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Abstract - Crop diseases pose a significant threat to global 

food security, with rapid identification challenges in regions 

lacking essential infrastructure. The confluence of rising 

smartphone adoption worldwide and recent strides in computer 

vision through deep learning has opened avenues for 

smartphone-enabled disease diagnosis. Leveraging a public 

dataset containing 2,500 images of plant leaves in varied health 

conditions, acquired under controlled settings, we employed a 

deep convolutional neural network. This model successfully 

discerns crop species and identifies diseases or their absence, 

achieving an impressive 86.35% accuracy on a withheld test 

set. This underscores the viability of the proposed 

methodology. In essence, the strategy of training deep learning 

models on expansive and accessible image datasets signals a 

promising route for widespread smartphone-assisted crop 

disease diagnosis on a global scale. 

 

 Keywords - crop diseases, machine learning, deep learning, 

convolutional neural network (CNN) 

I. INTRODUCTION 

Modern advancements in technology have empowered 
human society to generate sufficient food resources to meet the 
needs of a growing population exceeding 7 billion. Despite this 
progress, food security remains jeopardized by various factors, 
including climate change, the decline in pollinators, and the 
prevalence of plant diseases. Plant diseases not only pose a 
global threat to food security but also have severe consequences 
for smallholder farmers, who heavily rely on healthy crops for 
their livelihoods. In the developing world, where over 80% of 
agricultural production comes from smallholder farmers, reports 
of significant yield losses due to pests and diseases are common. 

     Efforts to mitigate crop loss from diseases have evolved from 
widespread pesticide use to integrated pest management (IPM) 
approaches. Regardless of the strategy employed, accurately 
identifying diseases early is critical for effective disease 
management. Historically, agricultural extension organizations 
and local plant clinics supported disease identification, with 
recent efforts leveraging online platforms and, more recently, 
mobile phones due to the widespread adoption of mobile 
technology globally. The resulting system can be integrated into 
precision agriculture. 

     Smartphones, with their computing power, high resolution 
displays, and advanced cameras, offer innovative approaches 
for disease identification. The proliferation of smartphones 
globally, estimated to reach 5 to 6 billion by 2020, coupled with 
high-speed internet access, creates an unprecedented 
opportunity for automated image recognition-based disease 
diagnosis on a massive scale. This feasibility is demonstrated 

using a deep learning approach on a dataset of 54,306 images 
representing 14 crop species with 26 diseases, made publicly 
available through the Plant Village project. 

      Deep neural networks have found success in diverse 

domains, providing end-to-end learning solutions. The 

mapping of input, such as an image of a diseased plant, to an 

output, like a crop-disease pair, is achieved through stacked 

layers of nodes. Training deep neural networks involves tuning 

parameters to improve the mapping during the process, a task 

that has seen substantial improvement in recent times. 

 

      To develop accurate image classifiers for plant disease 

diagnosis, a large, verified dataset was essential. The Plant 

Village project addressed this gap by collecting tens of 

thousands of images of healthy and diseased crop plants, 

making them openly available. This study reports on the 

classification of 26 diseases in 14 crop species using 54,306 

images and a convolutional neural network approach. The best-

performing model achieved a mean F1 score of 0.9934 (overall 

accuracy of 99.35%), demonstrating the technical feasibility of 

smartphone-assisted plant disease diagnosis. 

 

      This paper focuses on the development of a CNN-based 

system that can be used for real-time disease identification 

through leaf scanning. The approach involves collecting a 

comprehensive dataset of healthy and diseased plant leaves, 

training a deep learning model to learn relevant features, and 

utilizing transfer learning techniques to improve model’s 

performance. 

 

 
         Fig no 1:  Sample Potato Leaves with diseases  
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II.    METHODS 

 

A.   Dataset Description  

     We conducted an analysis on a dataset consisting of 3,000 

images of plant leaves, each associated with one of 3 class 

labels representing crop-disease pairs. The objective was to 

predict the specific crop-disease pair based solely on the image 

of the plant leaf. In our approach, all images were resized to 

256 × 256 pixels, and both model optimization and predictions 

were performed on these downscaled images.  

     In Our dataset, we divide image base on their disease. In 

potatoes leaf there are 3 type of categories: Late blight, Early 

blight , healthy leaf.  

     Throughout our experiments, three versions of the Plant 

Village dataset were utilized. Initially, we used the original 

Plant Village dataset in color. Subsequently, we experimented 

with a gray-scaled version, and finally, all experiments were 

conducted on a version of the dataset where leaves were 

segmented. Segmentation involved the removal of excess 

background information, which could potentially introduce 

biases in the dataset due to the regularized process of data 

collection in the case of Plant Village. An automated script, 

tailored for our dataset, was employed for segmentation. The 

technique utilized a set of masks generated through the analysis 

of color, lightness, and saturation components in different color 

spaces (Lab and HSB). This process not only facilitated 

segmentation but also addressed color casts in some subsets of 

the dataset, eliminating potential biases.  

     The purpose of these experiments was to ascertain whether 

the neural network genuinely grasps the concept of plant 

diseases or if it merely learns inherent biases within the in 

 dataset. Figure 2 illustrates various versions of the same leaf 

for a randomly selected set of leaves.  

B.  Measurement of Performance  

     To gain insight into the performance of our methodologies 

on new, unseen data and to monitor for potential overfitting, we 

conducted experiments across a diverse range of train-test set 

splits. These splits encompassed various proportions, including 

80–20 (80% for training, 20% for testing), 60–40 (60% for 

training, 40% for testing), 50–50 (equal distribution for training 

and testing), 40–60 (40% for training, 60% for testing), and 20–

80 (20% for training, 80% for testing). Notably, within the 

Plant Village dataset, multiple images of the same leaf are often 

present, captured from different perspectives. We meticulously 

managed these cases for 2,500 out of the 3,000 images, 

ensuring that all images of the same leaf were consistently 

assigned to either the training or testing set across all splits.  

  

Furthermore, for each experiment, we computed metrics such 

as mean precision, mean recall, mean F1 score, and overall 

accuracy throughout the training process at regular intervals, 

typically at the conclusion of each epoch. The final mean F1 

score served as the primary metric for comparing results across 

different experimental configurations. This rigorous 

methodology allowed us to comprehensively assess model 

performance under varying conditions while maintaining 

consistency in data handling across all experiments.  

  

C.  Specifications Of Proposed System 

 
      An effective host system, a robust server or cloud 

infrastructure with adequate compute resources is essential. 

This infrastructure should be capable of handling the 

computational demands of model inference and serving 

incoming requests efficiently.  

  

     Furthermore, sufficient storage capacity is required to 

accommodate model files, image data, and logging 

information. This includes storage for the trained model files, 

which can be substantial in size, as well as the dataset of images 

used for training and testing purposes. Additionally, storage 

space is needed for logging data, such as system metrics, error 

logs, and user activity logs.  

  

     In terms of software requirements, the server should be 

equipped with an operating system suitable for hosting the 

system, such as Linux. A Python environment with necessary 

packages, including TensorFlow for machine learning tasks 

and Fast API for building web APIs, is also necessary. 

 

     For model deployment, TensorFlow Serving or a similar 

framework can be used to facilitate serving trained models over 

the network. This ensures that the machine learning models are 

efficiently deployed and can handle incoming inference 

requests with low latency. If the system involves the 

management of large amounts of data, a database system may 

be necessary for storing and managing image and model data. 

This database system can help organize and retrieve data 

efficiently, improving the overall performance of the system.: 

 

  

II. APPROACH 

 
     We evaluate the applicability of deep convolutional neural 

networks for the classification problem described above. We 

focus on two popular architectures, namely AlexNet 

(Krizhevsky et al., 2012), and GoogLeNet (Szegedy et al., 

2015), which were designed in the context of the “Large Scale 

Visual Recognition Challenge” (ILSVRC) (Russakovsky et al., 

2015) for the ImageNet dataset (Deng et al., 2009). The 

AlexNet architecture (see Figure S2) follows the same design 

pattern as the LeNet-5 (LeCun et al., 1989) architecture from 

the 1990s. 

  

      The LeNet-5 architecture variants are usually a set of 

stacked convolution layers followed by one or more fully 

connected layers. The convolution layers optionally may have 

a normalization layer and a pooling layer right after them, and 

all the layers in the network usually have ReLu non-linear 

activation units associated with them. AlexNet consists of 5 

convolution layers, followed by 3 fully connected layers, and 

finally ending with a softMax layer. The first two convolution 

layers (conv{1, 2}) are each followed by a normalization and a 

pooling layer, and the last convolution layer (conv5) is 

followed by a single pooling layer. The final fully connected 
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layer (fc8) has 38 outputs in our adapted version of AlexNet 

(equaling the total number of classes in our dataset), which 

feeds the softMax layer. The softMax layer finally 

exponentially normalizes the input that it gets from (fc8), 

thereby producing a distribution of values across the 38 classes 

that add up to 1. These values can be interpreted as the 

confidences of the network that a given input image is 

represented by the corresponding classes. 

 

      All of the first 7 layers of AlexNet have a ReLu non-

linearity activation unit associated with them, and the first two 

fully connected layers (fc{6, 7}) have a dropout layer 

associated with them, with a dropout ratio of 0.5. The 

GoogleNet architecture on the other hand is a much deeper and 

wider architecture with 22 layers, while still having 

considerably lower number of parameters (5 million 

parameters) in the network than AlexNet (60 million 

parameters). An application of the “network in network” 

architecture (Lin et al., 2013) in the form of the inception 

modules is a key feature of the GoogleNet architecture. The 

inception module uses parallel 1 × 1, 3 × 3, and 5 × 5 

convolutions along with a max-pooling layer in parallel, hence 

enabling it to capture a variety of features in parallel. 

 

      In terms of practicality of the implementation, the amount 

of associated computation needs to be kept in check, which is 

why 1 × 1 convolutions before the above mentioned 3 × 3, 5 × 

5 convolutions (and also after the max-pooling layer) are added 

for dimensionality reduction. Finally, a filter concatenation 

layer simply concatenates the outputs of all these parallel 

layers. While this forms a single inception module, a total of 9 

inception modules is used in the version of the GoogLeNet 

architecture that we use in our experiments. A more detailed 

overview of this architecture can be found for reference in 

(Szegedy et al., 2015). 

 

III. ALGORITHM  

 
     The algorithm employed for leaf image classification using 

Convolutional Neural Networks (CNNs). CNNs have 

demonstrated remarkable performance in image classification 

tasks due to their ability to automatically learn hierarchical 

features from raw pixel data. Our approach involves extracting 

discriminative features from leaf images and utilizing SoftMax 

activation for multi-class prediction, while optimizing model 

parameters through backpropagation for continuous 

refinement.  

 

1. Data Preprocessing: 

 

Acquisition of Leaf Images: Collect a diverse dataset of leaf 

images covering various species and environmental conditions. 

 

Data Augmentation: Augment the dataset to increase its size 

and diversity, including techniques such as rotation, flipping, 

and scaling.  

 

Normalization: Normalize the pixel values of the images to 

ensure uniformity and accelerate convergence during training. 

 

 

 

 

 2. Model Architecture:  

 

Convolutional Layers: Stack multiple convolutional layers to 

capture low-level to high-level features present in leaf images.  

 

Pooling Layers: Apply pooling operations to down sample 

feature maps and enhance the model's spatial invariance.  

 

Fully Connected Layers: Incorporate fully connected layers to 

facilitate the mapping of extracted features to class labels.  

 

Softmax Activation: Utilize softmax activation at the output 

layer for multi-class classification, providing probabilities for 

each class. 

  

3. Training: 

 

Initialization: Initialize the model parameters using appropriate 

techniques such as Xavier or He initialization.  

Loss Function: Define the cross-entropy loss function to 

measure the discrepancy between predicted and actual class 

labels. 

.  

Optimization: Employ backpropagation along with stochastic 

gradient descent (SGD) or advanced optimizers like Adam to 

update model parameters iteratively.  

 

Hyperparameter Tuning: Fine-tune hyperparameters such as 

learning rate, batch size, and regularization strength to optimize 

model performance.  

 

Early Stopping: Implement early stopping to prevent 

overfitting by monitoring validation performance and halting 

training when performance starts to degrade.  

 

4. Evaluation: 

 

Performance Metrics: Assess the model's performance using 

metrics such as accuracy, precision, recall, and F1score.  

 

Cross-Validation: Employ k-fold cross-validation to obtain 

robust estimates of model performance.  

 

Visualization: Visualize model predictions, confusion 

matrices, and feature maps to gain insights into its behaviour 

and performance 

. 

5. Inference: 

 

Deployment: Deploy the trained model to classify new 

simultaneously, making it suitable for deployment in leaf 

images in real-world scenarios.  
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V. FLOW CHART 

 

 
 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

                     Fig no 2: Flow Chart                                                                                                   

VI.  MODEL BUILDING 

     The core of a CNN comprises multiple convolutional layers 

that apply convolution operations to input images, utilizing 

learnable filters to detect various features such as edges, 

textures, and shapes. The architecture's depth and number of 

convolutional layers can vary based on the problem's 

complexity and available computational resources. 

 Activation functions like ReLU (Rectified Linear Unit) are 

applied after each convolutional layer to introduce nonlinearity 

into the model. Pooling layers (e.g., max-pooling or average-

pooling) are inserted to down sample the spatial dimensions of 

feature maps, reducing computational load and enhancing 

translation invariance. A flattening layer is employed to convert 

the feature maps into a one-dimensional vector, preparing them 

for fully connected layers.  

TensorFlow Serving is utilized for deploying machine learning 

models, including those created with TensorFlow, for 

production use. It offers high performance, low latency, and the 

ability to handle multiple model versions simultaneously, 

making it suitable for deployment in microservices 

architectures or containerized environments. 

 Fast API, a modern and high-performance web framework for 

building APIs with Python, facilitates the rapid development of 

APIs. It provides automatic interactive documentation, 

validation, serialization, and other features, simplifying API 

development processes. 

VII. BLOCK DIAGRAM 

 

 

 

 

 

 

 

                                  Fig no 3: Block Diagram 

 

VIII. RESULT 

1. Summary of Model 
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2.Number of Epoch are use:  

     By monitoring changes in epoch accuracy and loss 

throughout the training process, practitioners can make 

informed decisions regarding model adjustments, such as 

tuning hyperparameters, applying regularization techniques, or 

modifying the model architecture. Additionally, visualizing 

these changes over epochs allows for a deeper understanding of 

the training dynamics and helps diagnose potential issues such 

as underfitting or overfitting. Overall, analyzing epoch 

accuracy and loss changes provides valuable feedback for 

refining neural network models and improving their 

performance on classification tasks. 

 

 

 

 

 

 

 

 

 

 

3.Visualization using Line graph 

                     Fig no 4: Visualization of Line Graphs 

4. Model Testing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
       Fig no 5: Potato Leaves with Disease detection 

 
 

IX. RELEVANCE TO THE PRESENT 

INDUSTRIAL  

 
     A plant disease detection system using advanced 

technologies like CNN-based models is highly relevant to the 

present industrial scenario and agriculture sector for several 

reasons: 

     Crop Protection and Yield Optimization: Agriculture is a 

critical industry that directly impacts global food security. Plant 

diseases can lead to significant crop losses, which can threaten 

the food supply. An automated disease detection system helps 

protect crops by identifying diseases at an early stage, allowing 

for timely intervention and reducing yield losses. Sustainable 

Agriculture: The agriculture industry is increasingly focused on 

sustainability. Implementing advanced disease detection 

systems reduces the need for excessive use of pesticides and 

fungicides, which can have negative environmental impacts.  

     By targeting treatments more effectively, these systems 

contribute to sustainable farming practices. Precision 

Agriculture: Modern agriculture is moving toward precision 
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farming, which involves using data-driven insights to make 

informed decisions. Automated disease detection aligns with 

this trend by providing farmers with real-time information 

about the health of their crops, enabling precise actions to be 

taken only when necessary. 

Labor Efficiency: Agriculture often faces labor shortages. 

Automated disease detection can reduce the need for manual 

inspections, enabling farmers to allocate their labor more 

efficiently to other essential tasks. Advanced Technology 

Adoption: Many industries, including agriculture, are 

embracing advanced technologies to improve efficiency and 

productivity. The use of CNN based models for disease 

detection represents the integration of cutting-edge technology 

into an age-old industry. 
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XI. CONCLUSION 

In conclusion, the development of a plant disease detection 

system using Convolutional Neural Networks (CNNs) is a 

significant and timely endeavor with the potential to bring 

transformative benefits to the agricultural industry. This 

technology, aligned with the present industrial scenario, offers 

a promising solution to address critical challenges in 

agriculture, enhance crop protection, and promote sustainable 

farming practices. 
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