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Abstract - An Intrusion Detection System (IDS) is a crucial 

security mechanism designed to protect computer networks 

from unauthorized access and cyber threats. With the rapid 

expansion of Internet-based data transmission, ensuring 

network security has become increasingly challenging. IDS 

continuously monitors and analyzes network traffic to detect 

malicious activities, relying on datasets like KDD Cup 1999 for 

training and evaluation. Effective IDS development involves 

preprocessing steps such as feature selection, normalization, 

and addressing data imbalance to enhance detection accuracy. 

Various machine learning techniques, including Decision 

Trees, Support Vector Machines, Neural Networks, Bayesian 

Networks, and ensemble methods, are employed to classify 

network traffic as normal or malicious. IDS performance is 

assessed using accuracy, precision, recall, and F1-score, with 

cross-validation and hyperparameter tuning improving model 

robustness. Key challenges include handling dynamic network 

traffic, achieving real-time scalability, and minimizing false 

positives and false negatives. As cyber threats continue to 

evolve, advancements in artificial intelligence and deep 

learning are driving the development of adaptive IDS capable 

of detecting and responding to emerging attacks in real time. 
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1. INTRODUCTION  
An Intrusion Detection System (IDS) is a security mechanism 

that monitors network traffic for malicious activities and 

potential threats. It detects unauthorized access attempts and 

alerts administrators or a centralized security system for 

immediate response. IDS can be classified into signature-based 

and anomaly-based detection methods, each with its strengths 

and challenges. While signature-based IDS detects known 

threats, anomaly-based IDS can identify new and evolving 

attack patterns. As cyber threats grow in complexity, IDS plays 

a critical role in ensuring network security by providing real-

time monitoring and threat detection capabilities. 

 

Researchers have explored deep learning approaches such as 

convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs) to improve IDS performance. These models 

can automatically learn complex patterns in network traffic 

data, reducing the need for manual feature selection. However, 

computational complexity and the need for extensive training 

data remain challenges in deploying deep learning-based IDS 

in real-world environments. 

Fig -1:  Intrusion Detection System (IDS) 

1.1 Importance and Working 
The field of intrusion detection has been extensively 

researched, with numerous studies focusing on improving 

detection accuracy and minimizing false alarms. Traditional 

IDS methods rely on signature-based detection and anomaly-

based detection. Signature-based IDS identifies known attack 

patterns but struggles to detect new threats, whereas anomaly-

based IDS monitors deviations from normal behavior and can 

detect previously unknown attacks. However, anomaly-based 

methods often generate higher false positive rates. 

Recent advancements in machine learning have significantly 

contributed to the development of more effective IDS solutions. 

Various classification techniques, including Bayesian 

networks, Naïve Bayes classifiers, decision trees, k-nearest 

neighbors (KNN), and ensemble methods, have been applied to 

enhance intrusion detection capabilities. The KDD Cup 1999 

dataset remains one of the most widely used benchmarks for 

IDS evaluation, providing a rich set of network traffic data to 

train and test machine learning models. 

 
Fig -2:  Diagram depicting the functionality of an IDS 

1.2 Classification 
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a. A Network Intrusion Detection System (NIDS) monitors 

network traffic at a strategic point, analyzing data packets and 

comparing them with known attack patterns. If suspicious 

activity is detected, it alerts the administrator. For example, it 

can be placed near a firewall to detect unauthorized access 

attempts. 

b. A Host Intrusion Detection System (HIDS) runs on 

individual devices, monitoring network traffic and system files 

for unauthorized changes. It takes periodic snapshots of files 

and alerts administrators if modifications occur. This is useful 

for critical systems that should remain unchanged. 

c. A Protocol-Based Intrusion Detection System (PIDS) 

monitors communication protocols between users and servers, 

ensuring requests follow expected behavior. It is commonly 

used on web servers to analyze HTTPS traffic and detect 

protocol-based attacks. 

d. An Application Protocol-Based Intrusion Detection 

System (APIDS) analyzes communication within applications, 

focusing on specific protocols like SQL queries in web 

applications. It helps detect attacks such as SQL injection by 

monitoring application-level interactions. 

e. A Hybrid Intrusion Detection System (Hybrid IDS) 

combines multiple IDS methods for enhanced security. By 

integrating host and network monitoring, it provides a broader 

detection scope. An example is Prelude, which improves 

accuracy by using multiple detection techniques. 

 

1.3 Detection Method of IDS Deployment 
The Signature-based IDS identifies threats by matching 

network traffic patterns with predefined attack signatures, such 

as specific byte sequences or malicious instruction sets. It 

effectively detects known threats but struggles with new, 

unidentified malware due to the absence of existing signatures. 

The Anomaly-based IDS addresses this limitation by using 

machine learning to establish a model of normal activity. Any 

deviation from this model is flagged as suspicious. This 

approach is more adaptable than signature-based IDS, as it can 

be trained to detect unknown threats based on system behavior 

and configuration. 

 

1.4 IDS Evasion Techniques 
Intruders use various strategies to bypass intrusion detection 

systems (IDS), making it difficult to identify malicious 

activities. One such technique is fragmentation, where 

attackers split data into smaller packets that evade signature 

detection. These packets are later reassembled at the 

destination, allowing the attack to go unnoticed. 

Another approach is flooding, which overwhelms IDS by 

generating excessive traffic, leading to failure in detection 

mechanisms. Attackers often exploit protocols like UDP and 

ICMP to disguise harmful activities within the flood of data. 

Obfuscation is another method where attackers modify code 

or data to make it harder to interpret, reducing the effectiveness 

of reverse engineering or static analysis. Similarly, encryption 

helps conceal malicious activities by securing data in a way that 

prevents IDS from analyzing its contents. 

Attackers can also manipulate source routing, forcing packets 

to take specific paths that avoid IDS monitoring points. 

Additionally, source port manipulation exploits security 

loopholes in improperly configured IDS, allowing malicious 

traffic to pass unchecked through commonly trusted ports like 

port 80. 

 

 

2. PROBLEM STATEMENT  
Intrusion detection plays a crucial role in cybersecurity, 

stepping in where firewalls fall short. While preventing 

unauthorized access is ideal, it is not always feasible, making 

real-time monitoring essential for identifying vulnerabilities 

and ongoing attacks. A reliable, accurate, and secure intrusion 

detection system (IDS) is necessary to ensure robust protection. 

However, a major challenge with existing IDS technologies is 

filtering out false alarms, which can overwhelm security teams. 

IDS continuously monitors and analyzes system or network 

events to detect security violations or threats. Meanwhile, 

intrusion prevention goes a step further by actively blocking 

identified threats. 

Intrusion Detection and Prevention Systems (IDPS) not only 

detect and log incidents but also attempt to mitigate attacks and 

alert security administrators. Organizations use IDPS for policy 

enforcement, threat documentation, and deterrence against 

security breaches. Given the growing complexity of cyber 

threats, there is a pressing need to develop a stronger and more 

efficient detection mechanism to enhance network security. 

 

3. LITERATURE SURVEY  
Nilamadhab Mishra, Sarojananda Mishra, Engineering, 

Biju Patnaik University of Technology, Rourkela, Odisha, 

India [1] A network intrusion occurs when an unauthorized 

entity gains access to a computer network, posing a threat to 

data security and system integrity. The primary objective of 

intrusion detection is to safeguard networks from unauthorized 

access, including threats from both external and internal users. 

To achieve this, a local network discovery mechanism is 

essential to differentiate between normal network activity and 

potentially harmful intrusions. 

Machine learning has emerged as a powerful tool for intrusion 

detection, enabling automated classification of network traffic. 

By analyzing patterns in data, machine learning models can 

effectively distinguish between legitimate connections and 

suspicious activities. The focus is on developing classification 

techniques that enhance both training and testing processes, 

ensuring improved accuracy and efficiency. 

Various machine learning algorithms have been explored to 

identify the most effective model for intrusion detection, 

considering factors such as detection time and accuracy. By 

comparing multiple classification methods, it is possible to 

determine the best-performing approach for securing computer 

networks. The integration of machine learning into intrusion 

detection systems enhances their ability to detect and respond 

to cyber threats in real time, making networks more resilient 

against attacks. 

 

Bisyron Wahyudi, Kalamullah Ramli, and Hendri Murfi, 

Universitas Indonesia, Indonesia [2] Intrusion Detection 

Systems (IDS) play a crucial role in network security by 

identifying and mitigating cyber threats. Machine learning has 

been widely adopted to enhance IDS accuracy, making the 

selection of suitable methods essential. 

This research presents an IDS built using a machine-learning 

approach, utilizing a 28-feature subset from the Knowledge 

Discovery in Databases (KDD) dataset, excluding content 

features. The model demonstrates 99.9% accuracy in both 

binary and multiclass classification. Experimental results 

confirm its effectiveness in detecting real-world network 

attacks. 
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Ahmed M. Mahfouz, Deepak Venugopal, and Sajjan G. 

Shiva, The University of Memphis, Memphis TN 38152, 

USA [3] As network-based applications expand rapidly, new 

security challenges emerge, requiring enhanced mechanisms 

for speed and accuracy. Despite advancements in security tools, 

the rise of sophisticated cyber threats continues to pose risks. 

Intrusion Detection Systems (IDS) play a crucial role in 

identifying malicious activities within network traffic. Machine 

learning has become a key approach in IDS by distinguishing 

between normal and abnormal traffic patterns. However, a 

thorough evaluation of machine learning algorithms for 

intrusion detection remains limited. 

This study presents a detailed analysis of machine learning 

classifiers in detecting network intrusions. It explores various 

aspects such as feature selection, hyperparameter sensitivity, 

and class imbalance—factors critical to IDS performance. 

Using the NSL-KDD dataset, we assess multiple classifiers 

through extensive experimentation to determine their 

effectiveness in intrusion detection. 

 

Sapna S. Kaushik, Dr. Prof.P.R.Deshmukh, M.E. II Year, 

Computer Science and Engg., Sipna College of Engg. 

Amravati, INDIA [4] Intrusion detection involves identifying 

unauthorized or malicious activities within a network or device. 

An Intrusion Detection System (IDS) acts as a security layer 

that continuously monitors network traffic for suspicious 

patterns and alerts administrators when potential threats are 

detected. For an IDS to be effective, it must accurately identify 

threats while handling large volumes of network data 

efficiently. 

Network-based IDS is one of the most widely used detection 

systems, deployed either as software or a dedicated hardware 

appliance. Many IDS solutions not only generate real-time 

alerts but also log detected events for further analysis, allowing 

security teams to refine policies and mitigate risks. This study 

examines different types of cyber attacks that can be detected 

in a simulated network environment, including Probe attacks, 

Remote-to-Local (R2L) intrusions, Denial-of-Service (DoS) 

attacks, and User-to-Root (U2R) exploits. 
 

Kajal Rai, M. Syamala Devi, Ajay Guleria, Panjab 

University, Chandigarh, India [5] An Intrusion Detection 

System (IDS) plays a crucial role in monitoring computer 

network activities and identifying unauthorized access attempts 

that could compromise an organization’s data security. With 

the increasing sophistication of cyber threats, ensuring robust 

network protection has become a priority for organizations. 

IDS can generally be categorized into signature-based and 

anomaly-based systems, each serving a unique role in 

identifying threats. In this study, a decision tree-based intrusion 

detection approach is developed using the C4.5 algorithm, 

which effectively addresses key challenges such as feature 

selection and split value determination. The model selects the 

most relevant features through information gain and determines 

split values to ensure an unbiased classification process. 

Experimental evaluation is conducted using the NSL-KDD 

dataset, analyzing the impact of selected features on detection 

accuracy and model training time. The results demonstrate that 

the proposed Decision Tree Split (DTS) algorithm effectively 

enhances signature-based intrusion detection, providing a 

reliable mechanism for identifying and mitigating network 

threats. 

 

Yasmeen S. Almutairi, Bader Alhazmi, Amr A. Munshi, 

Computer Engineering Department, Umm Al-Qura 

University, Makkah 21961, Saudi Arabia [6] Intrusion 

Detection Systems (IDS) play a critical role in securing modern 

communication networks by identifying suspicious activities 

and preventing potential threats. Traditional IDS primarily 

relied on predefined signatures and rule-based detection, but 

with the rise of sophisticated cyberattacks, machine learning 

and deep learning techniques have emerged as powerful 

alternatives. These intelligent models can effectively 

differentiate between normal and anomalous network behavior, 

enhancing detection capabilities. In this study, the NSL-KDD 

dataset is utilized to evaluate the performance of various 

machine learning algorithms, including Support Vector 

Machine, J48, Random Forest, and Naïve Bayes, in both binary 

and multi-class classification tasks. The experimental results 

demonstrate the effectiveness of these approaches in improving 

network security, with notable advancements over previous 

methodologies. The findings highlight the potential of machine 

learning-driven IDS to enhance threat detection and response 

mechanisms in evolving network environments. 

 

Ansam Khraisat, Iqbal Gondal, Peter Vamplew and 

Joarder Kamruzzaman [7] With the increasing complexity of 

cyber-attacks, detecting intrusions accurately has become a 

significant challenge. Failure to identify and prevent these 

attacks can compromise essential security services such as data 

confidentiality, integrity, and availability. To address these 

threats, various intrusion detection methods have been 

developed, primarily categorized as Signature-based Intrusion 

Detection Systems (SIDS) and Anomaly-based Intrusion 

Detection Systems (AIDS). SIDS rely on predefined attack 

signatures, while AIDS detect deviations from normal 

behavior, making them more effective against unknown threats. 

This study provides an in-depth analysis of modern IDS, 

reviewing recent advancements and widely used evaluation 

datasets. It also explores evasion strategies employed by 

attackers to bypass detection and highlights future research 

directions to strengthen security mechanisms. By enhancing 

detection techniques and countering evasion tactics, IDS can 

play a crucial role in safeguarding computer systems against 

evolving cyber threats. 

 

Rachid Tahri, Youssef Balouki, Abdessamad Jarrar, and 

Abdellatif Lasbahani, National School of Applied Sciences, 

Sultan Moulay Slimane University, Bni Mellale [8] The 

internet has revolutionized the way people interact, offering 

seamless communication and connectivity. While it enables 

individuals to maintain social and professional networks, it also 

exposes them to security risks that can compromise personal 

and organizational data. As digital dependency continues to 

grow, safeguarding sensitive information becomes increasingly 

critical. Intrusion Detection Systems (IDS) serve as a crucial 

defense mechanism against cyber threats by continuously 

monitoring network traffic for suspicious activities and issuing 

alerts when potential attacks are detected. This study explores 

the effectiveness of machine learning algorithms in enhancing 

IDS performance, focusing on Naïve Bayes (NB), Support 

Vector Machine (SVM), and K-Nearest Neighbors (KNN). 

Initially, the accuracy of these algorithms is evaluated using the 

UNSW-NB15 dataset to determine the most effective model. 

The selected algorithm is then further analyzed using additional 

datasets, including NSL-KDD and UNSW-NB15, to validate 

its reliability. By comparing multiple datasets and refining the 
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detection model, this research aims to improve intrusion 

detection accuracy and strengthen cybersecurity defenses. 

 

Qadeer, Mohammed & Iqbal, Arshad & Zahid, 

Mohammad & Siddiqui, Misbahur, Communication 

Software and Networks, International Conference [9] A 
packet sniffer is a specialized software tool designed to 
capture, analyze, and log network traffic as it traverses a 
digital network. It functions by setting the Network Interface 
Card (NIC) into promiscuous mode, allowing it to intercept 
data packets flowing through the network. Once captured, 
these packets are decoded to extract valuable information, 
which can be utilized for various purposes, depending on the 
user's intent. The extent of network traffic that can be 
intercepted varies based on the network's architecture, as 
some configurations allow access to all packets, while others 
restrict visibility to a subset of traffic. 

In certain cases, network switches may limit packet sniffing 

capabilities, but techniques exist to bypass these restrictions 

and gain access to data from multiple systems. This research 

focuses on the working principles of packet sniffers, their 

development on a Linux platform, and their application in 

Intrusion Detection Systems (IDS). Additionally, methods for 

detecting unauthorized sniffing activities and mitigating their 

impact are explored. A self-developed packet sniffer has been 

designed to analyze network performance, identify bottlenecks, 

and enhance security monitoring. 

Before creating this tool, an in-depth analysis of existing 

sniffing software such as Wireshark, tcpdump, and Snort was 

conducted to understand their functionality and limitations. The 

libpcap library has been utilized for packet capturing, providing 

a foundation for efficient data collection. The development of 

this packet sniffer presents an opportunity to integrate 

additional security features beyond those available in 

conventional sniffing tools, improving network analysis and 

cybersecurity measures. 

3.METHODOLOGY  

3.1 Proposed System 
A smart Intrusion Detection System (IDS) plays a crucial role 

in safeguarding networks from external threats by identifying 

malicious activities in real time. Traditional IDS models often 

struggle with detecting new attack patterns and suffer from high 

computational overhead when processing large volumes of 

audit data. To overcome these challenges, machine learning 

techniques have emerged as powerful tools for improving 

detection accuracy and efficiency. 

 

The proposed IDS leverages Decision Tree, Logistic 

Regression, Random Forest, and K-Nearest Neighbors (KNN) 

algorithms to enhance pattern recognition and intrusion 

detection capabilities. These models are designed to analyze 

network traffic, classify anomalies, and distinguish between 

legitimate and malicious activities with greater precision. 

Unlike conventional classification methods, these machine 

learning techniques offer superior performance in handling 

small sample sizes, nonlinear patterns, and high-dimensional 

data. 

By applying these algorithms, the system achieves a balance 

between accuracy and computational efficiency, making it 

suitable for real-time security monitoring. The integration of 

multiple classification techniques ensures robustness against 

evolving cyber threats while minimizing false positives. This 

approach provides an effective solution for improving network 

security, enhancing threat detection, and reducing the 

limitations faced by traditional IDS models. 
 

3.2 Significance of IDSs 

To protect against cyber threats, security systems typically rely 

on tools such as firewalls, access control mechanisms, and 

other protective measures. However, past incidents, such as the 

spread of internet worms and malware like "I Love You" or 

policy exploits, have demonstrated that existing security 

frameworks are not entirely foolproof. Despite the deployment 

of advanced safety measures, vulnerabilities persist, making 

systems susceptible to potential breaches. 

 

Implementing robust security mechanisms with strong 

cryptographic techniques can significantly mitigate risks, but 

complete prevention of intrusions remains unrealistic. 

Achieving an entirely secure system requires software to be 

free of flaws and administrators to continuously refine security 

policies for every process executed within the system. Even 

with the best security tools, human factors remain a critical 

weak link. A highly encrypted system can be compromised if 

access credentials are carelessly stored, and insiders with 

legitimate access may exploit their privileges. Moreover, 

stringent security protocols often come at the cost of system 

efficiency. Lengthy passwords may delay user access, and 

complex encryption algorithms can slow down system 

performance. Studies have shown that even well-documented 

vulnerabilities remain exploitable for long periods after patches 

are released. 

 

Given these challenges, intrusions are possible even in highly 

secure environments. When a breach occurs, a resilient system 

must be capable of responding swiftly by capturing audit data 

related to the attack. This information is crucial for preventing 

similar future threats and identifying potential attackers. While 

Intrusion Detection Systems (IDS) play a vital role in 

identifying security breaches, they often focus on monitoring 

rather than taking immediate corrective actions. Strengthening 

detection and response mechanisms is essential to ensuring 

continuous protection against evolving cyber threats. 

 

3.3 Methods of Intrusion Detection Systems 

Intrusion Detection Systems (IDS) can be categorized based on 

their detection methods, primarily into misuse detection, 

anomaly detection, and hybrid approaches. Each of these 

methods operates differently, offering various advantages and 

limitations in identifying potential security breaches. 

 

Misuse detection works by recognizing specific attack patterns 

or vulnerabilities that have been previously identified. This 

approach relies on predefined signatures, which are constructed 

by analyzing known system weaknesses and common attack 

methods. Security analysts gather data from different sources 

to build these signatures, ensuring that IDS can efficiently 

detect recognized threats. However, one of the primary 

challenges of misuse detection is its reactive nature—it cannot 

identify novel attacks until a corresponding signature is 

developed. This means an intrusion could occur, and the 

attacker could accomplish their goal before the IDS recognizes 

http://www.ijsrem.com/
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the threat. While signature-based systems are highly reliable in 

detecting known attacks, they fall short in identifying new or 

evolving threats. 

 

On the other hand, anomaly detection focuses on establishing a 

baseline of normal system behavior and then identifying 

deviations from this norm. By continuously monitoring 

network activity or system operations, anomaly-based IDS can 

detect unusual patterns that may indicate an intrusion. This 

method is particularly effective in uncovering unknown 

attacks, as it does not rely on predefined signatures. However, 

one major limitation is its inability to precisely classify the type 

of attack occurring. Unlike misuse detection, which directly 

links an attack to a signature, anomaly-based systems only alert 

security personnel to irregular activity, requiring further 

investigation to determine the nature of the threat. 

 

A significant challenge in intrusion detection is dealing with 

errors in classification, particularly false positives and false 

negatives. A false positive occurs when an IDS mistakenly 

flags legitimate activity as a threat. For example, if a user 

mistypes their password multiple times, an anomaly-based 

system might interpret this as a brute-force attack, triggering an 

alert unnecessarily. While signature-based IDS generally 

produce fewer false positives, anomaly-based systems are more 

prone to such errors because they flag deviations from normal 

behavior, even if those deviations are harmless. 

 

Conversely, a false negative happens when an IDS fails to 

detect an actual attack. This can occur when an attacker 

carefully operates below a detection threshold. For instance, if 

an IDS is set to detect brute-force attempts after ten failed login 

attempts within a minute, but an attacker attempts only nine, 

the system might not recognize the attack. False negatives are 

particularly dangerous because they allow intrusions to go 

unnoticed. 

 

To measure the effectiveness of an IDS, four key scenarios are 

considered. A true positive occurs when the IDS correctly 

identifies a real attack, allowing security personnel to respond 

appropriately. A false positive happens when an IDS 

incorrectly triggers an alert for benign activity. A false negative 

is when an actual attack goes undetected, leaving the system 

vulnerable. Finally, a true negative refers to a scenario where 

no attack occurs, and the IDS correctly refrains from raising an 

alarm. 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

Fig-3: False Positives and False Negatives 

3.4 Architecture of the System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-4: System Architecture 

 

3.5 Implementation of the System 

The implementation of the proposed intrusion detection system 

is carried out using Python 3.11 and Jupyter Lab. Several 

libraries, including scikit-learn, pandas, and matplotlib, are 

utilized along with other necessary libraries to facilitate data 

processing, visualization, and model training. The dataset for 

this study is obtained from the KDD dataset repository 

available at kdd.ics.uci.edu. This dataset consists of separate 

train and test sets, each containing four distinct classes of 

intrusions. The training dataset is used to train the model, while 

the test dataset is utilized for evaluation. 

 

In the initial phase, data collection plays a crucial role in 

ensuring the availability of high-quality data for analysis. The 

dataset selected from the KDD repository is well-suited for 

implementing machine learning models to detect intrusions. A 

significant responsibility in data analysis is to identify 

appropriate sources of data, gather relevant information, 

interpret findings, and apply statistical techniques to extract 

meaningful insights. 

 

To make complex data more comprehensible, data 

visualization techniques are employed. Representing large 

volumes of data through graphical means simplifies the 

interpretation process. In this approach, the detection rates of 

intrusions are illustrated using various visualization methods, 

making it easier to analyze the system's performance. 

 

Before applying machine learning techniques, the dataset 

undergoes preprocessing. Raw data must be transformed into a 

structured format to ensure accurate predictions. Data 

preprocessing involves cleaning, formatting, and sampling, 

which eliminates inconsistencies and enhances the model’s 
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effectiveness. Well-prepared data leads to better performance 

of the learning algorithm. 

 

A crucial step in machine learning is dataset splitting, which 

divides the data into separate subsets to train and evaluate the 

model effectively. The dataset is partitioned into training, 

testing, and validation sets. The training set is used to train the 

model and optimize its parameters. The test set is essential for 

assessing the model’s performance and its ability to generalize 

to new data. Separating training and testing data prevents 

overfitting, which occurs when a model performs well on 

training data but fails to recognize patterns in unseen data. 

 

Once the data is prepared and split, model training is initiated. 

The machine learning models used in this approach include 

decision tree, regression, random forest, and KNN. During 

training, the selected algorithm processes the training data to 

learn patterns and generate a model capable of predicting target 

values. This step is crucial in developing an intrusion detection 

system that can identify potential threats accurately. 

 

The final stage of the process is model evaluation and testing. 

The objective is to create an efficient model that can quickly 

and accurately identify intrusions. Model tuning is performed 

to optimize parameters and enhance performance. It is 

important to note that the test data differs from the training data 

in terms of probability distribution and contains specific attack 

types that are not present in the training set. This variation 

makes the detection task more realistic. Experts suggest that 

many novel attacks are modified versions of known intrusions, 

meaning that recognizing the signature of known attacks can 

help identify new threats. The dataset consists of 24 attack 

types in the training set, with an additional 14 attack types 

exclusive to the test set. 

 

By implementing machine learning models and systematically 

analyzing intrusion patterns, this approach aims to develop an 

effective intrusion detection system capable of identifying both 

known and previously unseen threats. 

Feature Name Description Type 

duration The total time (in 

seconds) for which the 

connection remained 

active. 

Continuous 

protocol_type Specifies the 

communication protocol 

used, such as TCP, 

UDP, or ICMP. 

Discrete 

service Represents the type of 

network service 

requested at the 

destination, such as 

HTTP or FTP. 

Discrete 

src_bytes The amount of data (in 

bytes) sent from the 

source to the destination. 

Continuous 

dst_bytes The amount of data (in 

bytes) received at the 

source from the 

destination. 

Continuous 

flag Describes the 

connection's status, 

Discrete 

indicating whether it is 

normal or has errors. 

land Identifies whether the 

connection originates 

and terminates on the 

same host and port (1 

for yes, 0 for no). 

Discrete 

wrong_fragment Counts the number of 

incorrectly fragmented 

packets in the 

connection. 

Continuous 

urgent Represents the count of 

urgent packets sent 

during the connection. 

Continuous 

Table-1: Network Connection Features 

 

Feature Name Description Type 

hot Total count of 

"hot" indicators, 

representing 

potentially 

suspicious actions. 

Continuous 

num_failed_logins Number of 

unsuccessful login 

attempts recorded. 

Continuous 

logged_in Indicates whether 

the user 

successfully logged 

in (1 for yes, 0 for 

no). 

Discrete 

num_compromised Total number of 

conditions where a 

system 

compromise has 

been detected. 

Continuous 

root_shell Indicates whether a 

root shell was 

obtained during the 

session (1 for yes, 

0 for no). 

Discrete 

su_attempted Shows if the "su 

root" command 

was attempted (1 

for yes, 0 for no). 

Discrete 

num_root Total number of 

times root-level 

access was used. 

Continuous 

num_file_creations Number of times a 

file was created 

during the session. 

Continuous 

num_shells Total count of shell 

prompts opened. 

Continuous 

num_access_files Number of 

operations 

performed on 

access control files. 

Continuous 

num_outbound_cmds Count of outbound 

commands 

executed in an FTP 

session. 

Continuous 

is_hot_login Indicates if the 

login belongs to a 

predefined "hot" 

Discrete 
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list of users (1 for 

yes, 0 for no). 

is_guest_login Identifies whether 

the login was 

performed using a 

guest account (1 

for yes, 0 for no). 

Discrete 

Table-2: User Behavior and Authentication Features 
 

Feature Name Description Type 

count Represents the number 

of connections made to 

the same host as the 

current one within the 

past two seconds. 

Continuous 

serror_rate Indicates the 

percentage of 

connections that have 

encountered "SYN" 

errors. 

Continuous 

rerror_rate Shows the percentage 

of connections that 

resulted in "REJ" 

errors. 

Continuous 

same_srv_rate Represents the 

percentage of 

connections made to 

the same service. 

Continuous 

diff_srv_rate Indicates the 

percentage of 

connections directed to 

different services. 

Continuous 

srv_count Refers to the number 

of connections made to 

the same service as the 

current one within the 

past two seconds. 

Continuous 

srv_serror_rate Displays the 

percentage of 

connections that have 

experienced "SYN" 

errors in same-service 

connections. 

Continuous 

srv_rerror_rate Represents the 

percentage of same-

service connections 

that resulted in "REJ" 

errors. 

Continuous 

srv_diff_host_rate Indicates the 

percentage of 

connections that were 

directed to different 

hosts. 

Continuous 

Table-3: Traffic Features Based on a Two-Second Time 

Window 
 

3.6 Implementation of Machine Learning Algorithms 

A. Logistic Regression Algorithm 

Logistic Regression is a widely used technique in predictive 

modeling that helps classify data into distinct categories. It is a 

powerful yet simple supervised learning algorithm that deals 

with classification problems. Unlike linear regression, which 

predicts continuous values, logistic regression is specifically 

designed to predict the probability of an outcome that falls into 

one of two categories. 

 

This algorithm is commonly applied in situations where the 

output variable is discrete, meaning it can take only specific 

values such as "yes" or "no," "true" or "false," or "0" and "1." 

Approximately 60% of classification problems worldwide can 

be effectively addressed using logistic regression. The core idea 

behind this algorithm is to establish a relationship between 

input features and a probability score, which helps determine 

the most likely category for a given data point. 

 

One of the primary applications of logistic regression is binary 

classification, where it estimates the probability of an event 

occurring using a mathematical function known as the logit 

function. This makes logistic regression a special type of linear 

regression, except that it applies a transformation using the log 

function to limit the predicted values within a range of 0 to 1. 

In a simpler way, linear regression estimates a continuous value 

based on an input variable, and this input variable is known as 

the predictor variable. The outcome being predicted is referred 

to as the criterion variable. When there is only one predictor 

variable, the method used is called simple regression. Logistic 

regression, however, extends this idea by predicting 

probabilities rather than direct numerical values. 

 

To convert the predicted probabilities into categorical values, 

an activation function known as the sigmoid function is used. 

This function maps any real-valued number into a range 

between 0 and 1, forming an S-shaped curve. The sigmoid 

function plays a crucial role in determining the classification 

outcome. If the probability score is greater than 0.5, the data 

point is classified into one category (often labeled as Class 1 or 

the Positive Class), while if it is less than 0.5, the data point is 

classified into the other category (Class 0 or the Negative 

Class). 

 

There are numerous practical applications of logistic regression 

across different fields. It is extensively used for fraud detection, 

where it helps identify fraudulent transactions based on patterns 

in transaction data. In spam detection, logistic regression is 

used to filter out unwanted emails by analyzing email content 

and sender behavior. It is also valuable in medical diagnosis, 

such as cancer detection, where it helps predict the likelihood 

of a disease based on medical test results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-5: Flow chart of Logistic Regression algorithm 

B. Decision Tree Algorithm 
A decision tree is a supervised learning algorithm that is 

primarily used for classification tasks, but it can also handle 

regression problems. This method is effective for both 
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categorical and continuous input and output variables. The 

fundamental concept behind a decision tree is to break down a 

dataset into smaller and more homogeneous subsets based on 

the most important attribute, creating a structured flow of 

decision-making. 

 

The decision tree consists of different elements, each playing a 

crucial role in classification. The internal nodes represent 

conditions or tests performed on specific attributes, the 

branches illustrate possible outcomes of those tests, and the leaf 

nodes signify the final classification or prediction. The primary 

objective of constructing a decision tree is to develop a model 

that can classify new data or predict values based on patterns 

identified from previous training data. 

 

One of the key advantages of a decision tree is its simplicity 

and ease of understanding when compared to other 

classification algorithms. It organizes the data in a hierarchical 

tree-like structure, making it easier to interpret and analyze 

decision-making patterns. The tree is constructed by following 

a step-by-step process that involves selecting the most 

influential attribute and splitting the dataset accordingly. 

To build a decision tree, the process begins by identifying the 

most significant attribute from the dataset and placing it at the 

root. The dataset is then divided into smaller subsets in such a 

way that each subset consists of data points with a common 

attribute value. This splitting process continues recursively for 

each subset until all branches of the tree reach leaf nodes, which 

represent final classifications. 

 

When using a decision tree for classification, the process starts 

at the root node, where the algorithm compares the attribute 

value from the input data with the conditions in the tree. Based 

on the comparison, the data follows the appropriate branch and 

moves to the next node. This process is repeated until a leaf 

node is reached, where the final classification is determined. 

 

Decision trees are widely used across various applications due 

to their interpretability and effectiveness. They play a crucial 

role in areas such as medical diagnosis, financial risk 

assessment, and fraud detection. Their ability to provide clear 

decision-making paths makes them an essential tool in machine 

learning and data analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-6: Flow chart Decision Tree algorithm 

 

C. Random Forest Algorithm 
The Random Forest algorithm is an advanced ensemble 

learning technique used for classification and regression 

problems. It is built on the concept of bagging, where multiple 

decision trees are trained on random subsets of the dataset to 

improve accuracy and reduce overfitting. Given a dataset with 

n instances, multiple sub-samples are selected randomly with 

replacement, ensuring diversity in training data for different 

trees in the forest. 

 

When constructing a decision tree within the Random Forest 

model, a predefined number of m features are selected 

randomly out of k total features at each node, ensuring m is 

smaller than k. Among these selected features, the best possible 

split is chosen to create a node. This process is repeated 

consistently throughout the growth of the forest while keeping 

m unchanged. Each decision tree in the Random Forest is 

allowed to grow fully without any pruning, leading to deep 

trees capable of capturing complex patterns in the data. 

 

For classification, a new object is predicted by aggregating the 

outputs from all trees in the ensemble, where the majority class 

label determines the final decision. This process reduces 

variance and improves the model’s generalization ability 

compared to individual decision trees. The primary distinction 

between a single decision tree and a Random Forest lies in the 

randomness introduced through both bootstrap sampling and 

feature selection, which minimizes correlation among trees and 

enhances predictive performance. 

 

In the context of intrusion detection, the dataset attributes play 

a significant role in determining the classification results. Since 

different attributes contribute variably to model accuracy, a 

method is used to assess their importance, increasing the 

likelihood of selecting the most influential attributes. 

Traditional methods of measuring attribute importance may not 

be optimal, as they often remove attributes directly, leading to 

information loss. Instead, hierarchical sampling is employed, 

where the original dataset is sampled in proportion to maintain 

data balance. 

 

Given that the dataset contains continuous attributes, the data 

undergoes discretization using equal distance dispersion or 

equal frequency dispersion techniques. This transformation 

converts continuous values into discrete categories, making it 

easier for the decision trees to process the data. Self-service 

sampling is then performed on the preprocessed dataset, 

generating N subsets and corresponding out-of-bag data. These 

subsets serve as training samples for different trees in the forest. 

To improve attribute selection, an evaluation function based on 

Decision Boundary Entropy (DBE) is employed, with attributes 

categorized into positive, boundary, or negative domains based 

on predefined threshold values (α, β). This technique refines the 

feature selection process by prioritizing more informative 

attributes. For each tree, the square root of the total number of 

features (√k) is chosen according to three attribute selection 

rules. 

 

The Gini index serves as the splitting criterion for node 

division, helping construct highly efficient decision trees. After 

all N trees are trained, the final classification result is obtained 

through majority voting, ensuring robustness against 

overfitting and noise. To validate the effectiveness of the 

Random Forest model in intrusion detection, test data is 

introduced into the integrated model, verifying its accuracy and 

reliability in detecting anomalies within network traffic. 
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D. K Nearest Neighbor (KNN) Algorithm 
The K-Nearest Neighbors (KNN) algorithm is a widely used 

machine learning technique that determines the similarity 

between a query instance and existing instances in a dataset. 

The similarity between instances is measured using a distance 

function, which quantifies how close or far two points are in a 

given feature space. Given two instances, each composed of N 

features, the distance between them is computed using a chosen 

metric. 

 

One of the most common distance metrics is Euclidean 

distance, which calculates the straight-line distance between 

two points in an N-dimensional space. Another common metric 

is absolute distance, also known as Manhattan distance, which 

sums the absolute differences between corresponding feature 

values. The choice of distance function depends on the nature 

of the data and the problem being solved. For numerical data, 

Euclidean distance is typically preferred, whereas for 

categorical or binary data, Hamming distance is often used. 

 

Unlike traditional machine learning models that learn patterns 

from data, KNN does not build an explicit model during 

training. Instead, it memorizes the entire dataset and uses it to 

make predictions. When an unseen data instance needs to be 

classified or assigned a value, KNN searches the dataset for the 

k most similar instances based on the chosen distance function. 

Once the k nearest neighbors are identified, the final prediction 

is made by summarizing their attributes. For classification 

tasks, the most frequently occurring class among the k 

neighbors is assigned to the new instance.  

 

KNN belongs to the category of instance-based learning 

algorithms, where predictions are made directly using training 

instances without building a generalized model. Since it stores 

all training data, KNN is considered a memory-intensive 

algorithm. It also falls under the category of competitive 

learning algorithms, as each data instance competes with others 

to be recognized as the most similar to a new instance.  

 

Due to its simplicity and effectiveness, KNN is widely used in 

various applications such as pattern recognition, 

recommendation systems, and anomaly detection. However, its 

computational complexity increases with large datasets, 

making optimizations such as indexing structures and 

dimensionality reduction techniques essential for improving 

efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-7: Flow chart of KNN Algorithm 

4. RESULTS AND ANALYSIS 
A. Software Requirements 

The software requirements for the project include a 

combination of essential tools and frameworks that facilitate 

data analysis, machine learning, and network intrusion 

detection. To begin with, Python serves as the primary 

programming language due to its versatility and extensive 

library support. It enables efficient data processing, model 

training, and seamless integration with other software tools. 

 

The Intrusion Detection System (IDS) is designed to operate on 

a user device running Windows 7 or a higher version. It utilizes 

Python 3.11 along with JupyterLab as the development 

environment, enabling efficient coding and implementation of 

security features. Within this setup, the system employs Scikit-

learn, a powerful machine-learning library, to enhance threat 

detection capabilities through intelligent classification and 

anomaly detection techniques. 

 

To monitor network activities, Snort is integrated as the 

primary intrusion detection tool. This open-source network-

based IDS inspects packets transmitted over the network and 

identifies potential threats based on predefined rules and 

signatures. Snort captures incoming and outgoing network 

traffic through the network interface and forwards the data to 

the detection engine. The detection engine analyzes the 

captured packets, checking for malicious patterns and unusual 

behaviors that may indicate security threats. 

 

Upon detecting any suspicious activity, the system records 

detailed logs and triggers real-time alerts to notify 

administrators or users about potential security breaches. These 

alerts ensure timely action can be taken to prevent unauthorized 

access or mitigate possible cyberattacks. The combination of 

machine learning models and traditional rule-based detection 

enhances the accuracy and efficiency of the intrusion detection 

mechanism, reducing false positives and improving response 

time. 

 

JupyterLab is another crucial component, providing an 

interactive environment for writing and executing Python code. 

It allows for real-time data visualization, easy debugging, and 

better code organization, which enhances productivity in data 

science tasks. 

 

Scikit-learn plays a vital role in machine learning applications. 

This library offers a wide range of algorithms for classification, 

regression, and clustering. It simplifies the process of building 

and evaluating models, making it easier to implement machine 

learning techniques effectively. 

 

Snort, a network intrusion detection system, is required for 

monitoring network traffic and detecting potential security 

threats. It helps in analyzing packets, identifying malicious 

activity, and generating alerts based on predefined rules. Its 

integration enhances the security aspect of the project, ensuring 

robust protection against cyber threats. 

 

B. Hardware Requirements 
The hardware requirements for setting up an Intrusion 

Detection System (IDS) include a processor with a speed of at 

least 500 MHz to ensure smooth operation. A minimum of 4 

GB RAM is necessary for handling network traffic efficiently, 

and a hard disk with at least 4 GB of storage capacity is required 

to store logs and system files. Input devices such as a standard 

keyboard and mouse will be needed for configuring and 

managing the system, while output devices should include a 
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VGA or high-resolution monitor to display alerts and system 

status effectively. 

 

When setting up the network, it is important to carefully 

determine the placement of the IDS to ensure it monitors 

critical points in the network. Positioning it behind the firewall 

or in key locations where traffic flows through the network is 

essential. The system should be capable of analyzing all 

relevant network traffic without becoming a bottleneck that 

slows down data transfer. 

 

The configuration of the IDS involves setting up rule sets and 

signatures that help detect potential intrusions. These rules can 

either be custom-made or downloaded from reliable sources. 

Threshold levels should be carefully adjusted to minimize false 

alerts while ensuring that real threats are detected. Proper 

logging is another crucial aspect, as it enables the system to 

record all significant events for later analysis. Additionally, 

deciding on response actions in advance, whether they are 

automated or manual, will help in effectively dealing with 

detected threats. 

 

Monitoring and maintenance are essential for the long-term 

effectiveness of an IDS. Setting up a dedicated monitoring 

console ensures that alerts and system health can be checked in 

real time. Keeping IDS software, rules, and signatures up to 

date is crucial to detect the latest security threats effectively. 

Regular testing should also be conducted to verify that the IDS 

is functioning as expected and can respond appropriately to 

potential security incidents. 

 
C. Source Code with Result 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig-8: Command Prompt 

 

 

 

 

 

 

 

 

 
Fig-9: List of Programs 

Experimental Analysis / Testing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-10: Program using AdaBoost classifier 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-11: Program using Decision Tree classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The implementation of the proposed work is carried out using 

Jupyter Lab, utilizing essential libraries such as scikit-learn, 

pandas, and matplotlib, along with other necessary libraries for 

data analysis and visualization. The dataset used for this study 

is the KDD Cup 1999 dataset, which is one of the most widely 
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recognized datasets in intrusion detection and network security 

research. It contains detailed network traffic data, making it a 

valuable resource for analyzing and detecting network 

anomalies. 

 

This dataset consists of 41 different features, each representing 

specific attributes related to network connections. These 

features provide information about various aspects such as the 

duration of the connection, the type of protocol used, the type 

of service requested, connection flags, and the source and 

destination IP addresses. Each row in the dataset corresponds 

to an individual network connection, offering insights into 

different network activities and potential threats. 

 

The original dataset contains approximately 4.9 million 

records, making it extensive and complex. Due to its large size, 

it is highly useful for testing different machine learning models 

and techniques for intrusion detection. However, because of 

computational constraints, researchers often work with smaller 

subsets of the dataset, focusing on specific types of attacks or 

selected features to conduct targeted experiments. This 

approach helps in effectively analyzing network security 

threats while optimizing the use of computational resources. 

 

 

 

 

 

 

 

 

 

 

 
 

Table-4: Experimental Analysis Result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSIONS 
An Intrusion Detection System (IDS) is designed to identify 

and prevent attacks and unauthorized activities within a 

network while minimizing false alarms. By integrating 

machine learning algorithms, the accuracy and reliability of the 

IDS are significantly enhanced, ensuring more advanced 

detection of security threats. This system also evaluates and 

displays the accuracy rate of detected attacks, which varies 

depending on the machine learning models applied. 

 

As technology continues to evolve, the volume of data 

generated has increased substantially, requiring secure storage 

and processing methods to protect users' information. Security 

plays a vital role in maintaining user trust, as a well-secured 

system ensures greater privacy and reliability. A robust IDS 

enhances the overall security of a network, making it more 

resilient against potential threats and intrusions. 

 

The KDD Cup 1999 dataset has been a key resource in the 

development and improvement of intrusion detection models. 

It has provided a foundation for researchers and security 

experts to experiment with various machine learning 

techniques and benchmark their effectiveness. However, with 

the rapid evolution of cyber threats, it is essential to 

continuously refine IDS models by incorporating modern 

datasets and utilizing advanced methodologies. This ongoing 

adaptation is crucial in ensuring that intrusion detection 

systems remain effective in identifying and mitigating 

emerging security risks. 
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