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Abstract—Device sharing among users is a 
common function- ality in today’s IoT clouds. 
Supporting device sharing are the delegation 
methods proposed by different IoT clouds, which 
we find are heterogeneous and ad-hoc — IoT 
clouds use various data (e.g., device ID, product 
ID, and access token) as authorization certificates. 
In this paper, we report the first systematic 
study on how the authorization-data are managed 
in IoT device shar- ing. Our study brought to light 
the security risks in today’s IoT authorization-data 
management, identifying 6 authorization-data 
leakage flaws. To mitigate such flaws, we propose 
an approach to hide the authorization-data from 
the delegatee (a.k.a., the user authorized to access 
the devices) without disrupting the device sharing 
services. We propose SecHARE, an automated tool 
to patch the vulnerable IoT clouds. We applied 
SecHARE to 3 popular open-source IoT clouds. 
Results have shown the compatibility, effectiveness, 
and efficiency of SecHARE. We have made 
SecHARE publicly available. 

Index Terms—Cyber-physical systems, IoT 
security, authori- zation-data protection. 

 

I.  I NTRODUCTION 

TODAY’S IoT (Internet of Things) cloud platforms are 

providing more and more functionalities to meet the 

users’ various requirements. Device sharing among 

multiple users is one of the most popular functionalities 

supported by the mainstream IoT clouds (e.g., AWS 

IoT [1], Samsung SmartThings [2], 

Philips Hue [3] and MiHome [4]). Device sharing 

allows the owner/admin-user to delegate the access 

right to the device to other users and clouds (which we 

call the delegatee). Prominent 

examples include that the owner of a Philips Hue device 

inviting other Philips users to control her device (by 

issuing a whitelistID for the delegatee user [5]) and the 

owner of a SmartThings smart home authorizing 

Google Home cloud to control her device (by sending 

the device ID of the SmartThings device and an OAuth 

token [6] to Google Home cloud). Serving this purpose 

are the delegation mechanisms proposed by different 

IoT vendors, 

which we found are heterogeneous and ad-hoc. In 

specific,different IoT clouds use different types of data 

(e.g., device ID, product ID, OAuth token) as the 

authorization certificates (which we call the 

authorization-data, see Section III). 

Also, different types of data are with different 

changeability, for example, the device ID (set when the 

device is created) is usually unchangeable, while access 

tokens are usually changeable (e.g., updated by the 

owner). Previous researches have revealed that 

vulnerabilities in these IoT delegation mechanisms 

could expose users to security and safety risks [5]. 

However, little have done to systematically study how 

the authorization-data are managed (e.g., creation, 

distribution, and deletion) in the real-world IoT clouds. 

Risks in poor authorization-data management: 

Permission issues have always been one of the key 

concerns of IoT security, and access control community 

has also been studying delegation 

of authority issues, finding privacy leaks, incomplete 

credential revocation, overprivileged authorization, and 

incorrect policy enforcement [5], [7], [8], [9]. However, 

in today’s IoT cloud 

ecosystem, access control is not only distributed but 

also heterogeneous and ad-hoc, so authorization-data 

protection remains an open problem. Fernandes et al. 

[9] found that the vulnerable event management in 

SmartThings enables the attackers to obtain device 

identifiers to send fake fire alarms. Bin et al. [5] found 

that the insecure cross-cloud IoT delegation could also 

result in the leakage of device information and OAuth 

token, leading to unauthorized access to the victim 

devices. Given the severe consequences of 

authorization-data leakage (e.g., privacy leakage and 

safety threats), it is emerging to understand and mitigate 

this problem. To secure the authorization in IoT, 

Fernandes et al. [10] presented DTAP to prevent an 

untrusted trigger-action platform from misusing 

compromised OAuth tokens, while Andersen 
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et al. [11] presented WAVE, an authorization 

framework supporting decentralized trust and transitive 

fine-grained delegation/revocation. However, these 

approaches require significant 

changes to the existing IoT cloud platforms and 

devices. Real-world adoption and deployment of DTAP 

[10] or WAVE [11] may take a long time, until all 

compatibility and usability issues 

are resolved. A timely solution that is lightweight, 

compatible with existing IoT clouds, and effective at 

securing the authorization-data is needed. Findings and 

impacts: In this paper, we report the first sys- 

tematical study on how the authorization-data are 

managed in today’s IoT device sharing. Specifically, we 

studied 6 popular IoT clouds to investigate the life-

cycle of the device data, 

Especially the authorization-related device data, which 

we call authorization-data for short. 

Our study shows that, in the absence of security 

standards/guidance, today’s IoT clouds usually develop 

their homegrown mechanisms to support device 

sharing, resulting in heterogeneous and ad-hoc 

authorization-data management. In specific, we find 

IoT clouds use various types of data with different 

changeability as authorization-data (see Section III). 

Moreover, our study shows that, due to the lack of 

understanding on the security implications of the 

authorization-data, today’s 

IoT clouds often adopt vulnerable authorization-data 

management mechanisms. We have identified 6 

authorization-data leakage flaws in the evaluated IoT 

clouds (see Section IV). Leveraging these flaws, 

attackers can use the leaked authorization-data to 

emulate the victim devices for device state and event 

forgery attacks (e.g.a fake alarm event), privacy theft 

attacks (e.g., inferring the absence/presence of the 

victim via obtaining the state of the victim’s devices) 

and deny of service (DoS) attacks (e.g., disconnecting a 

sub-device). As shown in Table I, we summarize the 

severe consequences of these attacks as falsified data 

(FD), privacy breach (PB) and deny of service (DoS). 

Moreover, we found the flaws identified could expose a 

large number of IoT users and other IoT clouds, as well 

as organizations, and vendors in various fields, to 

security risks (Section VI-A). We report all flaws to the 

relevant parties and have received 5 CNVDs [12] by the 

time we write this paper. Defense with shadow 

authorization-data: To mitigate such flaws, we propose 

a method that can hide the actual authorization-data 

from the delegatee to avoid leakage with-out 

interrupting the device sharing services. Specifically, 

when delegating access right to the delegatee, we 

generate a new copy of authorization-data (e.g., device 

ID’) that is different from the actual authorization-data 

(e.g., device ID), and record the mapping relationship 

between them (e.g., device ID 

→ device ID’). We call the new copy of authorization-

data the shadow authorization-data. Then, we send the 

shadow authorization-data (device ID’) to the delegatee. 

Upon receiving the delegatee’s request to access the 

delegated device, we transfer the shadow authorization-

data back to the actual authorization-data according to 

the recorded mapping relationship (device ID’ → 

device ID), and then perform authorization check based 

on the actual authorization-data (device ID). 

To revoke the delegatee’s access right, we delete the 

shadow authorization-data and the mapping relationship 

between the shadow and actual authorization-data. Such 

a workflow can avoid leaking the actual authorization-

data to the delegatee users. Moreover, the malicious 

delegatee users will not be able use the shadow 

authorization-data to gain unauthorized access to the 

victim devices after his access right is revoked. In 

addition, the whole process is made transparent to the 

users — the delegator and delegatee users can use the 

device sharing services as usual as they already do in 

today’s IoT systems. Automated patching: Further, we 

design and implement SecHARE, a tool that 

automatically patches the vulnerable IoT clouds. 

Specifically, SecHARE takes as input a configuration 

file that specifies the names of the sensitive methods 

operating the authorization-data (e.g., the assignDevice-

ToCustomer() function in ThingsBoard [13] used to 

share 

a device to a delegatee user), automatically identifies 

such methods and inserts necessary operations into the 

bytecodes for security enhancement (see Section V). 

Moreover, SecHARE implements an automatic 

configuration file generator to reduce the manual efforts 

needed to specify the configuration files (see Section V-

D). We applied SecHARE to 3 popular open-source IoT 

clouds, ThingsBoard [13], Kaa [14] and JetLinks [15]. 

Our evaluation 

shows that SecHARE can effectively mitigate the 

authorization- data leakage flaws with 

negligible/acceptable overheads and can be easily 

deployed into today’s IoT ecosystem. We have made 

SecHARE publicly available [16]. 

Contributions: We summarize our contributions as 

follows: 
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• New understanding: We performed the first 

systematic study on how the authorization-data are 

managed in the IoT clouds, which reveals the security-

critical weaknesses in today’s IoT authorization-data 

management. 

• New findings: We investigated 6 popular IoT clouds 

and identified 6 authorization-data leakage flaws, which 

expose many IoT devices/users to realistic security risks 

with severe consequences. 

• New techniques: We proposed a new method to 

mitigate the flaws in IoT authorization-data 

management, and developed/released support for 

automated securing IoT authorization data. We 

implemented our proposed method and demonstrated its 

usability, efficiency, and compatibility with existing 

IoT cloud systems. The insights and techniques of our 

study can help secure not only today’s but also future 

IoT authorization-data management. 

 

II.   BACKGROUND 

A. IoT Cloud Architecture and Its Device Sharing 

Device control and its automation: A typical IoT 

architecture 

include the IoT devices, the cloud and the user console 

(e.g.,mobile app or web app). To control  

an IoT device, as shown in Fig. 1, the device owner first 

register her device to the cloud, with the device bound 

to her user account. To access the device, the owner 

initiates a request through her user console. Upon 

receiving the request, the cloud performs an 

authorization 

 

 
 

check on the user and send the command to the target 

device if the check passes. Moreover, users can define 

automation rules (a.k.a., trigger-action rules) for 

automated device control — 

when receiving the trigger of the rule, the cloud 

automatically performs the action. For example, a user 

can set an automation rule to work in that if the motion 

sensor detects movement, turn 

on the light. Device types: As shown in Fig. 1, there are 

three types of IoT devices:  

(1) The end device, devices that connect to the IoT 

cloud directly and do not manage sub-devices;  

(2) The gateway device, a gateway device connects to 

the IoT cloud directly and manages/connects to other 

sub-devices;  

(3) The sub-devices, a sub-device is managed by and 

connected to a gateway device. Note that, the sub-

devices usually connect to the gateway device through 

protocols like Zigbee [17], Z-wave [18] and BLE [19], 

while the gateway device acts as an agent for the sub-

devices to 

communicate with the IoT cloud. A sub-device usually 

can be added to and removed from the gateway device 

under the user’s operation. 

IoT messaging protocol: Many IoT messaging protocols 

(e.g., MQTT [20], HTTP [21], CoAP [22], LwM2M 

[23] and AMQP [24]) are used by today’s IoT clouds, 

among which MQTT is the most widely used [25]. 

MQTT adopts a publish– 

subscribe messaging pattern [26]. For two clients to 

communicate with each other, the MQTT server (called 

the MQTT broker) uses topics to define the message 

classes; the message receiver (called the subscriber) 

subscribes to the topics to show its interest 

in these message classes; the message sender (called the 

publisher) publishes messages to specific topic(s); upon 

receiving the published message, the broker identifies 

the corresponding 

topic and transmits the message to all its subscribers. 

To secure  the messaging process, before 

accepting/delivering messages from/to the clients, the 

MQTT broker usually performs authentication and 

authorization check based on the Username, Password 

or topic contained in the messages. Note that, different 

implementations of MQTT broker might customize 

such security checks — performing the checks based on 

other information (e.g., customized tokens) or even 

performing no check at all. Device sharing in IoT 

clouds: Device sharing among multiple users is 

commonly supported by today’s IoT clouds, which 

enables the admin-user/owner of the devices to delegate 

access right to the devices to others. 

• Device sharing within a single IoT cloud: The owner 

can share her devices with other users under the same 

cloud (➀ and ➂ in Fig. 1). For example, IoT clouds 

including HomeKit [27], 

MiHome [4] and SmartThings [2] enables the owner to 

invite other users to join the owner’s smart home 

system and delegate access rights to the devices to the 

invited users.  

• Cross-cloud device sharing: Cross-cloud delegation 

[5] is also commonly seen in today’s IoT clouds for 

owners to share the devices with users from third-party 

clouds (➁ in Fig. 1). 

Cross-cloud device sharing is usually implemented with 

OAuthprotocol — the delegator cloud issues an OAuth 

http://www.ijsrem.com/
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token to the 

delegatee cloud. In real world, the delegator clouds are 

usually the clouds maintained by the device 

manufacturers, such as Philips Hue [3], SmartThings 

[2] and MiHome [4], while the 

delegatee clouds are the third-party cloud services 

providers like Google Home [28] and IFTTT [29]. B. 

Aspect-Oriented Programming 

Aspect-oriented programming (AOP) was proposed by 

Gregor et al. [30], which aims to address the cross-

cutting problem during effective application 

modularization. It can add additional behaviors non-

invasively without changing the original design/code. 

“Weaving” is one of the terms in AOP, which is the 

process of applying the functionality that needs to be 

extended to the target object. “Weaving” can be divided 

into four different types based on the time when the 

behavior is woven into the target class: (1) Compile-

Time Weaving, which weaves the behavior at the 

source code compilation with a special compiler; (2) 

Post-Compile/Binary Weaving which weaves the 

behaviors into the compiled file with a special 

compiler; (3) Load-Time Weaving which uses a special 

class-loader to weave the behavior when the class is 

loaded into the Java virtual machine; 

(4) Run-Time Weaving which weaves the behavior 

during the execution of the program. The two most 

popular frameworks of AOP are AspectJ [31] and 

Spring AOP [32]. AspectJ supports the former three 

weaving types, while Spring AOP supports the latter 

two types. In this paper, we leveraged AspectJ to insert 

security-enhancement behaviors into the vulnerable IoT 

clouds with Load-Time Weaving (see Section V-C).  

III. LIFE -CYCLE OF AUTHORIZATION-DATA 

 

To investigate how the authorization-data is managed in 

today’s IoT device sharing, we studied over 10 

mainstream IoT clouds, including AWS IoT [1], 

Alibaba Cloud IoT [33], 

Google Home [28], Tuya [34], SmartThings [2], IFTTT 

[29], ThingsBoard [35], Kaa [14], [36], JetLinks [37], 

ThingsKit [38] and ThingsPanel [39]. Definition of 

authorization-data: To enable the delegatee user to 

access the delegated devices, the IoT cloud usually 

would send certain data to the delegatee user. Such data 

would then be used for authorization check when the 

delegatee user attempts to access the devices. We call 

the data transmitted to the delegatee during device 

sharing and used for authorization checks during the 

delegatee’s access to the device the authorization-

data.Type of authorization-data: Recall that, in the 

absence of the standard/guidance on how to securely 

share devices, the implementation  

of device sharing by different IoT clouds are 

heterogeneous. Specifically, various types of 

authorization-data are used in today’s IoT clouds, 

including public available information (e.g., app-

version-name), identifiers (e.g., device ID and product 

ID), access tokens, MQTT topics, MQTT passwords 

and HTTP/CoAP URLs. Changeability of 

authorization-data: Further, some types of 

authorization-data (e.g., device ID and product ID) are 

determined by the IoT clouds and are unchangeable by 

the users, while other types of authorization-data are 

changeable under the operations from the authorized 

users (including both the device owner and the 

delegatee users). For example, the “endpoint token” of 

a device under the Kaa Enterprise cloud [36] can be 

changed by users via revoking the old token and 

activating a new one. Life-cycle of authorization-data: 

Moreover, we find that the authorization-data could be 

created, accessed, updated, trans- mitted, deleted or 

deactivated in different phases of the device 

management. We summarize the life-cycle of 

authorization-data as follows. 

• Add device: The life-cycle of authorization-data starts 

with adding the device. Usually, when the owner 

registers/binds a new device, the IoT cloud 

determines/generates the unchangable information for 

the device, which are used as unchangable 

authorization-data by some IoT cloud. For example, the 

device ID and application version is used as 

unchangable authorization- data by SmartThings [2] 

and Kaa Enterprise [36] respectively. 

• Share device: When the owner shares a device to the 

delegatee user, the IoT clouds may generate new 

authorization-data (e.g., issuing a new access token) or 

reuse the ex- isting data (e.g., device ID) as 

authorization-data. Then, the IoT clouds would transmit 

the authorization-data to the delegatee.  

• Unshare device: After the owner revokes the access 

right from the delegatee user, the authorization-data 

would be removed from the delegatee user’s system 

(e.g., her mobile app).Moreover, the IoT clouds could 

deactivate/update some of the changeable authorization-

data, such as the OAuth token. 

• Query device information: An authorized user could 

query the cloud for the device information. The 
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responses to such queries might contain authorization-

data. For example, the ThingsBoard [35] transmits the 

authorization-data of access token to the querying user.  

• Update device data: The authorized users are usually 

allowed to update the device data, including both the 

basic device data (e.g., device name) and the 

changeable authorization-data (e.g., access token). 

• Access device: When a user attempts to access a 

device, the user usually sends to the cloud an access 

request that carries authorization-data, which is 

accessed and verified by the cloud for authorization 

check. used for authorization check when the delegatee 

user attempts to access the devices. We call the data 

transmitted to the delegatee during device sharing and 

used for authorization checks during the delegatee’s 

access to the device the authorization-data. Type of 

authorization-data: Recall that, in the absence of the 

standard/guidance on how to securely share devices, the 

implementation of device sharing by different IoT 

clouds are heterogeneous. Specifically, various types of 

authorization-data are used in today’s IoT  

clouds, including public available information (e.g., 

app-version-name), identifiers (e.g., device ID and 

product ID), access tokens, MQTT topics, MQTT 

passwords and HTTP/CoAP URLs. 

Changeability of authorization-data: Further, some 

types of authorization-data (e.g., device ID and product 

ID) are determined by the IoT clouds and are 

unchangeable by the users, while other types of 

authorization-data are changeable under the operations 

from the authorized users (including both the device 

owner and the delegatee users). For example, the 

“endpoint token” of a device under the Kaa Enterprise 

cloud [36] can be changed by users via revoking the old 

token and activating a new one. Life-cycle of 

authorization-data: Moreover, we find that the 

authorization-data could be created, accessed, updated, 

transmitted, deleted or deactivated in different phases of 

the device management. We summarize the life-cycle 

of authorization-data as follows. 

• Add device: The life-cycle of authorization-data starts 

with adding the device. Usually, when the owner 

registers/binds a new device, the IoT cloud 

determines/generates the unchangable information for 

the device, which are used as unchangable 

authorization-data by some IoT cloud. For example, the 

device  ID and application version is used as 

unchangable authorization-data by SmartThings [2] and 

Kaa Enterprise [36] respectively.  

• Share device: When the owner shares a device to the 

delegatee user, the IoT clouds may generate new 

authorization-data (e.g., issuing a new access token) or 

reuse the existing data (e.g., device ID) as 

authorization-data. Then, the IoT clouds would transmit 

the authorization-data to the delegatee.  

• Unshare device: After the owner revokes the access 

right from the delegatee user, the authorization-data 

would be removed from the delegatee user’s system 

(e.g., her mobile app).Moreover, the IoT clouds could 

deactivate/update some of the changeable authorization-

data, such as the OAuth token. 

• Query device information: An authorized user could 

query the cloud for the device information. The 

responses to such queries might contain authorization-

data. For example, the ThingsBoard [35] transmits the 

authorization-data of access token to the querying user. 

• Update device data: The authorized users are usually 

allowed to update the device data, including both the 

basic device data (e.g., device name) and the 

changeable authorization-data (e.g., access token). 

• Access device: When a user attempts to access a 

device, the user usually sends to the cloud an access 

request that carries authorization-data, which is 

accessed and verified by the cloud for authorization 

check. 
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Flaw 1. MQTT topic leakage: Kaa Enterprise [36] is an 

IoT cloud platform that supports device  

sharing among users and supports multiple messaging 

protocols including MQTT, CoAP and HTTP. When a 

device connects to the Kaa Enterprise cloud using 

MQTT protocol, the MQTT topic is used as 

authorization-data. That is, Kaa Enterprise authorizes 

the device based on the topic contained in the messages 

(see Section II-A) — only the devices that could 

provide valid topics are allowed to publish messages to 

the Kaa Enterprise cloud. To construct a valid topic, 

Kaa Enterprise requires the owner to set the “endpoint 

token” (a string) for the device when adding the device. 

The endpoint token is regarded as a secrecy that can 

only be accessed/updated by authorized users 

(including the owner and the delegatee user). With the 

endpoint token, Kaa Enterprise constructs the topic for 

the device by adding other publicly available 

information (e.g., the application version) to the 

endpoint token. Hence, a typical MQTT topic in Kaa 

Enterprise could be 

kp1/{application_version}/dcx/{endpoint_token}/json. 

However, we found the the authorization-data of Kaa 

Enterprise cloud (e.g., the MQTT topic) can be obtained 

by the delegatee user. Recall that, the delegatee user is 

allowed to update the endpoint token of the delegated 

device. Therefore, the delegatee user can gain a valid 

endpoint token by updating it. Using the updated valid 

token and other public information, the delegatee user 

can obtain a valid copy of MQTT topic. Note that, 

updates to endpoint tokens are automatically handled 

and synced by the cloud and do NOT notify the device 

owner or affect the owner’s use of the device. 

Moreover, the delegatee user’s updates to the endpoint 

tokens remain valid even afterhis access right is 

revoked, resulting in that, the MQTT topic leaked to the 

delegatee remain valid and unchanged after the 

revocation. Therefore, a malicious delegatee user could 

leverage the leaked MQTT topic to send/receive 

unauthorized messages to/from the Kaa Enterprise 

cloud after his access right is revoked. PoC exploit on 

Flaw 1: To exploit Flaw 1, we used our test account and 

a MQTT-enabled smart lock (a virtual device) to 

implement an end-to-end PoC attack. Specifically, as 

shown in Fig. 2, the owner first set the endpoint token 

of the smart lock on the Kaa Enterprise cloud platform 

for the victim smart lock to communicate with the 

cloud. Then, the owner shared the smart lock with the 

attacker. The attacker then updated the smart lock’s 

endpoint token and obtained a valid MQTT topic. After 

that, we let the owner revoked the attacker’s access 

right. Then, we wrote a program using Python (publicly 

available at [16]) to pretend to be the victim smart lock 

to communicate with the Kaa Enterprise cloud. As 

shown in Table I, we were able to send forged messages 

(FD) and receive unauthorized messages (PB) to/from 

the cloud. Flaw 2. MQTT username leakage: In 

addition to the MQTT topic leakage (see Flaw 1), we 

found that the MQTT username is also used as 

authorization-data and could be leaked to the attackers 

in ThingsBoard [35] and ThingsKit [38]. ThingsBoard 

is a popular open-source IoT platforms that supports 

MQTT, HTTP, CoAP and LwM2M. When a MQTT- 

enabled device communicates with the ThingsBoard 

cloud, the device is required to provide a valid MQTT 

username, which is used for MQTT’s 

authentication/authorization check (see Section II-A). 

Therefore, a valid and unique MQTT username will be 

assigned to the device when the owner adds the device 

to ThingsBoard. Specifically, during the device adding, 

the owner or the cloud would set an “access token” for 

the new device. The access token then is used as the 

MQTT username for the device to communicate with 

the ThingsBoard cloud. The problem we identified here 

is that the access token is accessible to the delegatee 

user — when the delegatee user queries the 

ThingsBoard cloud for the information about adevice 

delegated to him, ThingsBoard would send information 

that contains the device’s access token to the delegatee 

user. Moreover, the access token does NOT change or 

become invalid after the owner revokes the access right 

from the delegatee user. Consequently, a delegatee user 

with malicious intentions could obtain the MQTT 

username (a.k.a., the access token) when he is 

authorized and reuse the leaked MQTT username to 

stealthily communicate with the cloud after he loses 

access right to the device.PoC exploit on Flaw 2: We 

conducted a PoC attack to ex- ploit the Flaw 2 in 

ThingsBoard. In specific, we configured a virtual 

gateway device connected to other sub-devices in the 

ThingsBoard cloud (Fig. 3). We then temporarily 

shared the gateway device to the attacker. At this point, 

the attacker can obtain the access token from the 

ThingsBoard cloud to form the authorization-data (e.g., 

MQTT username). After we revoked the attacker’s 
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permission, we tried to use our attacking programs 

([16]) to communicate with the ThingsBoard cloud. We 

found that, with the leaked MQTT username, we were 

able to send forged messages and receive messages 

to/from the ThingsBoard cloud. In addition, we were 

able to publish messages to the v1/gateway/disconnect 

topic to disconnect the sub-devices under the victim 

gateway from the cloud (DoS in Table I). Note that, We 

found the exact same problem discussed above in the 

ThingsKit [38] platform. An attacker can leverage Flaw 

2 to send falsified data and receive private information 

of the victim to/from the ThingsKit cloud (see Table I). 

Flaw 3. MQTT password leakage: JetLinks [37] is  

another open-source IoT cloud platform that supports 

MQTT protocol and uses the MQTT password as 

authorization-data [45] for devices to communicate 

with the cloud. Specifically, when adding a new device, 

the owner needs to set a “secureKey” and a “secureId” 

for the device. To communicate with the cloud, the 

device sends MQTT packages with the MQTT 

password set to 

md5(secureID+“|”+timestamp+“|”+secureKey) and 

another field filled with the timestamp in plaintext. 

Upon receiving such a package from the device, 

JetLinks checks the correctness and freshness of the 

MQTT password using the timestamp received and its 

own copy of secureId and secureKey. Only the devices 

that pass such checks are allowed to communicate with 

the cloud. The problem in JetLinks cloud is similar to 

that in ThingsBoard (Flaw 2). The authorization-data 

(e.g., the secureId and secureKey) is obtainable to the 

delegatee user and does NOT change after the owner 

revokes the delegatee user’s access rights. Therefore, a 

malicious delegatee user can use the leaked 

authorization-data to communicate with the cloud even 

after his access right is revoked. PoC exploit on Flaw 3: 

Exploiting Flaw 3 is also similar to the exploitation of 

Flaw 2, as shown in Fig. 4. The key challenge was for 

the attacker to obtain the secureId and secureKey. This 

was done by capturing the traffic between the attacker’s 

user console (the web-based application provide by 

JetLinks) and the JetLinks cloud. In our PoC attack, the 

attacker successfully extracted the secureId and 

secureKey from the packets/traffic sent from the 

JetLinks cloud to the user console. Then, with our PoC 

attacking programs [16], the attacker was able to 

conduct all the three attacks (e.g., FD, PB, and DoS in 

Table I). 

 
 

 
 

Flaw 4. URL leakage: Recall that, ThingsBoard 

supports HTTP for the devices to communicate with the 

cloud. We identified the problem of URL leakage in the 

HTTP messaging of the ThingsBoard. Specifically, in 

ThingsBoard’s HTTP messaging, the URL (e.g., 

http(s):// host:port/ api/ v1/ access_token/telemetry) is 

used as the device’s authorization-data and is unique for 

each device. Anyone who knows the URL can 

communicate with the cloud on behalf of (or pretend to 

be) the device. The problem here is that the URL could 

also be leaked to the 

attacker, who then could use the URL to communicate 

with the ThingsBoard cloud maliciously.To make 

matters worse, even an attacker who has never been 

authorized to access the device before can obtain the 

URL and 

conduct the attacks (see Table I). For example,the 

attacker could monitor all the traffic in the victim’s 

home WiFi network to extract the URL. PoC exploit on 

Flaw 4: The PoC exploitation of Flaw 4 is rather 

straightforward. As outlined in Fig. 5, we let the victim 

owner shared the virtual smart bulb to the attacker. The 

attacker was able to extract the URL from the traffic 

between his user console and the ThingsBoard cloud. 

After the owner revokes 

the attacker’s access right, we found the attacker was 

http://www.ijsrem.com/
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able to communicate with the ThingsBoard cloud using 

our PoC attack programs [16]. Note that, we found the 

same problem (Flaw 4) in the Kaa Enterprise platform 

(see Fig. 5), which also supports HTTP messaging. We 

omit the detailed discussion for simplicity.Flaw 5. 

Device identifier leakage: We found that the device 

identifier is used as authorization-data in JetLinks’s 

HTTP messaging and ThingsPanel’s MQTT messaging, 

both of which are vulnerable. 

 

 
 

In JetLinks’s HTTP messaging, JetLinks exposes a 

public URL (http://server-address/report-property) for 

the devices to communicate with the cloud (Fig. 6). To 

authenticate and authorize a device, JetLinks requires 

the device to provide a valid device ID (which is 

created when the device is added to the 

cloud and is unchangeable) in the packets sent to the 

URL.However, such an unchangeable authorization-

data (e.g., device ID) is accessible to the delegatee users 

(by querying the device 

data from the cloud), which leads to the FD and PB 

attacks in JetLinks as shown in Table I. 

 

 
 

Moreover, in ThingsPanel’s MQTT messaging, 

ThingsPanel uses the same MQTT topic for all the 

devices and requires each device to provide its unique 

identifier (e.g., the token set by the owner when adding 

the device) for authorization check. However, as shown 

in Fig. 6, when a device is shared to the delegatee user, 

the delegatee user can obtain the device’s token in 

message push log of the device. Such data leakage 

could lead to the FD and PB attacks in ThingsPanel as 

shown in Table I. PoC exploit on Flaw 5: We 

confirmed Flaw 5 in both JetLinks 

and ThingsPanel with our PoC attacking programs [16]. 

Flaw 6. SDK token leakage: Kaa open-source [14] is a 

open-source IoT cloud platform that supports flexible 

device definition 

and creation. Specifically, Kaa open-source provides 

the owners an endpoint SDK (a library that exposes 

many useful APIs for the device to use) for them to 

create devices with various 

functionalities. Each time a device is created, the cloud 

would generate a unique token (which we call the SDK 

token) for the device and store the SDK token into the 

device’s own copy of SDK. The SDK token is then 

used for the cloud to perform authorization check when 

a device attempts to communicate with the cloud (Fig. 

7). Moreover, when the owner authorizes a delegatee 

user to access a device, the delegatee user is allowed to 

download the SDK of the delegated device. As a 

result,the delegatee user can further obtain the device’s 

SDK token from the downloaded SDK. Besides, the 

SDK token does NOT change when the owner revokes 

the delegatee user’s access right. Therefore, a malicious 

delegatee user can leverage this flaw to stealthily 

communicate with the cloud, resulting in FD and PB 

attacks (see Table I). PoC exploit on Flaw 6: In our PoC 

attack, as outlined in Fig. 7, the owner used the Kaa 

open-source SDK to create a virtual smart lock (whose 

SDK token is set as 2wXVH- 

wXD6TR_cAdr5RoWal6K0Q by the cloud). Then, the 

owner delegated the smart lock to the attacker. The 

attacker downloaded the smart lock’s SDK and wrote 

an attacking program [16] that used the SDK along with 

the SDK token in it to connect to the cloud. We found 

that the attacking program can still successfully 

communicate with the Kaa open-source cloud after the 

attacker’s permission was revoked. 

 

 
 

http://www.ijsrem.com/
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Responsible disclosure: We report all flaws to relevant 

parties, who all acknowledged the seriousness of the 

problems. We have received 6 CNVDs [12] (see Table 

II). Ethical consideration: The PoC attacks are 

conducted using our own accounts/devices in our 

testing environment, without disrupting the real-world 

IoT services or users.  

 

V.  SYSTEM DESIGN AND  

IMPLEMENTATION 

 

In this section, we elaborate on the design and 

implementation of SecHARE, an automated tool to 

patch the vulnerable IoT clouds for authorization-data 

protection, which can be easily applied to today’s IoT 

clouds. We have made SecHARE publicly available 

[16].  

A. Overview  

At a high level, the IoT clouds should ensure that the 

authorization-data transmitted in device sharing will not 

be leaked to attackers, preventing the unauthorized 

access to the devices from the attackers. To fix the 

authorization-data leakage flaws (discussed in Section 

IV), we propose a usability preserving protection 

method that replaces the actual authorization-data with 

the shadow authorization-data and transmits the shadow 

authorization-data to the delegatee user without 

interrupting the device sharing services — the owner 

and the delegatee users can use the IoT services as 

normal as they already do in today’s IoT systems. The 

security enhancement is achieved by hiding the actual 

authorization-data from the delegatee users. In specific, 

as illustrated in Fig. 8(a), without our protection, the 

actual authorization-data (e.g., IDs) is transmitted to the 

delegatee user during device sharing, which could lead 

to the problems discussed in Section IV. In contrast, 

SecHARE works as a proxy during authorization-data 

transmission: 1) when the cloud sends authorization-

data (e.g, ID) to the delegatee user, SecHARE generates 

a shadow copy of the authorization-data (e.g., ID’) and 

send it to the user; 2) when a message from the user 

arrives 

at the cloud, SecHARE converts the shadow 

authorization-data to the actual authorization-data and 

the inner process logic of the cloud uses the actual 

authorization-data for further processing. Notably, the 

shadow authorization-data is generated using the same 

format of that of the actual authorization-data (e.g., a 

20-bit string). As a result, impacts on the normal 

functionalities introduced by SecHARE can be 

minimized. To this end, we developed SecHARE to 

automatically patch the vulnerable codes of the IoT 

clouds. 

 
Architecture: Since different IoT clouds use different 

types of authorization-data and define different 

methods/functions to create, access, update, transmit, 

delete and deactivate the uthorization-data. We need a 

method to automatically identify the methods/functions 

that operate the authorization-data and patch these 

methods/functions to fix possible authorization-data 

leakage in a way that does not impact the usage of IoT 

services. To this end, as shown in Fig. 9, we built 

SecHARE, which is 

composed of 5 components: a Configuration Operator 

(CO), a Database Operator (DO), a Patch Generator 

(PG), a Dynamic AspectJ Agent (DAA), and a 

Configuration Automatic Generator (CAG). Essentially, 

SecHARE generates patches for the vulnerable cloud 

with the predefined Security Enhancement Code 

Templates (SECT) based on our usability preserving 

defense (see Section V-B) and leverages the AspectJ 

[31] (an AOP framework, see Section II-B) framework 

to insert these patches into the IoT cloud when the 

classes are loaded into the Java virtual machine. 

Specifically, to apply SecHARE to patch an IoT cloud, 

we need to deploy and execute SecHARE along with 

the IoT cloud. Then, as shown in Fig. 10, CO takes as 

input the configuration file (which specifies the 

methods/functions operating the authorization-data) to 

generate the Aop.xml file for the DAA to use1 . CO 

also outputs information (e.g., the specified 

authorization-data to protect and the names of methods 

http://www.ijsrem.com/
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need to be patched) to the PG. Along with the database 

operation APIs provided by DO, the PG then generates 

the patch codes. Taking as input the Aop.xml and the 

patch codes generated by PG, the DAA leverage the 

AspectJ framework to compile the patching codes and 

weave the additional/security-enhancement behaviors 

(defined by the patch codes) into the IoT cloud’s 

original vulnerable classes at loading time, allowing the 

IoT cloud to use Security Enhanced Classes to 

manage/operate the authorization-data. 

 

 
 

B. Usability Preserving Defense  

 

IoT device sharing is vital to today’s IoT cloud. Almost 

all IoT clouds support such functionality, for users 

widely require it (e.g., sharing devices to family 

members, Airbnb guests, babysitter, etc.). Therefore, 

the key to authorization-data leakage solution is how to 

avoid disrupting the normal IoT device sharing 

service. Our solution is to provide a usability preserving 

defense that is made transparent to the users — they can 

use the device sharing services as normal as they 

already do. Specifically, our proposed defense 

leverages a simple yet effective data mapping scheme 

to prevent authorization-data leakage. In specific, after 

the owner shares her device to a delegatee user, the IoT 

cloud needs to transmit the authorization-data to the 

delegatee user. Instead of transmitting the 

authorization-data directly to the delegatee user (as 

today’s IoT clouds do), we generate a shadow copy of 

authorization-data, record the mapping relationship 

between the actual authorization-data and the shadow 

authorization-data and then transmit the shadow 

authorization-data to the delegatee user. The delegatee 

user then uses the shadow authorization-data to access 

the delegated device. Upon receiving the access request 

from the delegatee user, the cloud extracts the shadow 

authorization-data from the request, transfers the 

shadow authorization-data to the actual authorization-

data based on the mapping records stored by the cloud, 

and uses the actual authorization-data for authorization 

check. When the owner revokes the delegatee user’s 

access right, the cloud delete the shadow authorization-

data and its corresponding mapping record. Hence, even 

if the shadow authorization-data is leaked to and 

preserved by the malicious delegatee users, he will not 

be able to leverage the shadow authorization-data to 

gain unauthorized access to the device. Note that, all the 

operations (e.g., data-mapping, data-storage and data-

deletion) are performed automatically by the backend 

cloud, which are transparent to the users. Therefore, we 

could fix 

the authorization-data leakage problems in today’s IoT 

clouds while preserving their usability. Example: 

Taking Flaw 2 (Section IV) as an example, Fig. 11 

illustrates how our defense operates the authorization-

data and shadow authorization-data. Recall that, 

ThingsBoard uses the MQTT Username as 

authorization-data in its MQTT messaging. Therefore, 

to share the device to the delegatee user, ThingsBoard 

generate the shadow authorization-data (MQTT 

Username’) for the actual authorization-data (MQTT 

User-name). Then, the MQTT Username’ is transmitted 

to the delegatee user, instead of MQTT Username. 

When the delegatee user is authorized, he can use 

MQTT Username’ to access the device normally. After 

the delegatee user’s permission is revoked, 

ThingsBoard removes the MQTT Username’. As a 

result, the delegatee user can no longer access the 

device, even if he preserved the MQTT Username’ 

when he was authorized. 

Discussion: Recall that, today’s IoT clouds use both 

changeable and unchangeable authorization-data. When 

the changeable authorization-data is leaked to the 

attacker, the owner might help to mitigate the problem 

by changing/updating the authorization-data each time 

he revokes access right from a delegatee user. However, 

this approach relying on users to ensure the security 

may not be ideal. First, real world owners might not be 

aware of the problem or forget to update the 

authorization-data. Second, the device might be shared 

to multiple delegatee users. Updating the authorization-

data when revoking one of the delegatee users might 

cause the other delegatee users cannot access the 

device,either. If the unchangeable authorization-data is 

leaked to the attacker, the owner has little to do to ease 

the problem since she cannot update the authorization-

data. 

http://www.ijsrem.com/
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C. Automated Patching 

 

How to adapt to different IoT clouds’ implementations 

of device sharing and keep the performance overhead to 

minimal are vital to automated patching.Adaptability 

and scalability: The implementations of device sharing 

in today’s IoT clouds are heterogeneous — defining 

multiple methods/functions to operate the various types 

of authorization-data. Hence, it is particularly important 

for the patch scheme to adapt to most (if not all) of the 

IoT clouds and even scale to new IoT clouds. For better 

adaptability and scalability, we consider the follow 

aspects. 

• Configuration guided patching: Based on our 

understanding on the lifecycle of authorization-data 

(see Section III), we cannot generate a single unified 

patch for all of the clouds. Instead, we leverage a 

configuration that specifies the 

methods/functions operating authorization-data defined 

in a specific IoT cloud to generate the unique patch for 

the cloud. Note that, our patch scheme is general and 

scalable. To patch another 

IoT cloud, we simply ask for a new configuration file 

and patch the cloud accordingly. We further developed 

CAG to reduce the manual efforts for specifying the 

configuration file (see Section V-D). 

• Minimal changes to the system. It is also essential to 

ensure easy deployment and minimal changes to 

existing systems. To this end, we adopt the AOP (see 

Section II-B) technique to only weave security-

enhancement behaviors into the original system without 

breaking the overall workflow/logic design. Moreover, 

the weaving is done automatically by our tool at the 

loading time of the classes, requiring minimal (or no) 

manual intervention from the IoT cloud 

manager/developer. • Supporting SQL/NoSQL 

database: Our scheme stores the mapping relationships 

between the authorization-data and 

shadow authorization-data in the database. Also, such 

data are stored in concordance with the data managed 

within the cloud platform, and are inaccessible to users. 

Consider the usage of different types of databases, we 

develop DO to provide universal APIs for database 

access and implement DO to support both SQL and 

NoSQL databases. Minimal performance overhead: 

Low end-to-end latency is important in IoT device 

control. To minimize the latency overhead, we only 

introduce additional computation to the cloud-side 

while the client-side (the device and user console) 

remains unchanged. Since the clouds are usually with 

strong computing capabilities, the overhead should be 

negligible (see Section VI-B).  

 
 

D. Automatic Generation of Configuration 

Files 

 

Essentially, the configuration file specifies the 

implementation details of device sharing, including 

which data/variables are used as authorization-data and 

which meth- ods/functions operate the authorization-

data. We expect the users of SecHARE (e.g., a 

developer/manager of the IoT cloud) to provide the 

configuration file, for they would already 

know the implementation details. Nevertheless, we 

develop CAG to help the users to specify the 

configuration file, reducing the manual efforts needed 

to use our tool. CAG mainly focuses on automatically 

identify the names of methods/functions that operate the 

authorization-data. Note that, it is possible for CAG to 

identify a non-related method/function 

as method/function that operates the authorization-data. 

Hence, we let CAG list all the methods/functions it 

identified and let the 

user to delete or add methods/functions from/to the list. 

Specifically, we investigated 50 IoT cloud projects on 

Github to learn the naming pattern/habit of the IoT 

programming. We found that the methods/functions 

defined in the 8 different phases of the authorization-

data’s lifecycle (see Section III) can be divided into two 

categories: (1) The methods/functions that 

have a common naming pattern, including Add device, 

Delete device, Delete user, Share device and Unshare 

device; (2) The methods/functions that do not have a 

common naming pattern, including Query device 

information, Update device data, and Access device.For 

the methods/functions in the former category, CAG can 

quickly identify them based on the common key 

http://www.ijsrem.com/
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words/affixes used in them (as listed in Table III) via 

simple string matching. For the methods/functions in 

the latter category, we conduct static source code 

analyses to obtain the information of each 

method/function to determine whether its parameters or 

return values contains authorization-data. Notably, 

Natural language processing (NLP) can help to identify 

the method/function names, which is discussed in 

Section VII. Moreover, we build an 

AST model for the source code to obtain the calling 

relationship of the methods/functions. With the calling 

relationship, we could remove (some of) the caller 

methods/functions from the 

configuration file, since we only need to insert/weave 

the  callee method/function for authorization-data 

protection.  

 

E. Implementation of SecHARE 

 

We present the implementation of SecHARE as follows 

with its source codes released online [16]. The 

configuration and CAG. As aforementioned, the 

configuration (provided by the user of SecHARE) 

specifies the names of the variables/methods/functions 

related to the 

authorization-data. To help automatically generate the 

configuration file, CAG uses the QDox [46] to extract 

the definitions of the classes/interfaces/methods from 

the source code and uses Spoon [47] to build the AST 

model. Note that, the configuration also specifies the 

information needed to connect/access the database (e.g., 

the name of the database, the username and the 

password needed to connect the database), which is 

used to store the relationship between the authorization-

data and shadow authorization-data. The CO: Taking 

the configuration file as input, CO generates the 

Aop.xml file in the format required by AspectJ [48]. 

The Aop.xml file would then be input to the DAA. 

Also, fromthe configuration file, CO extracts the names 

of relative variables and methods/functions and sends 

them to the PG. At 

last, CO sends the database-related parameters (e.g., 

database username, password, etc.) to DO. 

The DO: DO provides generalized database operation 

APIs, supporting both SQL and NoSQL databases. 

Currently, DO supports most SQL databases (a.k.a., 

Relational Database Man- 

agement Systems) and the popular NoSQL database 

MongoDB [49]. The PG: Based on our defense (see 

Section V-B), we create the SECT to include all the 

possible behaviors needed 

to insert/weave into the vulnerable IoT clouds. 

Specifically, we define code templates for data 

transferring, database read, database write and database 

deletion. Then, PG locates the vulnerable 

methods/functions in the original classes based on the 

input from CO, and automatically generates the 

patching codes using the templates in the SECT and the 

APIs pro- 

vided by DO. Example-1 illustrates how PG patches the 

share Deivce() method. Specifically, shareDeivce() 

calls the getDevice() to obtain the authorization-data 

(e.g., device ID) and transmit the authorization-data to 

the delegatee user with thesendToDelegateeUser() 

method. PG patches such a progress in that: (1) adding 

line 10 to randomly generate the shadow authorization-

data to ensure data uniqueness (in specific, we 

used the RandomStringUtils.randomAlphanumeric() 

API [50] to generate the data); (2) adding line 11 to 

store the mapping relationship of the authorization-data, 

shadow authorization-data 

and user’s identity; (3) replacing line 13 with line 12 to 

return the shadow authorization-data (instead of 

authorization-data). Note that, we maintain the data 

mapping at the user-level. 

Since a single user typically possesses a limited number 

of devices, collisions between device mappings are 

expected to be infrequent. The DAA: The DAA is an 

AspectJ agent [51] that can be loaded into the running 

Java virtual machine. It takes inputs as the Aop.xml and 

the patching codes from PG to weave the patches into 

the original vulnerable classes when the Class Loader 

of the Java virtual machine loads the class files, 

forming  the Security Enhanced Classes. 

 

 VI.  EVALUATION 

 

In this section, we discuss the impacts of authorization-

data leakage flaws and evaluate the performance of 

SecHARE. 

 
A. The Impacts of Authorization-Data 

Leakage 

 

Prevalence of vulnerable authorization-data 

management: Bin et al. [5] identified several 

authorization-data leakage flaws   in cross-cloud 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 05 | May - 2025                            SJIF Rating: 8.586                                       ISSN: 2582-3930                                                                                                                                               

  

© 2025, IJSREM      | www.ijsrem.com                                                                                                                         |        Page 13 
 

delegation, while we focused on the security issues of 

authorization-data management within a single IoT 

cloud. As shown in Table I, we identified 6 new flaws 

with 3 of them (Flaw 2, Flaw 4 and Flaw 5) affecting 

more than one IoT cloud, which shows the prevalence 

of the authorization-data leakage problem. Scope of the 

impact: The 4 open-source IoT clouds we 

analyzed (i.e., ThingsBoard [13], JetLinks [15], Kaa 

open-source [14] and ThingsPanel [52]) are among the 

most popular IoT projects in the open-source 

community, with over 17 K stars 

on GitHub in total. The other 2 commercial IoT cloud 

platforms (i.e., Kaa Enterprise [36] and ThingsKit [38]) 

serve many enterprises (including Lenovo, Alibaba 

cloud and NET4.IO [36], [38]) and customers, and 

connect millions of devices in various field (e.g., smart 

energy, smart agriculture, smart home, and industrial 

Internet of Things [53], [54]). Therefore, security 

loopholes in these IoT clouds can bring huge damage to 

the real world IoT applications. 

 

B. Performance Evaluation 

 

Selecting IoT clouds for flaw identification: Since we 

focused on the security issues in the IoT device sharing 

within a single cloud, we only studied the clouds that 

support such functionality and enforce access control 

mechanisms. Also, we prioritized the general IoT 

clouds — the clouds can be applied to multiple IoT 

scenarios (e.g., smart home, smart city, smart energy, 

etc.). At last, we prioritized the clouds with better 

popularity — more GitHub stars for the open-source 

clouds and more customers for the commercial clouds. 

Selecting IoT platforms for defense evaluation: 

SecHARE fixes the flaws by patching the source codes 

of the clouds. Hence,we only evaluated SecHARE upon 

the open-source clouds. Fur- 

ther, multiple programming languages (e.g., Java, Go, 

C++, C, etc.) are used to implement the open-source 

IoT clouds. 

 
However, according to the Eclipse Foundation IoT 

survey [55], Java is the top choice with a popularity of 

66.5%. Therefore, we applied SecHARE to the three 

open-source IoT clouds written in Java (e.g, 

ThingsBoard, JetLinks, and Kaa open-source). 

Efficiency: To evaluate the efficiency of SecHARE, we 

deployed 3 popular open-source IoT platforms (i.e., 

ThingsBoard, 

Kaa open-source, and JetLinks) in our test server (with 

Intel Core i7-9700 cpu, 16 GB memory). With each 

cloud, we carried out multiple operations (including 

system startup, device creation, device connection, and 

device control) before and after it is patched by 

SecHARE (experimental programs and data are 

publicly available at [16]). We repeated the system 

startup operation for 20 times and measured the time. 

As shown in Fig. 12(a), the overhead on startup time 

introduced by SecHARE is 400 ms 

averagely. For the device creation, device connection 

and device control operations, we repeated the 

experiments for 2000 times. As shown in Fig. 12(b), (c) 

and (d), the average overheads are 10.39 ms, 3.17 ms 

and 14.25 ms respectively. We believe such overheads 

is negligible. Performance overheads: In order to assess 

the impact of deploying SecHARE on a real-world 

cloud platform, we also conducted a series of 

performance evaluations on our test server. 

Specifically, we measured the CPU and run-time 

memory usage for 1000 device creation and data 

querying operations on the ThingsBoard both before 

and after deploying SecHARE, respectively. We 

observed an increase of only 0.14% in CPU usage and 

0.16% in memory usage, indicating that the 

performance overheads introduced by SecHARE is 

negligible. 

 

C. Security Benefit 

 

As discussed in Section IV, the attacker can leverage 

the leaked authorization-data to communicate with the 

cloud even after his access right is revoked. We 

evaluated whether the attacker can achieve that in the 

cloud that has been patched by SecHARE. Specifically, 

we set up 3 different devices: the temperature sensor, 

the smart window, and the gateway device. Each device 

was assigned a specific operation, such as uploading 

device data/events, receiving remote control commands, 

and managing gateway sub-devices. As depicted in 

Table IV, we ensured that the authorized user did not 

have access to the actual authorization-data, which 

remained undisclosed to them within the SecHARE-

patched cloud. Next, we assessed the scenario in which 

a malicious user (e.g., an attacker), possessing retained 

authorization-data (access token), attempts to exploit 

vulnerabilities in an unpatched cloud platform, as 

illustrated in Table V. Through our evaluation, we 
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observed that the attacker could engage in data forgery 

attacks by uploading device data, privacy leakage 

attacks by receiving remote control commands, and 

denial-of-service attacks by disconnecting/logging out 

the gateway device, thereby disrupting the service of 

sub-devices. 

However, when these operations were attempted within 

the SecHARE-patched cloud platform, the system 

effectively denied all unauthorized access attempts, 

preventing harm caused by the leakage of authorization-

data. This indicates that our proposed defense can 

effectively mitigate the flaws. 

 

 
 VII.  DISCUSSION AND FUTURE WORK 

 

Manual efforts to secure an IoT cloud: As discussed in 

Section V-C, SecHARE requires the user to provide a 

configuration file. Specifying the configuration file 

requires manual efforts. Although we developed CAG 

to reduce such manual efforts, certain efforts are still 

needed when CAG is not able to determine the exact 

methods/functions. Towards fully automated analyses: 

To further improve the automation of SecHARE, NLP 

techniques can be used to automatically locate/identify 

the method/function names in the source code. By 

parsing functions and extracting features from the 

source code, NLP can make SecHARE more accurate 

and efficient. Therefore, in future work, we aim to 

explore the feasibility and effectiveness of integrating 

NLP techniques into SecHARE to improve its 

automation and accuracy. Protection of cross-cloud 

device sharing: Although we only applied SecHARE to 

secure the device sharing within a single IoT cloud, our 

general defense can also help to secure the cross- cloud 

device sharing. For example, Bin et al. [5] found that 

the deviceID of the SmartThings device (which is 

treated as a credential in SmartThings) could be leaked 

to a malicious delegatee user in the Google Home. 

Leveraging the leaked deviceID, the malicious user can 

control the victim’s SmartThings devices that he is not 

entitled to access. This problem can be also fixed with 

our data mapping scheme. When the SmartThings 

transmits the 

deviceID to the Google Home, the SmartThings could 

generate a new deviceID (denoted as deviceID’) and 

send the deviceID’ to Google Home. Upon receiving a 

request from Google Home carrying deviceID’, the 

SmartThings can transfer the deviceID’ to deviceID, 

and perform authorization check based on deviceID. 

When revoking the access right of Google Home, 

SmartThings can delete the deviceID’, thus to fix the 

problem without disrupting the normal IoT service. 

Note that, SmartThings should NOT 

delete deviceID, since it is also used by other 

users/applications in the SmartThings. Also, 

SmartThings can NOT refuse to send the identifier of 

the delegated device to the Google Home, since the 

access delegation protocol of Google Home requires 

such information. Supporting more languages: Diverse 

programming languages, including Java, Go, and C#, 

are employed in the implementation of contemporary 

IoT clouds. Presently, SecHARE 

has adopted the AspectJ framework specifically to 

support Java programming language. Notably, 

analogous frameworks are available for other 

programming languages, such as GoAOP or Go-Aspect 

for Go, and AspectDNG for C#. In future work, we aim 

to explore the applicability of these frameworks to 

accommodate diverse programming languages. It is 

worth noting that the fundamental concept underlying 

our proposed defense mechanism is general in nature, 

thus facilitating its extension to other IoT clouds. 

 

 VIII. RELATED WORK 

 

IoT platform security: In the rapid development of the 

IoT, the IoT cloud plays an important role. Chen et al. 

[56] and Zhou et al. [57] have reported flaws found in 

device management for IoT clouds, demonstrating that 

leakage of device 

identity can have serious consequences. However, they 

only discovered the vulnerabilities without proposing 

any defense 

mechanisms. Yuan et al. [5] proposed a semi-automated 

http://www.ijsrem.com/
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tool to detect cross-cloud IoT delegation vulnerabilities. 

In contrast, our work focuses on authorization issues 

within individual cloud platforms and provides an 

automated protection tool (SecHARE) to mitigate the 

authorization-data leakage problem. Moreover, 

most of the existing work is mainly for specific 

platforms, such as SmartThings [7], [9], [58], [59], [60], 

[61], [62], [63], [64], [65], IFTTT [10], [66], [67] and 

AWS Alexa [68], [69]. By contrast, our work is to 

provide a tool to protect different cloud platforms. 

Besides that, some works [7], [62], [66], [70] provide 

methods to 

protect sensitive information or data flow in IoT apps, 

whereas our work is focuses on protecting 

authorization-data only in the cloud. IoT permission 

sharing: Permission issues have always been one of the 

key concerns of IoT security and have been widely 

studied [9], [10], [11], [58], [59], [71], [72], [73], [74]. 

Fernandes 

et al. [9] first reported that the coarse-grained capability 

design leads to over-privileged and the inability of the 

event subsystem to adequately protect events carrying 

sensitive information in Smart Things. Additionally, 

access control is not only distributed but also 

heterogeneous and ad-hoc in today’s IoT cloud 

ecosystem. To cope with the new application scenario, 

Jia et al. [58] focused on permission protection and 

proposed ContexIoT, a fine-grained context-based 

permission system for SmartThings to provide context 

integrity for IoT programs at runtime. Tian et al. [59] 

presented a user-centric, semantic-based authorization 

design called SmartAuth to help users avoid overly 

privileged applications in SmartThings. These 

researches primarily focus on the permission 

management of the applications, without consideration 

of dynamic user authorization scenarios or proposing 

methods to secure the authorization-data. Fernandes et 

al. [62] proposed a privacy-preserving system called 

FlowFence, which attempts to address the 

ineffectiveness of existing permission-based access 

controls in controlling sensitive data flows in 

applications by embedding the data flow patterns 

expected by users. However, this work mainly tries to 

prevent malicious IoT applications from abusing the 

sensitive data (e.g., data collected by the IoT sensors). 

In con- 

trast, SecHARE focuses on securing the data used for 

authorization and preventing unauthorization access in 

a shared IoT scenario. 

Furthermore, Fernandes et al. [10] introduced 

Decentralized Action Integrity to prevent an untrusted 

trigger-action platform from misusing compromised 

OAuth tokens. Andersen et al. [11] presented WAVE, 

an authorization frame- 

work offering decentralized trust, which supports 

transitive fine-grained sharing and revocation. 

However, these efforts, while meeting the current 

complex IoT authorization needs, require all parties to 

work together following the same framework APIs and 

are more difficult to apply and deploy to the real world. 

In contrast, our work only adds a few changes to the 

cloud platform to realize automatic protection of 

authorization-data. Moreover, our tool can adapt to a 

variety of authorization-data and is compatible with 

different cloud platforms.  

 

IX. CONCLUSION 

In this paper, we systematically study how the 

authorization data are managed in the real-world IoT 

device sharing and its security implications. Our 

research reveals that authorizationdata leakage is 

prevalent in the IoT clouds, with 6 flaws identified in 6 

popular IoT clouds. To mitigate the problem, we 

proposed SecHARE to automatically patch the 

vulnerable codes of the 

IoT clouds. We applied SecHARE to 3 open-source IoT 

clouds. Our evaluation shows that SecHARE is easy to 

use by the IoT vendors, effective and efficient in 

securing authorization-data. Our new understanding and 

new techniques will provide better protection for 

today’s IoT cloud platforms, as well as those to 

be built in the years to come. 
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