple datasets and refining the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42130 | Page 4

detection model, this research aims to improve intrusion

detection accuracy and strengthen cybersecurity defenses.

Qadeer, Mohammed & Iqbal, Arshad & Zahid,

Mohammad & Siddiqui, Misbahur, Communication

Software and Networks, International Conference [9] A
packet sniffer is a specialized software tool designed to
capture, analyze, and log network traffic as it traverses a
digital network. It functions by setting the Network Interface
Card (NIC) into promiscuous mode, allowing it to intercept
data packets flowing through the network. Once captured,
these packets are decoded to extract valuable information,
which can be utilized for various purposes, depending on the
user's intent. The extent of network traffic that can be
intercepted varies based on the network's architecture, as
some configurations allow access to all packets, while others
restrict visibility to a subset of traffic.

In certain cases, network switches may limit packet sniffing

capabilities, but techniques exist to bypass these restrictions

and gain access to data from multiple systems. This research

focuses on the working principles of packet sniffers, their

development on a Linux platform, and their application in

Intrusion Detection Systems (IDS). Additionally, methods for

detecting unauthorized sniffing activities and mitigating their

impact are explored. A self-developed packet sniffer has been

designed to analyze network performance, identify bottlenecks,

and enhance security monitoring.

Before creating this tool, an in-depth analysis of existing

sniffing software such as Wireshark, tcpdump, and Snort was

conducted to understand their functionality and limitations. The

libpcap library has been utilized for packet capturing, providing

a foundation for efficient data collection. The development of

this packet sniffer presents an opportunity to integrate

additional security features beyond those available in

conventional sniffing tools, improving network analysis and

cybersecurity measures.

3.METHODOLOGY

3.1 Proposed System
A smart Intrusion Detection System (IDS) plays a crucial role

in safeguarding networks from external threats by identifying

malicious activities in real time. Traditional IDS models often

struggle with detecting new attack patterns and suffer from high

computational overhead when processing large volumes of

audit data. To overcome these challenges, machine learning

techniques have emerged as powerful tools for improving

detection accuracy and efficiency.

The proposed IDS leverages Decision Tree, Logistic

Regression, Random Forest, and K-Nearest Neighbors (KNN)

algorithms to enhance pattern recognition and intrusion

detection capabilities. These models are designed to analyze

network traffic, classify anomalies, and distinguish between

legitimate and malicious activities with greater precision.

Unlike conventional classification methods, these machine

learning techniques offer superior performance in handling

small sample sizes, nonlinear patterns, and high-dimensional

data.

By applying these algorithms, the system achieves a balance

between accuracy and computational efficiency, making it

suitable for real-time security monitoring. The integration of

multiple classification techniques ensures robustness against

evolving cyber threats while minimizing false positives. This

approach provides an effective solution for improving network

security, enhancing threat detection, and reducing the

limitations faced by traditional IDS models.

3.2 Significance of IDSs

To protect against cyber threats, security systems typically rely

on tools such as firewalls, access control mechanisms, and

other protective measures. However, past incidents, such as the

spread of internet worms and malware like "I Love You" or

policy exploits, have demonstrated that existing security

frameworks are not entirely foolproof. Despite the deployment

of advanced safety measures, vulnerabilities persist, making

systems susceptible to potential breaches.

Implementing robust security mechanisms with strong

cryptographic techniques can significantly mitigate risks, but

complete prevention of intrusions remains unrealistic.

Achieving an entirely secure system requires software to be

free of flaws and administrators to continuously refine security

policies for every process executed within the system. Even

with the best security tools, human factors remain a critical

weak link. A highly encrypted system can be compromised if

access credentials are carelessly stored, and insiders with

legitimate access may exploit their privileges. Moreover,

stringent security protocols often come at the cost of system

efficiency. Lengthy passwords may delay user access, and

complex encryption algorithms can slow down system

performance. Studies have shown that even well-documented

vulnerabilities remain exploitable for long periods after patches

are released.

Given these challenges, intrusions are possible even in highly

secure environments. When a breach occurs, a resilient system

must be capable of responding swiftly by capturing audit data

related to the attack. This information is crucial for preventing

similar future threats and identifying potential attackers. While

Intrusion Detection Systems (IDS) play a vital role in

identifying security breaches, they often focus on monitoring

rather than taking immediate corrective actions. Strengthening

detection and response mechanisms is essential to ensuring

continuous protection against evolving cyber threats.

3.3 Methods of Intrusion Detection Systems

Intrusion Detection Systems (IDS) can be categorized based on

their detection methods, primarily into misuse detection,

anomaly detection, and hybrid approaches. Each of these

methods operates differently, offering various advantages and

limitations in identifying potential security breaches.

Misuse detection works by recognizing specific attack patterns

or vulnerabilities that have been previously identified. This

approach relies on predefined signatures, which are constructed

by analyzing known system weaknesses and common attack

methods. Security analysts gather data from different sources

to build these signatures, ensuring that IDS can efficiently

detect recognized threats. However, one of the primary

challenges of misuse detection is its reactive nature—it cannot

identify novel attacks until a corresponding signature is

developed. This means an intrusion could occur, and the

attacker could accomplish their goal before the IDS recognizes

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42130 | Page 5

the threat. While signature-based systems are highly reliable in

detecting known attacks, they fall short in identifying new or

evolving threats.

On the other hand, anomaly detection focuses on establishing a

baseline of normal system behavior and then identifying

deviations from this norm. By continuously monitoring

network activity or system operations, anomaly-based IDS can

detect unusual patterns that may indicate an intrusion. This

method is particularly effective in uncovering unknown

attacks, as it does not rely on predefined signatures. However,

one major limitation is its inability to precisely classify the type

of attack occurring. Unlike misuse detection, which directly

links an attack to a signature, anomaly-based systems only alert

security personnel to irregular activity, requiring further

investigation to determine the nature of the threat.

A significant challenge in intrusion detection is dealing with

errors in classification, particularly false positives and false

negatives. A false positive occurs when an IDS mistakenly

flags legitimate activity as a threat. For example, if a user

mistypes their password multiple times, an anomaly-based

system might interpret this as a brute-force attack, triggering an

alert unnecessarily. While signature-based IDS generally

produce fewer false positives, anomaly-based systems are more

prone to such errors because they flag deviations from normal

behavior, even if those deviations are harmless.

Conversely, a false negative happens when an IDS fails to

detect an actual attack. This can occur when an attacker

carefully operates below a detection threshold. For instance, if

an IDS is set to detect brute-force attempts after ten failed login

attempts within a minute, but an attacker attempts only nine,

the system might not recognize the attack. False negatives are

particularly dangerous because they allow intrusions to go

unnoticed.

To measure the effectiveness of an IDS, four key scenarios are

considered. A true positive occurs when the IDS correctly

identifies a real attack, allowing security personnel to respond

appropriately. A false positive happens when an IDS

incorrectly triggers an alert for benign activity. A false negative

is when an actual attack goes undetected, leaving the system

vulnerable. Finally, a true negative refers to a scenario where

no attack occurs, and the IDS correctly refrains from raising an

alarm.

Fig-3: False Positives and False Negatives

3.4 Architecture of the System

Fig-4: System Architecture

3.5 Implementation of the System

The implementation of the proposed intrusion detection system

is carried out using Python 3.11 and Jupyter Lab. Several

libraries, including scikit-learn, pandas, and matplotlib, are

utilized along with other necessary libraries to facilitate data

processing, visualization, and model training. The dataset for

this study is obtained from the KDD dataset repository

available at kdd.ics.uci.edu. This dataset consists of separate

train and test sets, each containing four distinct classes of

intrusions. The training dataset is used to train the model, while

the test dataset is utilized for evaluation.

In the initial phase, data collection plays a crucial role in

ensuring the availability of high-quality data for analysis. The

dataset selected from the KDD repository is well-suited for

implementing machine learning models to detect intrusions. A

significant responsibility in data analysis is to identify

appropriate sources of data, gather relevant information,

interpret findings, and apply statistical techniques to extract

meaningful insights.

To make complex data more comprehensible, data

visualization techniques are employed. Representing large

volumes of data through graphical means simplifies the

interpretation process. In this approach, the detection rates of

intrusions are illustrated using various visualization methods,

making it easier to analyze the system's performance.

Before applying machine learning techniques, the dataset

undergoes preprocessing. Raw data must be transformed into a

structured format to ensure accurate predictions. Data

preprocessing involves cleaning, formatting, and sampling,

which eliminates inconsistencies and enhances the model’s

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42130 | Page 6

effectiveness. Well-prepared data leads to better performance

of the learning algorithm.

A crucial step in machine learning is dataset splitting, which

divides the data into separate subsets to train and evaluate the

model effectively. The dataset is partitioned into training,

testing, and validation sets. The training set is used to train the

model and optimize its parameters. The test set is essential for

assessing the model’s performance and its ability to generalize

to new data. Separating training and testing data prevents

overfitting, which occurs when a model performs well on

training data but fails to recognize patterns in unseen data.

Once the data is prepared and split, model training is initiated.

The machine learning models used in this approach include

decision tree, regression, random forest, and KNN. During

training, the selected algorithm processes the training data to

learn patterns and generate a model capable of predicting target

values. This step is crucial in developing an intrusion detection

system that can identify potential threats accurately.

The final stage of the process is model evaluation and testing.

The objective is to create an efficient model that can quickly

and accurately identify intrusions. Model tuning is performed

to optimize parameters and enhance performance. It is

important to note that the test data differs from the training data

in terms of probability distribution and contains specific attack

types that are not present in the training set. This variation

makes the detection task more realistic. Experts suggest that

many novel attacks are modified versions of known intrusions,

meaning that recognizing the signature of known attacks can

help identify new threats. The dataset consists of 24 attack

types in the training set, with an additional 14 attack types

exclusive to the test set.

By implementing machine learning models and systematically

analyzing intrusion patterns, this approach aims to develop an

effective intrusion detection system capable of identifying both

known and previously unseen threats.

Feature Name Description Type

duration The total time (in

seconds) for which the

connection remained

active.

Continuous

protocol_type Specifies the

communication protocol

used, such as TCP,

UDP, or ICMP.

Discrete

service Represents the type of

network service

requested at the

destination, such as

HTTP or FTP.

Discrete

src_bytes The amount of data (in

bytes) sent from the

source to the destination.

Continuous

dst_bytes The amount of data (in

bytes) received at the

source from the

destination.

Continuous

flag Describes the

connection's status,

Discrete

indicating whether it is

normal or has errors.

land Identifies whether the

connection originates

and terminates on the

same host and port (1

for yes, 0 for no).

Discrete

wrong_fragment Counts the number of

incorrectly fragmented

packets in the

connection.

Continuous

urgent Represents the count of

urgent packets sent

during the connection.

Continuous

Table-1: Network Connection Features

Feature Name Description Type

hot Total count of

"hot" indicators,

representing

potentially

suspicious actions.

Continuous

num_failed_logins Number of

unsuccessful login

attempts recorded.

Continuous

logged_in Indicates whether

the user

successfully logged

in (1 for yes, 0 for

no).

Discrete

num_compromised Total number of

conditions where a

system

compromise has

been detected.

Continuous

root_shell Indicates whether a

root shell was

obtained during the

session (1 for yes,

0 for no).

Discrete

su_attempted Shows if the "su

root" command

was attempted (1

for yes, 0 for no).

Discrete

num_root Total number of

times root-level

access was used.

Continuous

num_file_creations Number of times a

file was created

during the session.

Continuous

num_shells Total count of shell

prompts opened.

Continuous

num_access_files Number of

operations

performed on

access control files.

Continuous

num_outbound_cmds Count of outbound

commands

executed in an FTP

session.

Continuous

is_hot_login Indicates if the

login belongs to a

predefined "hot"

Discrete

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42130 | Page 7

list of users (1 for

yes, 0 for no).

is_guest_login Identifies whether

the login was

performed using a

guest account (1

for yes, 0 for no).

Discrete

Table-2: User Behavior and Authentication Features

Feature Name Description Type

count Represents the number

of connections made to

the same host as the

current one within the

past two seconds.

Continuous

serror_rate Indicates the

percentage of

connections that have

encountered "SYN"

errors.

Continuous

rerror_rate Shows the percentage

of connections that

resulted in "REJ"

errors.

Continuous

same_srv_rate Represents the

percentage of

connections made to

the same service.

Continuous

diff_srv_rate Indicates the

percentage of

connections directed to

different services.

Continuous

srv_count Refers to the number

of connections made to

the same service as the

current one within the

past two seconds.

Continuous

srv_serror_rate Displays the

percentage of

connections that have

experienced "SYN"

errors in same-service

connections.

Continuous

srv_rerror_rate Represents the

percentage of same-

service connections

that resulted in "REJ"

errors.

Continuous

srv_diff_host_rate Indicates the

percentage of

connections that were

directed to different

hosts.

Continuous

Table-3: Traffic Features Based on a Two-Second Time

Window

3.6 Implementation of Machine Learning Algorithms

A. Logistic Regression Algorithm

Logistic Regression is a widely used technique in predictive

modeling that helps classify data into distinct categories. It is a

powerful yet simple supervised learning algorithm that deals

with classification problems. Unlike linear regression, which

predicts continuous values, logistic regression is specifically

designed to predict the probability of an outcome that falls into

one of two categories.

This algorithm is commonly applied in situations where the

output variable is discrete, meaning it can take only specific

values such as "yes" or "no," "true" or "false," or "0" and "1."

Approximately 60% of classification problems worldwide can

be effectively addressed using logistic regression. The core idea

behind this algorithm is to establish a relationship between

input features and a probability score, which helps determine

the most likely category for a given data point.

One of the primary applications of logistic regression is binary

classification, where it estimates the probability of an event

occurring using a mathematical function known as the logit

function. This makes logistic regression a special type of linear

regression, except that it applies a transformation using the log

function to limit the predicted values within a range of 0 to 1.

In a simpler way, linear regression estimates a continuous value

based on an input variable, and this input variable is known as

the predictor variable. The outcome being predicted is referred

to as the criterion variable. When there is only one predictor

variable, the method used is called simple regression. Logistic

regression, however, extends this idea by predicting

probabilities rather than direct numerical values.

To convert the predicted probabilities into categorical values,

an activation function known as the sigmoid function is used.

This function maps any real-valued number into a range

between 0 and 1, forming an S-shaped curve. The sigmoid

function plays a crucial role in determining the classification

outcome. If the probability score is greater than 0.5, the data

point is classified into one category (often labeled as Class 1 or

the Positive Class), while if it is less than 0.5, the data point is

classified into the other category (Class 0 or the Negative

Class).

There are numerous practical applications of logistic regression

across different fields. It is extensively used for fraud detection,

where it helps identify fraudulent transactions based on patterns

in transaction data. In spam detection, logistic regression is

used to filter out unwanted emails by analyzing email content

and sender behavior. It is also valuable in medical diagnosis,

such as cancer detection, where it helps predict the likelihood

of a disease based on medical test results.

Fig-5: Flow chart of Logistic Regression algorithm

B. Decision Tree Algorithm
A decision tree is a supervised learning algorithm that is

primarily used for classification tasks, but it can also handle

regression problems. This method is effective for both

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42130 | Page 8

categorical and continuous input and output variables. The

fundamental concept behind a decision tree is to break down a

dataset into smaller and more homogeneous subsets based on

the most important attribute, creating a structured flow of

decision-making.

The decision tree consists of different elements, each playing a

crucial role in classification. The internal nodes represent

conditions or tests performed on specific attributes, the

branches illustrate possible outcomes of those tests, and the leaf

nodes signify the final classification or prediction. The primary

objective of constructing a decision tree is to develop a model

that can classify new data or predict values based on patterns

identified from previous training data.

One of the key advantages of a decision tree is its simplicity

and ease of understanding when compared to other

classification algorithms. It organizes the data in a hierarchical

tree-like structure, making it easier to interpret and analyze

decision-making patterns. The tree is constructed by following

a step-by-step process that involves selecting the most

influential attribute and splitting the dataset accordingly.

To build a decision tree, the process begins by identifying the

most significant attribute from the dataset and placing it at the

root. The dataset is then divided into smaller subsets in such a

way that each subset consists of data points with a common

attribute value. This splitting process continues recursively for

each subset until all branches of the tree reach leaf nodes, which

represent final classifications.

When using a decision tree for classification, the process starts

at the root node, where the algorithm compares the attribute

value from the input data with the conditions in the tree. Based

on the comparison, the data follows the appropriate branch and

moves to the next node. This process is repeated until a leaf

node is reached, where the final classification is determined.

Decision trees are widely used across various applications due

to their interpretability and effectiveness. They play a crucial

role in areas such as medical diagnosis, financial risk

assessment, and fraud detection. Their ability to provide clear

decision-making paths makes them an essential tool in machine

learning and data analysis.

Fig-6: Flow chart Decision Tree algorithm

C. Random Forest Algorithm
The Random Forest algorithm is an advanced ensemble

learning technique used for classification and regression

problems. It is built on the concept of bagging, where multiple

decision trees are trained on random subsets of the dataset to

improve accuracy and reduce overfitting. Given a dataset with

n instances, multiple sub-samples are selected randomly with

replacement, ensuring diversity in training data for different

trees in the forest.

When constructing a decision tree within the Random Forest

model, a predefined number of m features are selected

randomly out of k total features at each node, ensuring m is

smaller than k. Among these selected features, the best possible

split is chosen to create a node. This process is repeated

consistently throughout the growth of the forest while keeping

m unchanged. Each decision tree in the Random Forest is

allowed to grow fully without any pruning, leading to deep

trees capable of capturing complex patterns in the data.

For classification, a new object is predicted by aggregating the

outputs from all trees in the ensemble, where the majority class

label determines the final decision. This process reduces

variance and improves the model’s generalization ability

compared to individual decision trees. The primary distinction

between a single decision tree and a Random Forest lies in the

randomness introduced through both bootstrap sampling and

feature selection, which minimizes correlation among trees and

enhances predictive performance.

In the context of intrusion detection, the dataset attributes play

a significant role in determining the classification results. Since

different attributes contribute variably to model accuracy, a

method is used to assess their importance, increasing the

likelihood of selecting the most influential attributes.

Traditional methods of measuring attribute importance may not

be optimal, as they often remove attributes directly, leading to

information loss. Instead, hierarchical sampling is employed,

where the original dataset is sampled in proportion to maintain

data balance.

Given that the dataset contains continuous attributes, the data

undergoes discretization using equal distance dispersion or

equal frequency dispersion techniques. This transformation

converts continuous values into discrete categories, making it

easier for the decision trees to process the data. Self-service

sampling is then performed on the preprocessed dataset,

generating N subsets and corresponding out-of-bag data. These

subsets serve as training samples for different trees in the forest.

To improve attribute selection, an evaluation function based on

Decision Boundary Entropy (DBE) is employed, with attributes

categorized into positive, boundary, or negative domains based

on predefined threshold values (α, β). This technique refines the

feature selection process by prioritizing more informative

attributes. For each tree, the square root of the total number of

features (√k) is chosen according to three attribute selection

rules.

The Gini index serves as the splitting criterion for node

division, helping construct highly efficient decision trees. After

all N trees are trained, the final classification result is obtained

through majority voting, ensuring robustness against

overfitting and noise. To validate the effectiveness of the

Random Forest model in intrusion detection, test data is

introduced into the integrated model, verifying its accuracy and

reliability in detecting anomalies within network traffic.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42130 | Page 9

D. K Nearest Neighbor (KNN) Algorithm
The K-Nearest Neighbors (KNN) algorithm is a widely used

machine learning technique that determines the similarity

between a query instance and existing instances in a dataset.

The similarity between instances is measured using a distance

function, which quantifies how close or far two points are in a

given feature space. Given two instances, each composed of N

features, the distance between them is computed using a chosen

metric.

One of the most common distance metrics is Euclidean

distance, which calculates the straight-line distance between

two points in an N-dimensional space. Another common metric

is absolute distance, also known as Manhattan distance, which

sums the absolute differences between corresponding feature

values. The choice of distance function depends on the nature

of the data and the problem being solved. For numerical data,

Euclidean distance is typically preferred, whereas for

categorical or binary data, Hamming distance is often used.

Unlike traditional machine learning models that learn patterns

from data, KNN does not build an explicit model during

training. Instead, it memorizes the entire dataset and uses it to

make predictions. When an unseen data instance needs to be

classified or assigned a value, KNN searches the dataset for the

k most similar instances based on the chosen distance function.

Once the k nearest neighbors are identified, the final prediction

is made by summarizing their attributes. For classification

tasks, the most frequently occurring class among the k

neighbors is assigned to the new instance.

KNN belongs to the category of instance-based learning

algorithms, where predictions are made directly using training

instances without building a generalized model. Since it stores

all training data, KNN is considered a memory-intensive

algorithm. It also falls under the category of competitive

learning algorithms, as each data instance competes with others

to be recognized as the most similar to a new instance.

Due to its simplicity and effectiveness, KNN is widely used in

various applications such as pattern recognition,

recommendation systems, and anomaly detection. However, its

computational complexity increases with large datasets,

making optimizations such as indexing structures and

dimensionality reduction techniques essential for improving

efficiency.

Fig-7: Flow chart of KNN Algorithm

4. RESULTS AND ANALYSIS
A. Software Requirements

The software requirements for the project include a

combination of essential tools and frameworks that facilitate

data analysis, machine learning, and network intrusion

detection. To begin with, Python serves as the primary

programming language due to its versatility and extensive

library support. It enables efficient data processing, model

training, and seamless integration with other software tools.

The Intrusion Detection System (IDS) is designed to operate on

a user device running Windows 7 or a higher version. It utilizes

Python 3.11 along with JupyterLab as the development

environment, enabling efficient coding and implementation of

security features. Within this setup, the system employs Scikit-

learn, a powerful machine-learning library, to enhance threat

detection capabilities through intelligent classification and

anomaly detection techniques.

To monitor network activities, Snort is integrated as the

primary intrusion detection tool. This open-source network-

based IDS inspects packets transmitted over the network and

identifies potential threats based on predefined rules and

signatures. Snort captures incoming and outgoing network

traffic through the network interface and forwards the data to

the detection engine. The detection engine analyzes the

captured packets, checking for malicious patterns and unusual

behaviors that may indicate security threats.

Upon detecting any suspicious activity, the system records

detailed logs and triggers real-time alerts to notify

administrators or users about potential security breaches. These

alerts ensure timely action can be taken to prevent unauthorized

access or mitigate possible cyberattacks. The combination of

machine learning models and traditional rule-based detection

enhances the accuracy and efficiency of the intrusion detection

mechanism, reducing false positives and improving response

time.

JupyterLab is another crucial component, providing an

interactive environment for writing and executing Python code.

It allows for real-time data visualization, easy debugging, and

better code organization, which enhances productivity in data

science tasks.

Scikit-learn plays a vital role in machine learning applications.

This library offers a wide range of algorithms for classification,

regression, and clustering. It simplifies the process of building

and evaluating models, making it easier to implement machine

learning techniques effectively.

Snort, a network intrusion detection system, is required for

monitoring network traffic and detecting potential security

threats. It helps in analyzing packets, identifying malicious

activity, and generating alerts based on predefined rules. Its

integration enhances the security aspect of the project, ensuring

robust protection against cyber threats.

B. Hardware Requirements
The hardware requirements for setting up an Intrusion

Detection System (IDS) include a processor with a speed of at

least 500 MHz to ensure smooth operation. A minimum of 4

GB RAM is necessary for handling network traffic efficiently,

and a hard disk with at least 4 GB of storage capacity is required

to store logs and system files. Input devices such as a standard

keyboard and mouse will be needed for configuring and

managing the system, while output devices should include a

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42130 | Page 10

VGA or high-resolution monitor to display alerts and system

status effectively.

When setting up the network, it is important to carefully

determine the placement of the IDS to ensure it monitors

critical points in the network. Positioning it behind the firewall

or in key locations where traffic flows through the network is

essential. The system should be capable of analyzing all

relevant network traffic without becoming a bottleneck that

slows down data transfer.

The configuration of the IDS involves setting up rule sets and

signatures that help detect potential intrusions. These rules can

either be custom-made or downloaded from reliable sources.

Threshold levels should be carefully adjusted to minimize false

alerts while ensuring that real threats are detected. Proper

logging is another crucial aspect, as it enables the system to

record all significant events for later analysis. Additionally,

deciding on response actions in advance, whether they are

automated or manual, will help in effectively dealing with

detected threats.

Monitoring and maintenance are essential for the long-term

effectiveness of an IDS. Setting up a dedicated monitoring

console ensures that alerts and system health can be checked in

real time. Keeping IDS software, rules, and signatures up to

date is crucial to detect the latest security threats effectively.

Regular testing should also be conducted to verify that the IDS

is functioning as expected and can respond appropriately to

potential security incidents.

C. Source Code with Result

Fig-8: Command Prompt

Fig-9: List of Programs

Experimental Analysis / Testing

Fig-10: Program using AdaBoost classifier

Fig-11: Program using Decision Tree classifier

The implementation of the proposed work is carried out using

Jupyter Lab, utilizing essential libraries such as scikit-learn,

pandas, and matplotlib, along with other necessary libraries for

data analysis and visualization. The dataset used for this study

is the KDD Cup 1999 dataset, which is one of the most widely

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42130 | Page 11

recognized datasets in intrusion detection and network security

research. It contains detailed network traffic data, making it a

valuable resource for analyzing and detecting network

anomalies.

This dataset consists of 41 different features, each representing

specific attributes related to network connections. These

features provide information about various aspects such as the

duration of the connection, the type of protocol used, the type

of service requested, connection flags, and the source and

destination IP addresses. Each row in the dataset corresponds

to an individual network connection, offering insights into

different network activities and potential threats.

The original dataset contains approximately 4.9 million

records, making it extensive and complex. Due to its large size,

it is highly useful for testing different machine learning models

and techniques for intrusion detection. However, because of

computational constraints, researchers often work with smaller

subsets of the dataset, focusing on specific types of attacks or

selected features to conduct targeted experiments. This

approach helps in effectively analyzing network security

threats while optimizing the use of computational resources.

Table-4: Experimental Analysis Result

5. CONCLUSIONS
An Intrusion Detection System (IDS) is designed to identify

and prevent attacks and unauthorized activities within a

network while minimizing false alarms. By integrating

machine learning algorithms, the accuracy and reliability of the

IDS are significantly enhanced, ensuring more advanced

detection of security threats. This system also evaluates and

displays the accuracy rate of detected attacks, which varies

depending on the machine learning models applied.

As technology continues to evolve, the volume of data

generated has increased substantially, requiring secure storage

and processing methods to protect users' information. Security

plays a vital role in maintaining user trust, as a well-secured

system ensures greater privacy and reliability. A robust IDS

enhances the overall security of a network, making it more

resilient against potential threats and intrusions.

The KDD Cup 1999 dataset has been a key resource in the

development and improvement of intrusion detection models.

It has provided a foundation for researchers and security

experts to experiment with various machine learning

techniques and benchmark their effectiveness. However, with

the rapid evolution of cyber threats, it is essential to

continuously refine IDS models by incorporating modern

datasets and utilizing advanced methodologies. This ongoing

adaptation is crucial in ensuring that intrusion detection

systems remain effective in identifying and mitigating

emerging security risks.

REFERENCES

[1] Intrusion Detection in Computer Networks Using Machine

Learning, Nilamadhab Mishra, Sarojananda Mishra,

Engineering, Biju Patnaik University of Technology, Rourkela,

Odisha, India, DOI: - 10.48047/ecb/2023.12.si5a.054, Eur.

Chem. Bull. 2023, 12(Special Issue 5), 1756 – 1767

[2] Implementation and Analysis of Combined Machine

Learning Method for Intrusion Detection System, Bisyron

Wahyudi, Kalamullah Ramli, and Hendri Murfi, Universitas

Indonesia, Indonesia, Vol. 10, No. 2, August 2018, IJCNIS

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42130 | Page 12

[3] Comparative Analysis of ML Classifiers for Network

Intrusion Detection, Ahmed M. Mahfouz, Deepak Venugopal,

and Sajjan G. Shiva, The University of Memphis, Memphis TN

38152, USA

[4] Detection of Attacks in an Intrusion Detection System,

Sapna S. Kaushik#1, Dr. Prof.P.R.Deshmukh, M.E. II Year,

Computer Science and Engg., Sipna College of Engg.

Amravati, INDIA

[5] Decision Tree Based Algorithm for Intrusion Detection,

Kajal Rai, M. Syamala Devi, Ajay Guleria, Panjab University,

Chandigarh, India, Int. J. Advanced Networking and

Applications, Volume: 07 Issue: 04 Pages: 2828-2834 (2016)

ISSN: 0975-0290

[6] Network Intrusion Detection Using Machine Learning

Techniques, Yasmeen S. Almutairi, Bader Alhazmi, Amr A.

Munshi, Computer Engineering Department, Umm Al-Qura

University, Makkah 21961, Saudi Arabia, Advances in Science

and Technology Research Journal 2022, 16(3), 193–206, ISSN

2299–8624, License CC-BY 4.0

[7] Survey of intrusion detection systems: techniques, datasets

and challenges, Ansam Khraisat, Iqbal Gondal, Peter Vamplew

and Joarder Kamruzzaman, Khraisat et al. Cybersecurity

(2019) 2:20

[8] Intrusion Detection System Using machine learning

Algorithms, Rachid Tahri, Youssef Balouki, Abdessamad

Jarrar, and Abdellatif Lasbahani, National School of Applied

Sciences, Sultan Moulay Slimane University, Bni Mellale,

Morocco, ITM Web of Conferences 46, 0 (2022), ICEAS'22

[9] Network Traffic Analysis and Intrusion Detection Using

Packet Sniffer, Qadeer, Mohammed & Iqbal, Arshad & Zahid,

Mohammad & Siddiqui, Misbahur, Communication Software

and Networks, International Conference on. 313-317.

10.1109/ICCSN.2010.104.

BIOGRAPHY
 Pinaki Shashishekhar Mathan

B.Tech (Hons)

Computer Science & Engineering

OmDayal Group of Institutions,

Uluberia, Howrah, West Bengal

http://www.ijsrem.com/

