
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 07 | JULY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

JSON Web Token Based Authentication System

Suhas Peri 1, Gururaj Basavaraj Ghatigennavar 1, Dadam Rishikesh Reddy 1, Nithin Gowda L 1, Rishab R 1, Prof. Deepika Dash*

*Assistant Professor, Computer Science and Engineering, R V College of Engineering
1BE students, Department of Computer Science and Engineering, R V College of Engineering

perisuhas@gmail.com, Corresponding Author.

Abstract—In today’s digitally connected world, securing user access to

web and mobile applications is a critical requirement. Traditional

session-based authentication methods, while functional, often fall short

in terms of scalability, efficiency, and adaptability—particularly in

distributed and microservice-based environments. This project

proposes the use of JSON Web Tokens (JWT) as a stateless, secure,

and scalable alternative for managing user authentication. The

implemented system eliminates the need for server-side session storage,

reduces server load, and enhances compatibility with modern

application architectures such as Single Page Applications (SPAs). Key

features include token-based user identity verification, Role-Based

Access Control (RBAC), secure token transmission, and a refresh

mechanism to maintain session continuity. By integrating frontend,

backend, and database components, the proposed system ensures robust

access management, improved performance, and strong resistance to

common security threats like session hijacking and Cross-Site Request

Forgery (CSRF). The outcome demonstrates JWT’s capability to

modernize authentication processes and deliver a seamless user

experience across platforms.

Keywords: json web tokens, AES-256 Encryption, Real-Time File

Monitoring, Cybersecurity, SHA-512 Hashing, Secure Baseline

Verification

1.INTRODUCTION

As the reliance on web and mobile applications continues to grow,

securing user access has become one of the most fundamental aspects

of application development. Authentication, which verifies a user’s

identity before granting access to protected resources, is crucial in

preventing unauthorized access, data breaches, and malicious

activities. Traditionally, authentication systems rely on server-side

session management, where each user’s session data is stored on the

server after login. However, this method introduces several

drawbacks—most notably, scalability issues, increased server

memory usage, and complexities in distributed or load-balanced

environments.

Additionally, traditional sessions are prone to security threats like

session hijacking and Cross-Site Request Forgery (CSRF). These

vulnerabilities become even more prominent in modern web

architectures such as Single Page Applications (SPAs) and

microservices, where stateless communication is preferred.

To address these challenges, JSON Web Tokens (JWT) have

emerged as a modern, lightweight solution for stateless

authentication. JWTs allow the authentication information—

including user identity, roles, and permissions—to be embedded

within a compact, cryptographically signed token. This token can then

be securely transmitted between the client and server without the need

for server-side session storage.

In this project, we explore the design and implementation of a JWT-

based authentication system that supports secure login, role-based

access control (RBAC), token validation, and session refresh

mechanisms. By leveraging JWT’s capabilities, the proposed solution

enhances security, improves application performance, and provides a

scalable approach for managing authentication across various

platforms.

2. RELATED WORK

Authentication is a critical component of modern web application

security, and recent research has extensively explored stateless

approaches like JSON Web Tokens (JWT). This section surveys four

key publications that have contributed significantly to the theoretical

and practical understanding of JWT-based authentication.

In their foundational work, Jones et al. [1] defined the JWT

specification in IETF RFC 7519. The paper explains the structure of a

JWT—comprising a header, payload, and signature—and details how

it is designed to securely transmit claims between two parties. This

work forms the technical backbone of all JWT implementations and is

fundamental to understanding stateless authentication systems. The

use of cryptographic signatures to ensure integrity and authenticity

directly informed the secure token creation and validation mechanisms

in this project.

Mahindrakar and Pujeri [2] examined JWT in the context of traditional

session-based authentication systems. Their study highlights JWT's

suitability for Single Page Applications (SPAs) and cloud-native

systems, citing advantages such as low overhead, better scalability,

and simplified architecture. They also explore potential vulnerabilities,

including token theft and CSRF attacks, and suggest best practices to

mitigate them. These insights guided the secure storage and token

refresh strategies in the implemented system.

Chandramouli [3], in a NIST publication, addressed the architectural

challenges of securing microservices-based systems. The paper

emphasizes the need for decentralized authentication and recommends

the use of JWTs for inter-service authentication due to their stateless

and verifiable nature. The report also outlines token validation

strategies, which align with the token validation flow adopted in this

project to ensure secure and scalable authentication across services.

Finally, Ferraiolo et al. [4] proposed a formal model for Role-Based

Access Control (RBAC), which has since become a widely accepted

standard. The paper outlines the definition and enforcement of roles,

permissions, and constraints in secure systems. By embedding user

roles within JWT payloads, this project implements RBAC as

suggested in the paper, enabling fine-grained access control without

repeated database queries.

Collectively, these studies provide a comprehensive framework for

designing secure, stateless, and role-aware authentication systems

using JWTs.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 07 | JULY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

 3. OBJECTIVES

1. Implement Stateless Authentication

One of the core goals of this project is to eliminate the reliance on

server-side session storage by adopting a stateless authentication

approach. This is accomplished through the use of self-contained

JWTs, which encapsulate all necessary user information within the

token itself. This design significantly reduces server memory

consumption, allows for easier horizontal scaling, and improves

system responsiveness. By removing the dependency on centralized

session stores, the system becomes more suitable for microservices,

cloud environments, and highly distributed systems.

2. Enhance Security Using Signed Tokens

Security is a top priority in any authentication system. This project

aims to ensure strong protection against common threats such as

session hijacking, man-in-the-middle attacks, and token tampering

by leveraging cryptographically signed JSON Web Tokens. JWTs

will be generated using a secure secret key or public/private key

pair (depending on the signing algorithm used, such as HS256 or

RS256), ensuring that the tokens cannot be altered or forged without

detection. In addition, token expiration, refresh tokens, and secure

storage practices will be incorporated to further safeguard the

authentication process.

3. Enable Role-Based Access Control (RBAC)

A key functional requirement of this project is to implement Role-

Based Access Control (RBAC) using JWTs. This involves

embedding user roles (such as Student, Teacher, Principal, or

Administrator) directly within the token payload. By doing so, the

system can enforce granular access policies, allowing or restricting

access to specific resources or actions based on the user’s role. This

ensures that each user interacts with the system according to their

privileges, thereby enhancing both security and usability.

4. Improve Scalability and Cross-Platform Compatibility

To ensure the system’s relevance and adaptability across various use

cases, the project aims to deliver a solution that is both highly scalable

and platform-agnostic. JWTs, being compact and JSON-based, are

ideal for transmission across different platforms and devices—

including web applications, mobile clients, and IoT devices. The

stateless nature of JWTs also facilitates seamless integration with load

balancers, CDNs, and cloud-native services, making the system

suitable for handling large-scale user bases with high concurrency and

performance demands.

4. METHODOLOGY

4.1 User Login

The authentication process begins when a user submits their login

credentials (typically a username and password) through the

application interface.

• The backend server verifies these credentials against the

database.

• Upon successful verification, the server generates a JWT,

which contains the user's identity and access information.

• This token is then sent back to the client and acts as the user's

proof of authentication for future requests.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 07 | JULY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

JWT (JSON Web Token) is a modern approach to user authentication

that provides a stateless, secure, and scalable mechanism for verifying

user identity and permissions. Unlike traditional session-based

methods that rely on server-side session storage, JWTs encapsulate all

required user information into a self-contained token, which is signed

and verifiable by the server. This token can be used to authenticate

users across multiple platforms and services without the need to store

session data on the backend, making it highly suitable for distributed

and microservice-based systems.

4.2 Token Structure (Header, Payload, Signature)

A JSON Web Token is composed of three base64-encoded parts

separated by periods: the Header, the Payload, and the Signature. The

Header contains metadata about the token, such as the type (typ)

which is usually “JWT”, and the signing algorithm (alg), such as

HS256 or RS256. The Payload contains the actual claims, which are

statements about the user and additional data. These may include fields
like userId, role, and permissions, as well as standard claims

like exp (expiration time), iat (issued at), and iss (issuer). The

Signature is generated by combining the base64-encoded header and

payload and signing them with a secret key (or private key for

asymmetric algorithms). This ensures that the token has not been

tampered with and verifies its authenticity. A typical JWT might look

like this: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9 (Header),

eyJ1c2VySWQiOjEsInJvbGUiOiJTdHVkZW50In0 (Payload), and

VbKJx1hx0c3j2n8TgOJb3h5xK9hqMlA6FbU5ex3P0rY (Signature).

The entire token is passed as a single string:

header.payload.signature.

4.3 Token Usage and Storage

Once a JWT is issued by the server upon successful authentication, it

is stored locally by the client application. In web applications, it is

typically stored in localStorage or sessionStorage, while in mobile

apps, secure storage options like Keychain (iOS) or Keystore

(Android) are preferred for security reasons. For each subsequent API

call to protected resources, the token is attached in the HTTP

Authorization header using the Bearer schema:

Authorization: Bearer <JWT>. This allows the backend to

verify the user’s identity and permissions without checking any session

data. Since all the required information is embedded within the token,

the system remains stateless and scalable. It is important to secure the

storage of the token to prevent XSS and other client-side attacks.

4.4 Token Validation

When a request with a JWT is received, the server performs validation

in several steps. First, it checks the token’s signature using the secret

or public key to ensure the token’s integrity and authenticity. If the

signature is invalid, the token is rejected immediately. Next, the server

validates the token’s claims, such as expiration time (exp) to ensure

the token hasn’t expired, and optionally issuer (iss) or audience

(aud) to confirm it was issued by the correct authority. If the claims

are valid, the server then checks the user’s role and permissions from

the token’s payload to authorize access to the requested resource. This

process is entirely stateless, meaning the server does not need to store

any user session. If the token is expired, tampered with, or invalid in

any way, the server responds with an error such as 401 Unauthorized

or 403 Forbidden, and access is denied.

4.5 Token Refresh Mechanism

To maintain both security and a smooth user experience, JWT-based

systems implement a refresh token strategy. The access token is

designed to be short-lived (typically 5 to 15 minutes) to limit the

window of misuse if it is compromised. Along with the access token,

the server also issues a refresh token, which has a longer lifespan

(hours, days, or weeks). This refresh token is stored securely on the

client and used only when the access token expires. The client sends

the refresh token to a secure endpoint to request a new access token,

thus avoiding the need for the user to log in again. The server validates

the refresh token’s signature, expiration, and revocation status before

issuing a new access token (and optionally a new refresh token). If the

refresh token is invalid or has been revoked (e.g., user logs out or

suspicious activity is detected), the server denies the request and forces

re-authentication. This mechanism ensures users stay logged in

seamlessly while maintaining tight control over token security and

minimizing risks associated with long-term access

 5.FEATURES

 Features of JWT Authentication

JWT (JSON Web Token) brings several powerful features that make

it an ideal solution for modern authentication systems. Below are the

key benefits offered by this architecture:

5.1 Stateless Authentication

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 07 | JULY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

JWT enables stateless communication between the client and server

by eliminating the need to store session data on the server. Each token

carries all the necessary information to authenticate a user, which

simplifies infrastructure design and improves system scalability,

especially in cloud and distributed environments.

5.2 Compact Token Format

JWTs use a compact, Base64-encoded format that makes them

lightweight and easy to transmit over HTTP headers, cookies, or

even URLs. Despite being small in size, they can carry meaningful

claims about the user and their privileges, making them efficient for

real-time systems.

5.3 Cross-Platform Compatibility

Because JWTs are transmitted using standard HTTP protocols, they

can be easily used across multiple platforms and devices—web apps,

mobile apps, desktop apps, and even IoT devices. This makes JWT

highly versatile for multi-platform applications.

5.4 Role-Based Access Control (RBAC)

JWTs can include custom claims to define user roles and permissions.

This allows the backend to enforce fine-grained access control,

enabling different privileges for users such as Students, Teachers,

and Principals without querying the database on each request.

5.5 Secure Token Transmission

JWTs are signed using algorithms like HMAC SHA-256 or RSA,

ensuring data integrity. Even though the token content is visible (since

it’s base64-encoded), it cannot be tampered with or forged due to the

signature verification. Additionally, tokens are transmitted over

HTTPS to prevent interception or man-in-the-middle attacks.

5.6 Token Expiry and Refresh

JWTs support expiration timestamps, making tokens valid only for a

limited period. This reduces the risk associated with token theft. A

refresh token mechanism allows the user to maintain a long-term

session without re-authenticating, offering both security and

convenience.

5.7 Improved Performance

With JWT, the server doesn’t need to perform a database lookup for

every authenticated request, since all the necessary user data is

contained within the token itself. This significantly reduces server

load and improves response times, especially under high-traffic

conditions.

5.8 Microservices Readiness

In microservice architectures, each service can independently verify

the JWT without relying on a centralized session store. This makes

JWT an excellent fit for decentralized systems, allowing secure and

scalable communication between services.

 6.RESULTS

The JWT-based authentication system was successfully developed

using a full-stack architecture that integrates the frontend, backend,

and database components to deliver a secure, scalable, and responsive

user authentication experience. Each component plays a vital role in

ensuring that the authentication process is seamless, efficient, and

secure. The system enables stateless authentication using JSON Web

Tokens, while also incorporating refresh tokens and role-based access

control to manage user privileges effectively.

7.1 Frontend Interface

The frontend of the application serves as the user-facing layer where

users can register or log in using their credentials. Upon successful

authentication, the client receives an access token (JWT) and

optionally a refresh token. These tokens are then stored locally,

typically using the browser's localStorage or sessionStorage. For

enhanced security, especially against XSS attacks, it is recommended

to use HTTP-only cookies for storing tokens. Once stored, the client

automatically attaches the access token to the Authorization header in

each protected API request. Technologies used to build the frontend

include HTML, CSS, and JavaScript, and optionally a Single Page

Application (SPA) framework such as React may be integrated to

enhance the user interface and manage application state more

efficiently.

7.2 Backend Server

The backend server is responsible for all the core logic associated with

authentication and authorization. It verifies user login credentials,

generates access and refresh tokens upon successful authentication,

and handles token validation for each protected route. Additionally,

the backend makes access control decisions based on user roles

embedded within the token payload. It also securely refreshes tokens

when the client provides a valid refresh token. The backend is

implemented using Node.js with the Express.js framework. A JWT

library such as jsonwebtoken is used to create and verify tokens.

Tokens are signed using either a symmetric secret key (for algorithms

like HS256) or a public/private key pair (for algorithms like RS256),

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 07 | JULY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

ensuring that tokens are cryptographically secure and cannot be

tampered with.

7.3 Database Integration

The system includes a backend-connected database to persist essential

user data. The database stores user credentials, roles, and optionally

refresh tokens. This information is primarily used during user login

and when validating refresh tokens; however, for standard protected

requests, the system remains stateless and does not query the database.

This significantly reduces load and improves performance. The

database can be implemented using MongoDB, PostgreSQL, or

MySQL, depending on project requirements. A typical schema

includes fields such as username, password (stored in hashed form

using bcrypt or a similar algorithm), role (e.g., Student, Teacher,

Admin), and refreshToken (optional and securely stored).

7.4 Authentication Flow

The authentication flow begins when a user submits their login

credentials. The backend validates the credentials and, if correct,

responds with an access token and refresh token. The client then stores

these tokens securely and includes the access token in the

Authorization header of every subsequent API request. The server

receives the token, validates its signature and claims, and grants or

denies access to resources accordingly. If the access token has expired,

the client sends the refresh token to a dedicated endpoint, and if the

refresh token is valid and not revoked, the server issues a new access

token. This entire flow is designed to minimize authentication friction

while maintaining strong security practices, ensuring that only

authenticated and authorized users can access protected resources.

The first image illustrates the detailed user schema stored in the

backend database, presumably MongoDB. This JSON object reflects

how user information is persistently stored after registration. Key

fields include the username, email, and securely hashed password,

which uses a salted hashing algorithm (likely bcrypt) to prevent

exposure of plain text credentials. The role field indicates the user’s

permission level, in this case, Student, which is critical for

implementing Role-Based Access Control (RBAC). Security-related

boolean flags such as isEmailVerified, accountLocked, and

mfaEnabled help manage the security state of the account. For

instance, isEmailVerified is initially set to false until the user

completes email verification through a token-based link.

failedLoginAttempts helps enforce account lockout policies if multiple

incorrect attempts are detected, while mfaBackupCodes and

securitySettings support future extensions like multi-factor

authentication (MFA) or security questions. Arrays like

activeSessions, loginHistory, and refreshTokens are designed to keep

track of concurrent sessions, audit login activities, and manage

multiple refresh tokens per user or device, respectively.

The emailVerificationToken and emailVerificationExpires fields

show the implementation of email verification using token-based

mechanisms. Upon user registration, a unique token is generated and

stored here, and users must verify their email before gaining full

access. Additionally, createdAt and lastLogin timestamps help in

logging and monitoring account usage. This design not only supports

essential authentication features but also aligns with industry-standard

security practices.

The second image reveals the structure of a refresh token object stored

either within a subdocument of the user schema or in a separate token

collection. The refresh token is an essential component of the JWT

authentication mechanism, especially for maintaining user sessions

without forcing frequent logins. The tokenId field holds a unique

identifier for the token, which is a randomly generated string used to

prevent reuse or tampering.

The tokenType is clearly marked as refresh, which distinguishes it

from short-lived access tokens. The expiresAt field defines the token’s

validity window, which is typically set for several days or weeks,

allowing users to remain logged in while reducing security risks. The

isRevoked flag enables token invalidation during logout or suspected

misuse. The presence of a deviceInfo and metadata object suggests that

each refresh token may be tied to a specific device or browser,

allowing enhanced control over session management and invalidation

on a per-device basis.

The fields issuedAt and lastUsed serve to track the creation and most

recent usage of the token, which is helpful for auditing and analytics.

The use of ObjectId references for token records (_id) ensures that

each token instance is uniquely identifiable in the database. This

structure supports secure token rotation, management, and revocation

while maintaining a smooth user experience through seamless access

tokenregeneration.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 07 | JULY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 6

The third image depicts the frontend user interface of the system’s

login module, part of a School Management System. The interface is

built with a clean and modern design, prioritizing user experience and

accessibility. It provides two primary options: "Login" and "Register",

allowing users to switch between signing in and creating a new

account. The UI design is consistent with modern Single Page

Applications (SPAs), likely built using React, as inferred from the

layout and interaction patterns.

Input fields are provided for email and password, along with a

dropdown to select the user role. The role selection may be optional or

pre-defined depending on the backend logic. Upon entering valid

credentials, the user can authenticate and receive access and refresh

tokens. These tokens are then stored in localStorage, sessionStorage,

or HTTP-only cookies, depending on the implementation. The form

submission triggers a POST request to the backend API, where user

validation and JWT generation occur.

The design uses subtle yet effective color schemes (e.g., blue for

buttons, white for input fields) to distinguish action areas and maintain

visual clarity. Placeholder text and input labels enhance usability,

while secure practices like password masking and limited input fields

reduce security risks. The visual branding of the School Management

System, along with the message "Secure role-based access center for

educational institutions", clearly communicates the purpose of the

system—supporting controlled access for Students, Teachers, and

Administrators.

Role-Based Dashboard Functionality

The image showcases the dashboard interface of the School

Management System, specifically tailored to a logged-in user with

the role of student. Upon successful login, the system dynamically

renders a personalized greeting—“Welcome, guru!”—along with the

assigned role, ensuring that users are aware of their current privileges

and access level.

The dashboard is cleanly structured with a focus on clarity,

accessibility, and usability. At the top, a navigation bar provides

access to core sections such as “Dashboard,” user profile settings, and

a role selector. This helps users quickly identify their identity and

current operational scope within the system. On the top-right corner,

the logged-in user’s name and role are clearly displayed along with a

dropdown to potentially switch roles (if multi-role functionality is

supported).

The “Student Details” card is prominently displayed with a

green icon and "Accessible" label. It allows students to view and

manage their own academic information such as grades,

attendance, and other personal academic records. This module is

fully active and interactive for the student role.

The “Teacher Details” and “Salary Details” cards are marked

as “Not Accessible” and are visually greyed out. This design

ensures that users are aware of features they are not authorized to

access, without entirely hiding them—an approach that balances

transparency and security. These modules are typically

reserved for roles like teacher, admin, or principal.

CONCLUSION

The implementation of JWT-based authentication marks a significant

advancement in the way modern web and mobile applications manage

user authentication and session control. By adopting a stateless

architecture, the system removes the dependency on server-side

session storage, making it highly scalable and lightweight. This is

particularly advantageous in distributed or cloud-native environments,

where load balancing and horizontal scaling are essential. With no

need to maintain session state on the server, applications can easily

accommodate large user bases while reducing complexity.

Security is greatly enhanced through the use of cryptographically

signed tokens. These tokens ensure the integrity and authenticity of the

data they carry, making them resilient against tampering, session

hijacking, and cross-site request forgery (CSRF) attacks. The inclusion

of Role-Based Access Control (RBAC) within the token allows the

system to enforce fine-grained access policies based on user roles such

as Student, Teacher, or Admin. Furthermore, the use of token

expiration and refresh mechanisms ensures that the system maintains

a balance between user convenience and secure access control.

In addition to security and scalability, JWT's compact and self-

contained format makes it ideal for use in microservices architectures.

Tokens can be validated independently by any service without the need

for a central session store or database query. This supports clean

separation of concerns and enhances interoperability across different

parts of a system, including APIs, web apps, and mobile clients.

In conclusion, the JWT-based authentication system developed in this

project offers a modern, robust, and efficient solution for user

authentication. It aligns well with the requirements of today's scalable,

cloud-compatible, and cross-platform applications. Looking ahead, the

system can be further enhanced by integrating multi-factor

authentication (MFA) for stronger identity verification, implementing

token blacklisting and rotation strategies for better token lifecycle

management, and adopting secure storage mechanisms for refresh

tokens on client devices. Additionally, the architecture can be extended

to support standards like OAuth2 and OpenID Connect, allowing

seamless integration with third-party identity providers and broader

federated login systems.

5.REFERENCES

1. M. B. Jones, J. Bradley, and N. Sakimura, “JSON Web

Token (JWT),” IETF RFC 7519, May 2015.

2. P. Mahindrakar and U. Pujeri, “Insights of JSON Web

Token,” Int. J. Recent Technol. Eng., vol. 8, no. 6, Mar.

2020.

3. NIST, “Digital Identity Guidelines: Authentication and

Lifecycle Management (SP 800-63B),” U.S. Dept. of

Commerce, Jun. 2017.

4. D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, R. J. Kuhn, and R.

Chandramouli, “Proposed NIST standard for role-based

access control,” ACM Trans. Inf. Syst. Secur., vol. 4, no. 3,

Aug. 2001, pp. 224–274.

5. D. F. Ferraiolo and D. R. Kuhn, “Role-Based Access

Controls,” in Proc. 15th Nat. Computer Security Conf.,

1992, pp. 554–563.

6. R. Chandramouli, “Security Strategies for Microservices-

Based Application Systems,” NIST SP 800-204, Aug. 2019.

7. W. Stallings and L. Brown, Computer Security: Principles

and Practice, 4th ed., Pearson, 2018.

8. OWASP, “JSON Web Token (JWT) Cheat Sheet for Java,”

OWASP Cheat Sheet Series, 2022. [Online].

9. Auth0, “JSON Web Token (JWT) Basics,” Auth0 Developer

(Mar. 25, 2024). [Online].

10. ExpressJS, “Express – Node.js web application framework,”

ExpressJS.com, 2021. [Online].

11. npm, “jsonwebtoken: JSON Web Token implementation

(symmetric and asymmetric),” npmjs.com (2023). [Online].

http://www.ijsrem.com/

