
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Leakage of Authorization-Data in IOT Device Sharing: New Attacks and

Countermeasure

Mr. Ghayatadak Jaibhimrao Eknath
Student of Dept. of Computer Engineering.

Vishwabharati Academy’s college of Engineering, Ahmednagar, Maharashtra, 414201, India.

jaighayatadak14@gmail.com

Abstract—Device sharing among users is a
common function- ality in today’s IoT clouds.
Supporting device sharing are the delegation
methods proposed by different IoT clouds, which
we find are heterogeneous and ad-hoc — IoT
clouds use various data (e.g., device ID, product
ID, and access token) as authorization certificates.
In this paper, we report the first systematic
study on how the authorization-data are managed
in IoT device shar- ing. Our study brought to light
the security risks in today’s IoT authorization-data
management, identifying 6 authorization-data
leakage flaws. To mitigate such flaws, we propose
an approach to hide the authorization-data from
the delegatee (a.k.a., the user authorized to access
the devices) without disrupting the device sharing
services. We propose SecHARE, an automated tool
to patch the vulnerable IoT clouds. We applied
SecHARE to 3 popular open-source IoT clouds.
Results have shown the compatibility, effectiveness,
and efficiency of SecHARE. We have made
SecHARE publicly available.

Index Terms—Cyber-physical systems, IoT
security, authori- zation-data protection.

I. I NTRODUCTION

TODAY’S IoT (Internet of Things) cloud platforms are

providing more and more functionalities to meet the

users’ various requirements. Device sharing among

multiple users is one of the most popular functionalities

supported by the mainstream IoT clouds (e.g., AWS

IoT [1], Samsung SmartThings [2],

Philips Hue [3] and MiHome [4]). Device sharing

allows the owner/admin-user to delegate the access

right to the device to other users and clouds (which we

call the delegatee). Prominent

examples include that the owner of a Philips Hue device

inviting other Philips users to control her device (by

issuing a whitelistID for the delegatee user [5]) and the

owner of a SmartThings smart home authorizing

Google Home cloud to control her device (by sending

the device ID of the SmartThings device and an OAuth

token [6] to Google Home cloud). Serving this purpose

are the delegation mechanisms proposed by different

IoT vendors,

which we found are heterogeneous and ad-hoc. In

specific,different IoT clouds use different types of data

(e.g., device ID, product ID, OAuth token) as the

authorization certificates (which we call the

authorization-data, see Section III).

Also, different types of data are with different

changeability, for example, the device ID (set when the

device is created) is usually unchangeable, while access

tokens are usually changeable (e.g., updated by the

owner). Previous researches have revealed that

vulnerabilities in these IoT delegation mechanisms

could expose users to security and safety risks [5].

However, little have done to systematically study how

the authorization-data are managed (e.g., creation,

distribution, and deletion) in the real-world IoT clouds.

Risks in poor authorization-data management:

Permission issues have always been one of the key

concerns of IoT security, and access control community

has also been studying delegation

of authority issues, finding privacy leaks, incomplete

credential revocation, overprivileged authorization, and

incorrect policy enforcement [5], [7], [8], [9]. However,

in today’s IoT cloud

ecosystem, access control is not only distributed but

also heterogeneous and ad-hoc, so authorization-data

protection remains an open problem. Fernandes et al.

[9] found that the vulnerable event management in

SmartThings enables the attackers to obtain device

identifiers to send fake fire alarms. Bin et al. [5] found

that the insecure cross-cloud IoT delegation could also

result in the leakage of device information and OAuth

token, leading to unauthorized access to the victim

devices. Given the severe consequences of

authorization-data leakage (e.g., privacy leakage and

safety threats), it is emerging to understand and mitigate

this problem. To secure the authorization in IoT,

Fernandes et al. [10] presented DTAP to prevent an

untrusted trigger-action platform from misusing

compromised OAuth tokens, while Andersen

http://www.ijsrem.com/
mailto:jaighayatadak14@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

et al. [11] presented WAVE, an authorization

framework supporting decentralized trust and transitive

fine-grained delegation/revocation. However, these

approaches require significant

changes to the existing IoT cloud platforms and

devices. Real-world adoption and deployment of DTAP

[10] or WAVE [11] may take a long time, until all

compatibility and usability issues

are resolved. A timely solution that is lightweight,

compatible with existing IoT clouds, and effective at

securing the authorization-data is needed. Findings and

impacts: In this paper, we report the first sys-

tematical study on how the authorization-data are

managed in today’s IoT device sharing. Specifically, we

studied 6 popular IoT clouds to investigate the life-

cycle of the device data,

Especially the authorization-related device data, which

we call authorization-data for short.

Our study shows that, in the absence of security

standards/guidance, today’s IoT clouds usually develop

their homegrown mechanisms to support device

sharing, resulting in heterogeneous and ad-hoc

authorization-data management. In specific, we find

IoT clouds use various types of data with different

changeability as authorization-data (see Section III).

Moreover, our study shows that, due to the lack of

understanding on the security implications of the

authorization-data, today’s

IoT clouds often adopt vulnerable authorization-data

management mechanisms. We have identified 6

authorization-data leakage flaws in the evaluated IoT

clouds (see Section IV). Leveraging these flaws,

attackers can use the leaked authorization-data to

emulate the victim devices for device state and event

forgery attacks (e.g.a fake alarm event), privacy theft

attacks (e.g., inferring the absence/presence of the

victim via obtaining the state of the victim’s devices)

and deny of service (DoS) attacks (e.g., disconnecting a

sub-device). As shown in Table I, we summarize the

severe consequences of these attacks as falsified data

(FD), privacy breach (PB) and deny of service (DoS).

Moreover, we found the flaws identified could expose a

large number of IoT users and other IoT clouds, as well

as organizations, and vendors in various fields, to

security risks (Section VI-A). We report all flaws to the

relevant parties and have received 5 CNVDs [12] by the

time we write this paper. Defense with shadow

authorization-data: To mitigate such flaws, we propose

a method that can hide the actual authorization-data

from the delegatee to avoid leakage with-out

interrupting the device sharing services. Specifically,

when delegating access right to the delegatee, we

generate a new copy of authorization-data (e.g., device

ID’) that is different from the actual authorization-data

(e.g., device ID), and record the mapping relationship

between them (e.g., device ID

→ device ID’). We call the new copy of authorization-

data the shadow authorization-data. Then, we send the

shadow authorization-data (device ID’) to the delegatee.

Upon receiving the delegatee’s request to access the

delegated device, we transfer the shadow authorization-

data back to the actual authorization-data according to

the recorded mapping relationship (device ID’ →

device ID), and then perform authorization check based

on the actual authorization-data (device ID).

To revoke the delegatee’s access right, we delete the

shadow authorization-data and the mapping relationship

between the shadow and actual authorization-data. Such

a workflow can avoid leaking the actual authorization-

data to the delegatee users. Moreover, the malicious

delegatee users will not be able use the shadow

authorization-data to gain unauthorized access to the

victim devices after his access right is revoked. In

addition, the whole process is made transparent to the

users — the delegator and delegatee users can use the

device sharing services as usual as they already do in

today’s IoT systems. Automated patching: Further, we

design and implement SecHARE, a tool that

automatically patches the vulnerable IoT clouds.

Specifically, SecHARE takes as input a configuration

file that specifies the names of the sensitive methods

operating the authorization-data (e.g., the assignDevice-

ToCustomer() function in ThingsBoard [13] used to

share

a device to a delegatee user), automatically identifies

such methods and inserts necessary operations into the

bytecodes for security enhancement (see Section V).

Moreover, SecHARE implements an automatic

configuration file generator to reduce the manual efforts

needed to specify the configuration files (see Section V-

D). We applied SecHARE to 3 popular open-source IoT

clouds, ThingsBoard [13], Kaa [14] and JetLinks [15].

Our evaluation

shows that SecHARE can effectively mitigate the

authorization- data leakage flaws with

negligible/acceptable overheads and can be easily

deployed into today’s IoT ecosystem. We have made

SecHARE publicly available [16].

Contributions: We summarize our contributions as

follows:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

• New understanding: We performed the first

systematic study on how the authorization-data are

managed in the IoT clouds, which reveals the security-

critical weaknesses in today’s IoT authorization-data

management.

• New findings: We investigated 6 popular IoT clouds

and identified 6 authorization-data leakage flaws, which

expose many IoT devices/users to realistic security risks

with severe consequences.

• New techniques: We proposed a new method to

mitigate the flaws in IoT authorization-data

management, and developed/released support for

automated securing IoT authorization data. We

implemented our proposed method and demonstrated its

usability, efficiency, and compatibility with existing

IoT cloud systems. The insights and techniques of our

study can help secure not only today’s but also future

IoT authorization-data management.

II. BACKGROUND

A. IoT Cloud Architecture and Its Device Sharing

Device control and its automation: A typical IoT

architecture

include the IoT devices, the cloud and the user console

(e.g.,mobile app or web app). To control

an IoT device, as shown in Fig. 1, the device owner first

register her device to the cloud, with the device bound

to her user account. To access the device, the owner

initiates a request through her user console. Upon

receiving the request, the cloud performs an

authorization

check on the user and send the command to the target

device if the check passes. Moreover, users can define

automation rules (a.k.a., trigger-action rules) for

automated device control —

when receiving the trigger of the rule, the cloud

automatically performs the action. For example, a user

can set an automation rule to work in that if the motion

sensor detects movement, turn

on the light. Device types: As shown in Fig. 1, there are

three types of IoT devices:

(1) The end device, devices that connect to the IoT

cloud directly and do not manage sub-devices;

(2) The gateway device, a gateway device connects to

the IoT cloud directly and manages/connects to other

sub-devices;

(3) The sub-devices, a sub-device is managed by and

connected to a gateway device. Note that, the sub-

devices usually connect to the gateway device through

protocols like Zigbee [17], Z-wave [18] and BLE [19],

while the gateway device acts as an agent for the sub-

devices to

communicate with the IoT cloud. A sub-device usually

can be added to and removed from the gateway device

under the user’s operation.

IoT messaging protocol: Many IoT messaging protocols

(e.g., MQTT [20], HTTP [21], CoAP [22], LwM2M

[23] and AMQP [24]) are used by today’s IoT clouds,

among which MQTT is the most widely used [25].

MQTT adopts a publish–

subscribe messaging pattern [26]. For two clients to

communicate with each other, the MQTT server (called

the MQTT broker) uses topics to define the message

classes; the message receiver (called the subscriber)

subscribes to the topics to show its interest

in these message classes; the message sender (called the

publisher) publishes messages to specific topic(s); upon

receiving the published message, the broker identifies

the corresponding

topic and transmits the message to all its subscribers.

To secure the messaging process, before

accepting/delivering messages from/to the clients, the

MQTT broker usually performs authentication and

authorization check based on the Username, Password

or topic contained in the messages. Note that, different

implementations of MQTT broker might customize

such security checks — performing the checks based on

other information (e.g., customized tokens) or even

performing no check at all. Device sharing in IoT

clouds: Device sharing among multiple users is

commonly supported by today’s IoT clouds, which

enables the admin-user/owner of the devices to delegate

access right to the devices to others.

• Device sharing within a single IoT cloud: The owner

can share her devices with other users under the same

cloud (➀ and ➂ in Fig. 1). For example, IoT clouds

including HomeKit [27],

MiHome [4] and SmartThings [2] enables the owner to

invite other users to join the owner’s smart home

system and delegate access rights to the devices to the

invited users.

• Cross-cloud device sharing: Cross-cloud delegation

[5] is also commonly seen in today’s IoT clouds for

owners to share the devices with users from third-party

clouds (➁ in Fig. 1).

Cross-cloud device sharing is usually implemented with

OAuthprotocol — the delegator cloud issues an OAuth

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

token to the

delegatee cloud. In real world, the delegator clouds are

usually the clouds maintained by the device

manufacturers, such as Philips Hue [3], SmartThings

[2] and MiHome [4], while the

delegatee clouds are the third-party cloud services

providers like Google Home [28] and IFTTT [29]. B.

Aspect-Oriented Programming

Aspect-oriented programming (AOP) was proposed by

Gregor et al. [30], which aims to address the cross-

cutting problem during effective application

modularization. It can add additional behaviors non-

invasively without changing the original design/code.

“Weaving” is one of the terms in AOP, which is the

process of applying the functionality that needs to be

extended to the target object. “Weaving” can be divided

into four different types based on the time when the

behavior is woven into the target class: (1) Compile-

Time Weaving, which weaves the behavior at the

source code compilation with a special compiler; (2)

Post-Compile/Binary Weaving which weaves the

behaviors into the compiled file with a special

compiler; (3) Load-Time Weaving which uses a special

class-loader to weave the behavior when the class is

loaded into the Java virtual machine;

(4) Run-Time Weaving which weaves the behavior

during the execution of the program. The two most

popular frameworks of AOP are AspectJ [31] and

Spring AOP [32]. AspectJ supports the former three

weaving types, while Spring AOP supports the latter

two types. In this paper, we leveraged AspectJ to insert

security-enhancement behaviors into the vulnerable IoT

clouds with Load-Time Weaving (see Section V-C).

III. LIFE -CYCLE OF AUTHORIZATION-DATA

To investigate how the authorization-data is managed in

today’s IoT device sharing, we studied over 10

mainstream IoT clouds, including AWS IoT [1],

Alibaba Cloud IoT [33],

Google Home [28], Tuya [34], SmartThings [2], IFTTT

[29], ThingsBoard [35], Kaa [14], [36], JetLinks [37],

ThingsKit [38] and ThingsPanel [39]. Definition of

authorization-data: To enable the delegatee user to

access the delegated devices, the IoT cloud usually

would send certain data to the delegatee user. Such data

would then be used for authorization check when the

delegatee user attempts to access the devices. We call

the data transmitted to the delegatee during device

sharing and used for authorization checks during the

delegatee’s access to the device the authorization-

data.Type of authorization-data: Recall that, in the

absence of the standard/guidance on how to securely

share devices, the implementation

of device sharing by different IoT clouds are

heterogeneous. Specifically, various types of

authorization-data are used in today’s IoT clouds,

including public available information (e.g., app-

version-name), identifiers (e.g., device ID and product

ID), access tokens, MQTT topics, MQTT passwords

and HTTP/CoAP URLs. Changeability of

authorization-data: Further, some types of

authorization-data (e.g., device ID and product ID) are

determined by the IoT clouds and are unchangeable by

the users, while other types of authorization-data are

changeable under the operations from the authorized

users (including both the device owner and the

delegatee users). For example, the “endpoint token” of

a device under the Kaa Enterprise cloud [36] can be

changed by users via revoking the old token and

activating a new one. Life-cycle of authorization-data:

Moreover, we find that the authorization-data could be

created, accessed, updated, trans- mitted, deleted or

deactivated in different phases of the device

management. We summarize the life-cycle of

authorization-data as follows.

• Add device: The life-cycle of authorization-data starts

with adding the device. Usually, when the owner

registers/binds a new device, the IoT cloud

determines/generates the unchangable information for

the device, which are used as unchangable

authorization-data by some IoT cloud. For example, the

device ID and application version is used as

unchangable authorization- data by SmartThings [2]

and Kaa Enterprise [36] respectively.

• Share device: When the owner shares a device to the

delegatee user, the IoT clouds may generate new

authorization-data (e.g., issuing a new access token) or

reuse the ex- isting data (e.g., device ID) as

authorization-data. Then, the IoT clouds would transmit

the authorization-data to the delegatee.

• Unshare device: After the owner revokes the access

right from the delegatee user, the authorization-data

would be removed from the delegatee user’s system

(e.g., her mobile app).Moreover, the IoT clouds could

deactivate/update some of the changeable authorization-

data, such as the OAuth token.

• Query device information: An authorized user could

query the cloud for the device information. The

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

responses to such queries might contain authorization-

data. For example, the ThingsBoard [35] transmits the

authorization-data of access token to the querying user.

• Update device data: The authorized users are usually

allowed to update the device data, including both the

basic device data (e.g., device name) and the

changeable authorization-data (e.g., access token).

• Access device: When a user attempts to access a

device, the user usually sends to the cloud an access

request that carries authorization-data, which is

accessed and verified by the cloud for authorization

check. used for authorization check when the delegatee

user attempts to access the devices. We call the data

transmitted to the delegatee during device sharing and

used for authorization checks during the delegatee’s

access to the device the authorization-data. Type of

authorization-data: Recall that, in the absence of the

standard/guidance on how to securely share devices, the

implementation of device sharing by different IoT

clouds are heterogeneous. Specifically, various types of

authorization-data are used in today’s IoT

clouds, including public available information (e.g.,

app-version-name), identifiers (e.g., device ID and

product ID), access tokens, MQTT topics, MQTT

passwords and HTTP/CoAP URLs.

Changeability of authorization-data: Further, some

types of authorization-data (e.g., device ID and product

ID) are determined by the IoT clouds and are

unchangeable by the users, while other types of

authorization-data are changeable under the operations

from the authorized users (including both the device

owner and the delegatee users). For example, the

“endpoint token” of a device under the Kaa Enterprise

cloud [36] can be changed by users via revoking the old

token and activating a new one. Life-cycle of

authorization-data: Moreover, we find that the

authorization-data could be created, accessed, updated,

transmitted, deleted or deactivated in different phases of

the device management. We summarize the life-cycle

of authorization-data as follows.

• Add device: The life-cycle of authorization-data starts

with adding the device. Usually, when the owner

registers/binds a new device, the IoT cloud

determines/generates the unchangable information for

the device, which are used as unchangable

authorization-data by some IoT cloud. For example, the

device ID and application version is used as

unchangable authorization-data by SmartThings [2] and

Kaa Enterprise [36] respectively.

• Share device: When the owner shares a device to the

delegatee user, the IoT clouds may generate new

authorization-data (e.g., issuing a new access token) or

reuse the existing data (e.g., device ID) as

authorization-data. Then, the IoT clouds would transmit

the authorization-data to the delegatee.

• Unshare device: After the owner revokes the access

right from the delegatee user, the authorization-data

would be removed from the delegatee user’s system

(e.g., her mobile app).Moreover, the IoT clouds could

deactivate/update some of the changeable authorization-

data, such as the OAuth token.

• Query device information: An authorized user could

query the cloud for the device information. The

responses to such queries might contain authorization-

data. For example, the ThingsBoard [35] transmits the

authorization-data of access token to the querying user.

• Update device data: The authorized users are usually

allowed to update the device data, including both the

basic device data (e.g., device name) and the

changeable authorization-data (e.g., access token).

• Access device: When a user attempts to access a

device, the user usually sends to the cloud an access

request that carries authorization-data, which is

accessed and verified by the cloud for authorization

check.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 6

Flaw 1. MQTT topic leakage: Kaa Enterprise [36] is an

IoT cloud platform that supports device

sharing among users and supports multiple messaging

protocols including MQTT, CoAP and HTTP. When a

device connects to the Kaa Enterprise cloud using

MQTT protocol, the MQTT topic is used as

authorization-data. That is, Kaa Enterprise authorizes

the device based on the topic contained in the messages

(see Section II-A) — only the devices that could

provide valid topics are allowed to publish messages to

the Kaa Enterprise cloud. To construct a valid topic,

Kaa Enterprise requires the owner to set the “endpoint

token” (a string) for the device when adding the device.

The endpoint token is regarded as a secrecy that can

only be accessed/updated by authorized users

(including the owner and the delegatee user). With the

endpoint token, Kaa Enterprise constructs the topic for

the device by adding other publicly available

information (e.g., the application version) to the

endpoint token. Hence, a typical MQTT topic in Kaa

Enterprise could be

kp1/{application_version}/dcx/{endpoint_token}/json.

However, we found the the authorization-data of Kaa

Enterprise cloud (e.g., the MQTT topic) can be obtained

by the delegatee user. Recall that, the delegatee user is

allowed to update the endpoint token of the delegated

device. Therefore, the delegatee user can gain a valid

endpoint token by updating it. Using the updated valid

token and other public information, the delegatee user

can obtain a valid copy of MQTT topic. Note that,

updates to endpoint tokens are automatically handled

and synced by the cloud and do NOT notify the device

owner or affect the owner’s use of the device.

Moreover, the delegatee user’s updates to the endpoint

tokens remain valid even afterhis access right is

revoked, resulting in that, the MQTT topic leaked to the

delegatee remain valid and unchanged after the

revocation. Therefore, a malicious delegatee user could

leverage the leaked MQTT topic to send/receive

unauthorized messages to/from the Kaa Enterprise

cloud after his access right is revoked. PoC exploit on

Flaw 1: To exploit Flaw 1, we used our test account and

a MQTT-enabled smart lock (a virtual device) to

implement an end-to-end PoC attack. Specifically, as

shown in Fig. 2, the owner first set the endpoint token

of the smart lock on the Kaa Enterprise cloud platform

for the victim smart lock to communicate with the

cloud. Then, the owner shared the smart lock with the

attacker. The attacker then updated the smart lock’s

endpoint token and obtained a valid MQTT topic. After

that, we let the owner revoked the attacker’s access

right. Then, we wrote a program using Python (publicly

available at [16]) to pretend to be the victim smart lock

to communicate with the Kaa Enterprise cloud. As

shown in Table I, we were able to send forged messages

(FD) and receive unauthorized messages (PB) to/from

the cloud. Flaw 2. MQTT username leakage: In

addition to the MQTT topic leakage (see Flaw 1), we

found that the MQTT username is also used as

authorization-data and could be leaked to the attackers

in ThingsBoard [35] and ThingsKit [38]. ThingsBoard

is a popular open-source IoT platforms that supports

MQTT, HTTP, CoAP and LwM2M. When a MQTT-

enabled device communicates with the ThingsBoard

cloud, the device is required to provide a valid MQTT

username, which is used for MQTT’s

authentication/authorization check (see Section II-A).

Therefore, a valid and unique MQTT username will be

assigned to the device when the owner adds the device

to ThingsBoard. Specifically, during the device adding,

the owner or the cloud would set an “access token” for

the new device. The access token then is used as the

MQTT username for the device to communicate with

the ThingsBoard cloud. The problem we identified here

is that the access token is accessible to the delegatee

user — when the delegatee user queries the

ThingsBoard cloud for the information about adevice

delegated to him, ThingsBoard would send information

that contains the device’s access token to the delegatee

user. Moreover, the access token does NOT change or

become invalid after the owner revokes the access right

from the delegatee user. Consequently, a delegatee user

with malicious intentions could obtain the MQTT

username (a.k.a., the access token) when he is

authorized and reuse the leaked MQTT username to

stealthily communicate with the cloud after he loses

access right to the device.PoC exploit on Flaw 2: We

conducted a PoC attack to ex- ploit the Flaw 2 in

ThingsBoard. In specific, we configured a virtual

gateway device connected to other sub-devices in the

ThingsBoard cloud (Fig. 3). We then temporarily

shared the gateway device to the attacker. At this point,

the attacker can obtain the access token from the

ThingsBoard cloud to form the authorization-data (e.g.,

MQTT username). After we revoked the attacker’s

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 7

permission, we tried to use our attacking programs

([16]) to communicate with the ThingsBoard cloud. We

found that, with the leaked MQTT username, we were

able to send forged messages and receive messages

to/from the ThingsBoard cloud. In addition, we were

able to publish messages to the v1/gateway/disconnect

topic to disconnect the sub-devices under the victim

gateway from the cloud (DoS in Table I). Note that, We

found the exact same problem discussed above in the

ThingsKit [38] platform. An attacker can leverage Flaw

2 to send falsified data and receive private information

of the victim to/from the ThingsKit cloud (see Table I).

Flaw 3. MQTT password leakage: JetLinks [37] is

another open-source IoT cloud platform that supports

MQTT protocol and uses the MQTT password as

authorization-data [45] for devices to communicate

with the cloud. Specifically, when adding a new device,

the owner needs to set a “secureKey” and a “secureId”

for the device. To communicate with the cloud, the

device sends MQTT packages with the MQTT

password set to

md5(secureID+“|”+timestamp+“|”+secureKey) and

another field filled with the timestamp in plaintext.

Upon receiving such a package from the device,

JetLinks checks the correctness and freshness of the

MQTT password using the timestamp received and its

own copy of secureId and secureKey. Only the devices

that pass such checks are allowed to communicate with

the cloud. The problem in JetLinks cloud is similar to

that in ThingsBoard (Flaw 2). The authorization-data

(e.g., the secureId and secureKey) is obtainable to the

delegatee user and does NOT change after the owner

revokes the delegatee user’s access rights. Therefore, a

malicious delegatee user can use the leaked

authorization-data to communicate with the cloud even

after his access right is revoked. PoC exploit on Flaw 3:

Exploiting Flaw 3 is also similar to the exploitation of

Flaw 2, as shown in Fig. 4. The key challenge was for

the attacker to obtain the secureId and secureKey. This

was done by capturing the traffic between the attacker’s

user console (the web-based application provide by

JetLinks) and the JetLinks cloud. In our PoC attack, the

attacker successfully extracted the secureId and

secureKey from the packets/traffic sent from the

JetLinks cloud to the user console. Then, with our PoC

attacking programs [16], the attacker was able to

conduct all the three attacks (e.g., FD, PB, and DoS in

Table I).

Flaw 4. URL leakage: Recall that, ThingsBoard

supports HTTP for the devices to communicate with the

cloud. We identified the problem of URL leakage in the

HTTP messaging of the ThingsBoard. Specifically, in

ThingsBoard’s HTTP messaging, the URL (e.g.,

http(s):// host:port/ api/ v1/ access_token/telemetry) is

used as the device’s authorization-data and is unique for

each device. Anyone who knows the URL can

communicate with the cloud on behalf of (or pretend to

be) the device. The problem here is that the URL could

also be leaked to the

attacker, who then could use the URL to communicate

with the ThingsBoard cloud maliciously.To make

matters worse, even an attacker who has never been

authorized to access the device before can obtain the

URL and

conduct the attacks (see Table I). For example,the

attacker could monitor all the traffic in the victim’s

home WiFi network to extract the URL. PoC exploit on

Flaw 4: The PoC exploitation of Flaw 4 is rather

straightforward. As outlined in Fig. 5, we let the victim

owner shared the virtual smart bulb to the attacker. The

attacker was able to extract the URL from the traffic

between his user console and the ThingsBoard cloud.

After the owner revokes

the attacker’s access right, we found the attacker was

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 8

able to communicate with the ThingsBoard cloud using

our PoC attack programs [16]. Note that, we found the

same problem (Flaw 4) in the Kaa Enterprise platform

(see Fig. 5), which also supports HTTP messaging. We

omit the detailed discussion for simplicity.Flaw 5.

Device identifier leakage: We found that the device

identifier is used as authorization-data in JetLinks’s

HTTP messaging and ThingsPanel’s MQTT messaging,

both of which are vulnerable.

In JetLinks’s HTTP messaging, JetLinks exposes a

public URL (http://server-address/report-property) for

the devices to communicate with the cloud (Fig. 6). To

authenticate and authorize a device, JetLinks requires

the device to provide a valid device ID (which is

created when the device is added to the

cloud and is unchangeable) in the packets sent to the

URL.However, such an unchangeable authorization-

data (e.g., device ID) is accessible to the delegatee users

(by querying the device

data from the cloud), which leads to the FD and PB

attacks in JetLinks as shown in Table I.

Moreover, in ThingsPanel’s MQTT messaging,

ThingsPanel uses the same MQTT topic for all the

devices and requires each device to provide its unique

identifier (e.g., the token set by the owner when adding

the device) for authorization check. However, as shown

in Fig. 6, when a device is shared to the delegatee user,

the delegatee user can obtain the device’s token in

message push log of the device. Such data leakage

could lead to the FD and PB attacks in ThingsPanel as

shown in Table I. PoC exploit on Flaw 5: We

confirmed Flaw 5 in both JetLinks

and ThingsPanel with our PoC attacking programs [16].

Flaw 6. SDK token leakage: Kaa open-source [14] is a

open-source IoT cloud platform that supports flexible

device definition

and creation. Specifically, Kaa open-source provides

the owners an endpoint SDK (a library that exposes

many useful APIs for the device to use) for them to

create devices with various

functionalities. Each time a device is created, the cloud

would generate a unique token (which we call the SDK

token) for the device and store the SDK token into the

device’s own copy of SDK. The SDK token is then

used for the cloud to perform authorization check when

a device attempts to communicate with the cloud (Fig.

7). Moreover, when the owner authorizes a delegatee

user to access a device, the delegatee user is allowed to

download the SDK of the delegated device. As a

result,the delegatee user can further obtain the device’s

SDK token from the downloaded SDK. Besides, the

SDK token does NOT change when the owner revokes

the delegatee user’s access right. Therefore, a malicious

delegatee user can leverage this flaw to stealthily

communicate with the cloud, resulting in FD and PB

attacks (see Table I). PoC exploit on Flaw 6: In our PoC

attack, as outlined in Fig. 7, the owner used the Kaa

open-source SDK to create a virtual smart lock (whose

SDK token is set as 2wXVH-

wXD6TR_cAdr5RoWal6K0Q by the cloud). Then, the

owner delegated the smart lock to the attacker. The

attacker downloaded the smart lock’s SDK and wrote

an attacking program [16] that used the SDK along with

the SDK token in it to connect to the cloud. We found

that the attacking program can still successfully

communicate with the Kaa open-source cloud after the

attacker’s permission was revoked.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 9

Responsible disclosure: We report all flaws to relevant

parties, who all acknowledged the seriousness of the

problems. We have received 6 CNVDs [12] (see Table

II). Ethical consideration: The PoC attacks are

conducted using our own accounts/devices in our

testing environment, without disrupting the real-world

IoT services or users.

V. SYSTEM DESIGN AND

IMPLEMENTATION

In this section, we elaborate on the design and

implementation of SecHARE, an automated tool to

patch the vulnerable IoT clouds for authorization-data

protection, which can be easily applied to today’s IoT

clouds. We have made SecHARE publicly available

[16].

A. Overview

At a high level, the IoT clouds should ensure that the

authorization-data transmitted in device sharing will not

be leaked to attackers, preventing the unauthorized

access to the devices from the attackers. To fix the

authorization-data leakage flaws (discussed in Section

IV), we propose a usability preserving protection

method that replaces the actual authorization-data with

the shadow authorization-data and transmits the shadow

authorization-data to the delegatee user without

interrupting the device sharing services — the owner

and the delegatee users can use the IoT services as

normal as they already do in today’s IoT systems. The

security enhancement is achieved by hiding the actual

authorization-data from the delegatee users. In specific,

as illustrated in Fig. 8(a), without our protection, the

actual authorization-data (e.g., IDs) is transmitted to the

delegatee user during device sharing, which could lead

to the problems discussed in Section IV. In contrast,

SecHARE works as a proxy during authorization-data

transmission: 1) when the cloud sends authorization-

data (e.g, ID) to the delegatee user, SecHARE generates

a shadow copy of the authorization-data (e.g., ID’) and

send it to the user; 2) when a message from the user

arrives

at the cloud, SecHARE converts the shadow

authorization-data to the actual authorization-data and

the inner process logic of the cloud uses the actual

authorization-data for further processing. Notably, the

shadow authorization-data is generated using the same

format of that of the actual authorization-data (e.g., a

20-bit string). As a result, impacts on the normal

functionalities introduced by SecHARE can be

minimized. To this end, we developed SecHARE to

automatically patch the vulnerable codes of the IoT

clouds.

Architecture: Since different IoT clouds use different

types of authorization-data and define different

methods/functions to create, access, update, transmit,

delete and deactivate the uthorization-data. We need a

method to automatically identify the methods/functions

that operate the authorization-data and patch these

methods/functions to fix possible authorization-data

leakage in a way that does not impact the usage of IoT

services. To this end, as shown in Fig. 9, we built

SecHARE, which is

composed of 5 components: a Configuration Operator

(CO), a Database Operator (DO), a Patch Generator

(PG), a Dynamic AspectJ Agent (DAA), and a

Configuration Automatic Generator (CAG). Essentially,

SecHARE generates patches for the vulnerable cloud

with the predefined Security Enhancement Code

Templates (SECT) based on our usability preserving

defense (see Section V-B) and leverages the AspectJ

[31] (an AOP framework, see Section II-B) framework

to insert these patches into the IoT cloud when the

classes are loaded into the Java virtual machine.

Specifically, to apply SecHARE to patch an IoT cloud,

we need to deploy and execute SecHARE along with

the IoT cloud. Then, as shown in Fig. 10, CO takes as

input the configuration file (which specifies the

methods/functions operating the authorization-data) to

generate the Aop.xml file for the DAA to use1 . CO

also outputs information (e.g., the specified

authorization-data to protect and the names of methods

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 10

need to be patched) to the PG. Along with the database

operation APIs provided by DO, the PG then generates

the patch codes. Taking as input the Aop.xml and the

patch codes generated by PG, the DAA leverage the

AspectJ framework to compile the patching codes and

weave the additional/security-enhancement behaviors

(defined by the patch codes) into the IoT cloud’s

original vulnerable classes at loading time, allowing the

IoT cloud to use Security Enhanced Classes to

manage/operate the authorization-data.

B. Usability Preserving Defense

IoT device sharing is vital to today’s IoT cloud. Almost

all IoT clouds support such functionality, for users

widely require it (e.g., sharing devices to family

members, Airbnb guests, babysitter, etc.). Therefore,

the key to authorization-data leakage solution is how to

avoid disrupting the normal IoT device sharing

service. Our solution is to provide a usability preserving

defense that is made transparent to the users — they can

use the device sharing services as normal as they

already do. Specifically, our proposed defense

leverages a simple yet effective data mapping scheme

to prevent authorization-data leakage. In specific, after

the owner shares her device to a delegatee user, the IoT

cloud needs to transmit the authorization-data to the

delegatee user. Instead of transmitting the

authorization-data directly to the delegatee user (as

today’s IoT clouds do), we generate a shadow copy of

authorization-data, record the mapping relationship

between the actual authorization-data and the shadow

authorization-data and then transmit the shadow

authorization-data to the delegatee user. The delegatee

user then uses the shadow authorization-data to access

the delegated device. Upon receiving the access request

from the delegatee user, the cloud extracts the shadow

authorization-data from the request, transfers the

shadow authorization-data to the actual authorization-

data based on the mapping records stored by the cloud,

and uses the actual authorization-data for authorization

check. When the owner revokes the delegatee user’s

access right, the cloud delete the shadow authorization-

data and its corresponding mapping record. Hence, even

if the shadow authorization-data is leaked to and

preserved by the malicious delegatee users, he will not

be able to leverage the shadow authorization-data to

gain unauthorized access to the device. Note that, all the

operations (e.g., data-mapping, data-storage and data-

deletion) are performed automatically by the backend

cloud, which are transparent to the users. Therefore, we

could fix

the authorization-data leakage problems in today’s IoT

clouds while preserving their usability. Example:

Taking Flaw 2 (Section IV) as an example, Fig. 11

illustrates how our defense operates the authorization-

data and shadow authorization-data. Recall that,

ThingsBoard uses the MQTT Username as

authorization-data in its MQTT messaging. Therefore,

to share the device to the delegatee user, ThingsBoard

generate the shadow authorization-data (MQTT

Username’) for the actual authorization-data (MQTT

User-name). Then, the MQTT Username’ is transmitted

to the delegatee user, instead of MQTT Username.

When the delegatee user is authorized, he can use

MQTT Username’ to access the device normally. After

the delegatee user’s permission is revoked,

ThingsBoard removes the MQTT Username’. As a

result, the delegatee user can no longer access the

device, even if he preserved the MQTT Username’

when he was authorized.

Discussion: Recall that, today’s IoT clouds use both

changeable and unchangeable authorization-data. When

the changeable authorization-data is leaked to the

attacker, the owner might help to mitigate the problem

by changing/updating the authorization-data each time

he revokes access right from a delegatee user. However,

this approach relying on users to ensure the security

may not be ideal. First, real world owners might not be

aware of the problem or forget to update the

authorization-data. Second, the device might be shared

to multiple delegatee users. Updating the authorization-

data when revoking one of the delegatee users might

cause the other delegatee users cannot access the

device,either. If the unchangeable authorization-data is

leaked to the attacker, the owner has little to do to ease

the problem since she cannot update the authorization-

data.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 11

C. Automated Patching

How to adapt to different IoT clouds’ implementations

of device sharing and keep the performance overhead to

minimal are vital to automated patching.Adaptability

and scalability: The implementations of device sharing

in today’s IoT clouds are heterogeneous — defining

multiple methods/functions to operate the various types

of authorization-data. Hence, it is particularly important

for the patch scheme to adapt to most (if not all) of the

IoT clouds and even scale to new IoT clouds. For better

adaptability and scalability, we consider the follow

aspects.

• Configuration guided patching: Based on our

understanding on the lifecycle of authorization-data

(see Section III), we cannot generate a single unified

patch for all of the clouds. Instead, we leverage a

configuration that specifies the

methods/functions operating authorization-data defined

in a specific IoT cloud to generate the unique patch for

the cloud. Note that, our patch scheme is general and

scalable. To patch another

IoT cloud, we simply ask for a new configuration file

and patch the cloud accordingly. We further developed

CAG to reduce the manual efforts for specifying the

configuration file (see Section V-D).

• Minimal changes to the system. It is also essential to

ensure easy deployment and minimal changes to

existing systems. To this end, we adopt the AOP (see

Section II-B) technique to only weave security-

enhancement behaviors into the original system without

breaking the overall workflow/logic design. Moreover,

the weaving is done automatically by our tool at the

loading time of the classes, requiring minimal (or no)

manual intervention from the IoT cloud

manager/developer. • Supporting SQL/NoSQL

database: Our scheme stores the mapping relationships

between the authorization-data and

shadow authorization-data in the database. Also, such

data are stored in concordance with the data managed

within the cloud platform, and are inaccessible to users.

Consider the usage of different types of databases, we

develop DO to provide universal APIs for database

access and implement DO to support both SQL and

NoSQL databases. Minimal performance overhead:

Low end-to-end latency is important in IoT device

control. To minimize the latency overhead, we only

introduce additional computation to the cloud-side

while the client-side (the device and user console)

remains unchanged. Since the clouds are usually with

strong computing capabilities, the overhead should be

negligible (see Section VI-B).

D. Automatic Generation of Configuration

Files

Essentially, the configuration file specifies the

implementation details of device sharing, including

which data/variables are used as authorization-data and

which meth- ods/functions operate the authorization-

data. We expect the users of SecHARE (e.g., a

developer/manager of the IoT cloud) to provide the

configuration file, for they would already

know the implementation details. Nevertheless, we

develop CAG to help the users to specify the

configuration file, reducing the manual efforts needed

to use our tool. CAG mainly focuses on automatically

identify the names of methods/functions that operate the

authorization-data. Note that, it is possible for CAG to

identify a non-related method/function

as method/function that operates the authorization-data.

Hence, we let CAG list all the methods/functions it

identified and let the

user to delete or add methods/functions from/to the list.

Specifically, we investigated 50 IoT cloud projects on

Github to learn the naming pattern/habit of the IoT

programming. We found that the methods/functions

defined in the 8 different phases of the authorization-

data’s lifecycle (see Section III) can be divided into two

categories: (1) The methods/functions that

have a common naming pattern, including Add device,

Delete device, Delete user, Share device and Unshare

device; (2) The methods/functions that do not have a

common naming pattern, including Query device

information, Update device data, and Access device.For

the methods/functions in the former category, CAG can

quickly identify them based on the common key

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 12

words/affixes used in them (as listed in Table III) via

simple string matching. For the methods/functions in

the latter category, we conduct static source code

analyses to obtain the information of each

method/function to determine whether its parameters or

return values contains authorization-data. Notably,

Natural language processing (NLP) can help to identify

the method/function names, which is discussed in

Section VII. Moreover, we build an

AST model for the source code to obtain the calling

relationship of the methods/functions. With the calling

relationship, we could remove (some of) the caller

methods/functions from the

configuration file, since we only need to insert/weave

the callee method/function for authorization-data

protection.

E. Implementation of SecHARE

We present the implementation of SecHARE as follows

with its source codes released online [16]. The

configuration and CAG. As aforementioned, the

configuration (provided by the user of SecHARE)

specifies the names of the variables/methods/functions

related to the

authorization-data. To help automatically generate the

configuration file, CAG uses the QDox [46] to extract

the definitions of the classes/interfaces/methods from

the source code and uses Spoon [47] to build the AST

model. Note that, the configuration also specifies the

information needed to connect/access the database (e.g.,

the name of the database, the username and the

password needed to connect the database), which is

used to store the relationship between the authorization-

data and shadow authorization-data. The CO: Taking

the configuration file as input, CO generates the

Aop.xml file in the format required by AspectJ [48].

The Aop.xml file would then be input to the DAA.

Also, fromthe configuration file, CO extracts the names

of relative variables and methods/functions and sends

them to the PG. At

last, CO sends the database-related parameters (e.g.,

database username, password, etc.) to DO.

The DO: DO provides generalized database operation

APIs, supporting both SQL and NoSQL databases.

Currently, DO supports most SQL databases (a.k.a.,

Relational Database Man-

agement Systems) and the popular NoSQL database

MongoDB [49]. The PG: Based on our defense (see

Section V-B), we create the SECT to include all the

possible behaviors needed

to insert/weave into the vulnerable IoT clouds.

Specifically, we define code templates for data

transferring, database read, database write and database

deletion. Then, PG locates the vulnerable

methods/functions in the original classes based on the

input from CO, and automatically generates the

patching codes using the templates in the SECT and the

APIs pro-

vided by DO. Example-1 illustrates how PG patches the

share Deivce() method. Specifically, shareDeivce()

calls the getDevice() to obtain the authorization-data

(e.g., device ID) and transmit the authorization-data to

the delegatee user with thesendToDelegateeUser()

method. PG patches such a progress in that: (1) adding

line 10 to randomly generate the shadow authorization-

data to ensure data uniqueness (in specific, we

used the RandomStringUtils.randomAlphanumeric()

API [50] to generate the data); (2) adding line 11 to

store the mapping relationship of the authorization-data,

shadow authorization-data

and user’s identity; (3) replacing line 13 with line 12 to

return the shadow authorization-data (instead of

authorization-data). Note that, we maintain the data

mapping at the user-level.

Since a single user typically possesses a limited number

of devices, collisions between device mappings are

expected to be infrequent. The DAA: The DAA is an

AspectJ agent [51] that can be loaded into the running

Java virtual machine. It takes inputs as the Aop.xml and

the patching codes from PG to weave the patches into

the original vulnerable classes when the Class Loader

of the Java virtual machine loads the class files,

forming the Security Enhanced Classes.

 VI. EVALUATION

In this section, we discuss the impacts of authorization-

data leakage flaws and evaluate the performance of

SecHARE.

A. The Impacts of Authorization-Data

Leakage

Prevalence of vulnerable authorization-data

management: Bin et al. [5] identified several

authorization-data leakage flaws in cross-cloud

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 13

delegation, while we focused on the security issues of

authorization-data management within a single IoT

cloud. As shown in Table I, we identified 6 new flaws

with 3 of them (Flaw 2, Flaw 4 and Flaw 5) affecting

more than one IoT cloud, which shows the prevalence

of the authorization-data leakage problem. Scope of the

impact: The 4 open-source IoT clouds we

analyzed (i.e., ThingsBoard [13], JetLinks [15], Kaa

open-source [14] and ThingsPanel [52]) are among the

most popular IoT projects in the open-source

community, with over 17 K stars

on GitHub in total. The other 2 commercial IoT cloud

platforms (i.e., Kaa Enterprise [36] and ThingsKit [38])

serve many enterprises (including Lenovo, Alibaba

cloud and NET4.IO [36], [38]) and customers, and

connect millions of devices in various field (e.g., smart

energy, smart agriculture, smart home, and industrial

Internet of Things [53], [54]). Therefore, security

loopholes in these IoT clouds can bring huge damage to

the real world IoT applications.

B. Performance Evaluation

Selecting IoT clouds for flaw identification: Since we

focused on the security issues in the IoT device sharing

within a single cloud, we only studied the clouds that

support such functionality and enforce access control

mechanisms. Also, we prioritized the general IoT

clouds — the clouds can be applied to multiple IoT

scenarios (e.g., smart home, smart city, smart energy,

etc.). At last, we prioritized the clouds with better

popularity — more GitHub stars for the open-source

clouds and more customers for the commercial clouds.

Selecting IoT platforms for defense evaluation:

SecHARE fixes the flaws by patching the source codes

of the clouds. Hence,we only evaluated SecHARE upon

the open-source clouds. Fur-

ther, multiple programming languages (e.g., Java, Go,

C++, C, etc.) are used to implement the open-source

IoT clouds.

However, according to the Eclipse Foundation IoT

survey [55], Java is the top choice with a popularity of

66.5%. Therefore, we applied SecHARE to the three

open-source IoT clouds written in Java (e.g,

ThingsBoard, JetLinks, and Kaa open-source).

Efficiency: To evaluate the efficiency of SecHARE, we

deployed 3 popular open-source IoT platforms (i.e.,

ThingsBoard,

Kaa open-source, and JetLinks) in our test server (with

Intel Core i7-9700 cpu, 16 GB memory). With each

cloud, we carried out multiple operations (including

system startup, device creation, device connection, and

device control) before and after it is patched by

SecHARE (experimental programs and data are

publicly available at [16]). We repeated the system

startup operation for 20 times and measured the time.

As shown in Fig. 12(a), the overhead on startup time

introduced by SecHARE is 400 ms

averagely. For the device creation, device connection

and device control operations, we repeated the

experiments for 2000 times. As shown in Fig. 12(b), (c)

and (d), the average overheads are 10.39 ms, 3.17 ms

and 14.25 ms respectively. We believe such overheads

is negligible. Performance overheads: In order to assess

the impact of deploying SecHARE on a real-world

cloud platform, we also conducted a series of

performance evaluations on our test server.

Specifically, we measured the CPU and run-time

memory usage for 1000 device creation and data

querying operations on the ThingsBoard both before

and after deploying SecHARE, respectively. We

observed an increase of only 0.14% in CPU usage and

0.16% in memory usage, indicating that the

performance overheads introduced by SecHARE is

negligible.

C. Security Benefit

As discussed in Section IV, the attacker can leverage

the leaked authorization-data to communicate with the

cloud even after his access right is revoked. We

evaluated whether the attacker can achieve that in the

cloud that has been patched by SecHARE. Specifically,

we set up 3 different devices: the temperature sensor,

the smart window, and the gateway device. Each device

was assigned a specific operation, such as uploading

device data/events, receiving remote control commands,

and managing gateway sub-devices. As depicted in

Table IV, we ensured that the authorized user did not

have access to the actual authorization-data, which

remained undisclosed to them within the SecHARE-

patched cloud. Next, we assessed the scenario in which

a malicious user (e.g., an attacker), possessing retained

authorization-data (access token), attempts to exploit

vulnerabilities in an unpatched cloud platform, as

illustrated in Table V. Through our evaluation, we

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 14

observed that the attacker could engage in data forgery

attacks by uploading device data, privacy leakage

attacks by receiving remote control commands, and

denial-of-service attacks by disconnecting/logging out

the gateway device, thereby disrupting the service of

sub-devices.

However, when these operations were attempted within

the SecHARE-patched cloud platform, the system

effectively denied all unauthorized access attempts,

preventing harm caused by the leakage of authorization-

data. This indicates that our proposed defense can

effectively mitigate the flaws.

 VII. DISCUSSION AND FUTURE WORK

Manual efforts to secure an IoT cloud: As discussed in

Section V-C, SecHARE requires the user to provide a

configuration file. Specifying the configuration file

requires manual efforts. Although we developed CAG

to reduce such manual efforts, certain efforts are still

needed when CAG is not able to determine the exact

methods/functions. Towards fully automated analyses:

To further improve the automation of SecHARE, NLP

techniques can be used to automatically locate/identify

the method/function names in the source code. By

parsing functions and extracting features from the

source code, NLP can make SecHARE more accurate

and efficient. Therefore, in future work, we aim to

explore the feasibility and effectiveness of integrating

NLP techniques into SecHARE to improve its

automation and accuracy. Protection of cross-cloud

device sharing: Although we only applied SecHARE to

secure the device sharing within a single IoT cloud, our

general defense can also help to secure the cross- cloud

device sharing. For example, Bin et al. [5] found that

the deviceID of the SmartThings device (which is

treated as a credential in SmartThings) could be leaked

to a malicious delegatee user in the Google Home.

Leveraging the leaked deviceID, the malicious user can

control the victim’s SmartThings devices that he is not

entitled to access. This problem can be also fixed with

our data mapping scheme. When the SmartThings

transmits the

deviceID to the Google Home, the SmartThings could

generate a new deviceID (denoted as deviceID’) and

send the deviceID’ to Google Home. Upon receiving a

request from Google Home carrying deviceID’, the

SmartThings can transfer the deviceID’ to deviceID,

and perform authorization check based on deviceID.

When revoking the access right of Google Home,

SmartThings can delete the deviceID’, thus to fix the

problem without disrupting the normal IoT service.

Note that, SmartThings should NOT

delete deviceID, since it is also used by other

users/applications in the SmartThings. Also,

SmartThings can NOT refuse to send the identifier of

the delegated device to the Google Home, since the

access delegation protocol of Google Home requires

such information. Supporting more languages: Diverse

programming languages, including Java, Go, and C#,

are employed in the implementation of contemporary

IoT clouds. Presently, SecHARE

has adopted the AspectJ framework specifically to

support Java programming language. Notably,

analogous frameworks are available for other

programming languages, such as GoAOP or Go-Aspect

for Go, and AspectDNG for C#. In future work, we aim

to explore the applicability of these frameworks to

accommodate diverse programming languages. It is

worth noting that the fundamental concept underlying

our proposed defense mechanism is general in nature,

thus facilitating its extension to other IoT clouds.

 VIII. RELATED WORK

IoT platform security: In the rapid development of the

IoT, the IoT cloud plays an important role. Chen et al.

[56] and Zhou et al. [57] have reported flaws found in

device management for IoT clouds, demonstrating that

leakage of device

identity can have serious consequences. However, they

only discovered the vulnerabilities without proposing

any defense

mechanisms. Yuan et al. [5] proposed a semi-automated

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 15

tool to detect cross-cloud IoT delegation vulnerabilities.

In contrast, our work focuses on authorization issues

within individual cloud platforms and provides an

automated protection tool (SecHARE) to mitigate the

authorization-data leakage problem. Moreover,

most of the existing work is mainly for specific

platforms, such as SmartThings [7], [9], [58], [59], [60],

[61], [62], [63], [64], [65], IFTTT [10], [66], [67] and

AWS Alexa [68], [69]. By contrast, our work is to

provide a tool to protect different cloud platforms.

Besides that, some works [7], [62], [66], [70] provide

methods to

protect sensitive information or data flow in IoT apps,

whereas our work is focuses on protecting

authorization-data only in the cloud. IoT permission

sharing: Permission issues have always been one of the

key concerns of IoT security and have been widely

studied [9], [10], [11], [58], [59], [71], [72], [73], [74].

Fernandes

et al. [9] first reported that the coarse-grained capability

design leads to over-privileged and the inability of the

event subsystem to adequately protect events carrying

sensitive information in Smart Things. Additionally,

access control is not only distributed but also

heterogeneous and ad-hoc in today’s IoT cloud

ecosystem. To cope with the new application scenario,

Jia et al. [58] focused on permission protection and

proposed ContexIoT, a fine-grained context-based

permission system for SmartThings to provide context

integrity for IoT programs at runtime. Tian et al. [59]

presented a user-centric, semantic-based authorization

design called SmartAuth to help users avoid overly

privileged applications in SmartThings. These

researches primarily focus on the permission

management of the applications, without consideration

of dynamic user authorization scenarios or proposing

methods to secure the authorization-data. Fernandes et

al. [62] proposed a privacy-preserving system called

FlowFence, which attempts to address the

ineffectiveness of existing permission-based access

controls in controlling sensitive data flows in

applications by embedding the data flow patterns

expected by users. However, this work mainly tries to

prevent malicious IoT applications from abusing the

sensitive data (e.g., data collected by the IoT sensors).

In con-

trast, SecHARE focuses on securing the data used for

authorization and preventing unauthorization access in

a shared IoT scenario.

Furthermore, Fernandes et al. [10] introduced

Decentralized Action Integrity to prevent an untrusted

trigger-action platform from misusing compromised

OAuth tokens. Andersen et al. [11] presented WAVE,

an authorization frame-

work offering decentralized trust, which supports

transitive fine-grained sharing and revocation.

However, these efforts, while meeting the current

complex IoT authorization needs, require all parties to

work together following the same framework APIs and

are more difficult to apply and deploy to the real world.

In contrast, our work only adds a few changes to the

cloud platform to realize automatic protection of

authorization-data. Moreover, our tool can adapt to a

variety of authorization-data and is compatible with

different cloud platforms.

IX. CONCLUSION

In this paper, we systematically study how the

authorization data are managed in the real-world IoT

device sharing and its security implications. Our

research reveals that authorizationdata leakage is

prevalent in the IoT clouds, with 6 flaws identified in 6

popular IoT clouds. To mitigate the problem, we

proposed SecHARE to automatically patch the

vulnerable codes of the

IoT clouds. We applied SecHARE to 3 open-source IoT

clouds. Our evaluation shows that SecHARE is easy to

use by the IoT vendors, effective and efficient in

securing authorization-data. Our new understanding and

new techniques will provide better protection for

today’s IoT cloud platforms, as well as those to

be built in the years to come.

REFERENCES

[1] “AWS IoT,” 2023. Accessed: Mar. 2023. [Online].

Available: https://aws.amazon.com/iot/

[2] “SmartThings Samsung,” 2023. Accessed: Mar.

2023. [Online]. Available:

https://www.smartthings.com/

[3] “Philips HUE,” 2023. Accessed: Mar. 2023.

[Online]. Available: https://www2.meethue.com/

[4] “MiHome,” 2023. Accessed: Mar. 2023. [Online].

Available: https:// xiaomi-mi.com/mi-smart-home/

[5] B. Yuan et al., “Shattered chain of trust:

Understanding security risks in cross-cloud IoT access

delegation,” in Proc. 29th USENIX Secur. Symp.,2020,

pp. 1183–1200.

[6] “OAuth 2.0,” 2023. Accessed: Mar. 2023. [Online].

Available: https://oauth.net/2/

[7] Z. B. Celik et al., “Sensitive information tracking in

commodity IoT,” inProc. 27th USENIX Secur. Symp.,

2018, pp. 1687–1704.

[8] Y. Sameshima and P. T. Kirstein, “Authorization

with security attributes and privilege delegation: Access

control beyond the ACL,” Comput. Commun., vol. 20,

no. 5, pp. 376–384, 1997.

[9] E. Fernandes, J. Jung, and A. Prakash, “Security

analysis of emerging smart home applications,” in Proc.

IEEE 37th Symp. Secur. Privacy, 2016,pp. 636–654.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 16

[10] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash,

“Decentralized action integrity for trigger-action IoT

platforms,” in Proc. 25th Annu. Netw. Distrib. Syst.

Secur. Symp., 2018.

[11] M. P. Andersen et al., “WAVE: A decentralized

authorization framework with transitive delegation,” in

Proc. 28th USENIX Secur. Symp., 2019, pp. 1375–

1392.

[12] “Chinese national vulnerability database,”

Accessed: Mar. 2023.[Online]. Available:

https://en.wikipedia.org/wiki/Chinese_National_

Vulnerability_Database

[13] “Thingsboard Github,” 2023. Accessed: Mar.

2023. [Online]. Available:

https://github.com/thingsboard/thingsboard

[14] “Kaa Github,” 2023. Accessed: Mar. 2023.

[Online]. Available: https:// github.com/kaaproject/kaa

[15] “JetLinks Github,” 2023. Accessed: Mar. 2023.

[Online]. Available: https://github.com/jetlinks/jetlinks-

community

[16] “SecHARE,” 2023. Accessed: Mar. 2023.

[Online]. Available:

https://github.com/SecHARE/SecHARE

[17] “Zigbee | complete IOT solution,” 2023. Accessed:

Mar. 2023. [Online].Available: https://csa-iot.org/all-

solutions/zigbee/

[18] “Better and safer smart homes are built on Z-

wave,” 2023. Accessed:Mar. 2023. [Online]. Available:

https://www.z-wave.com/

[19] “Bluetooth low energy (BLE),” 2023. Accessed:

Mar. 2023. [On-line]. Available:

https://www.bluetooth.com/learn-about-bluetooth/tech-

overview/

[20] “MQTT | The standard for IoT messaging,” 2023.

Accessed: Mar. 2023.[Online]. Available:

https://mqtt.org/

[21] “HTTP | Hypertext transfer protocol,” 2023.

Accessed: Mar. 2023. [On-ine]. Available:

https://www.w3.org/Protocols/

[22] “CoAP | Constrained application protocol,” 2023.

Accessed: Mar. 2023.[Online]. Available:

http://coap.technology/

[23] “M2M lightweight (LWM2M),” 2023. Accessed:

Mar. 2023. [On-line]. Available:

https://omaspecworks.org/what-is-oma-

pecworks/iot/lightweight-m2m-lwm2m/

[24] “Advanced message queuing protocol (AMQP),”

2023. Accessed:

Mar. 2023. [Online]. Available: https://www.amqp.org/

[25] Y. Jia et al., “Burglars’ IoT paradise:

Understanding and mitigating security risks of general

messaging protocols on IoT clouds,” in Proc. IEEE 41st

Symp. Secur. Privacy, 2020, pp. 465–481.

[26] “Publish–subscribe pattern,” 2023. Accessed: Mar.

2023. [Online]. Available:

https://en.wikipedia.org/wiki/Publish-subscribe_pattern

[27] “HomeKit,” 2023. Accessed: Mar. 2023. [Online].

Available:

https://developer.apple.com/documentation/homekit

[28] “Google home,” 2023. Accessed: Mar. 2023.

[Online]. Available:

https://developers.google.com/assistant/smarthome/over

view

[29] “IFTTT,” 2023. Accessed: Mar. 2023. [Online].

Available: https://ifttt.com/

[30] G. Kiczales et al., “Aspect-oriented programming,”

in Proc. 11th Eur.Conf. Object-Oriented Program.,

1997, pp. 220–242.

[31] “AspectJ,” 2023. Accessed: Mar. 2023. [Online].

Available:

https://www.eclipse.org/aspectj/doc/released/

[32] “Spring AOP,” 2023. Accessed: Mar. 2023.

[Online]. Available: https://docs.spring.io/spring-

framework/docs/2.5.5/reference/aop.html

[33] “Alibaba cloud IoT,” 2023. Accessed: Mar. 2023.

[Online].

Available:https://www.alibabacloud.com/product/iot

[34] “Tuya,” 2023. Accessed: Mar. 2023. [Online].

Available: https://en.tuya. com/solutions

[35] “ThingsBoard,” 2023. Accessed: Mar. 2023.

[Online]. Available: https: //thingsboard.io/

[36] “Kaa,” 2023. Accessed: Mar. 2023. [Online].

Available: https://www.kaaiot.com/

[37] “JetLinks,” 2023. Accessed: Mar. 2023. [Online].

Available: https://www.jetlinks.cn/

[38] “ThingsKit,” 2023. Accessed: Mar. 2023. [Online].

Available: https://www.thingskit.com/

[39] “ThingsPanel,” 2023. Accessed: Mar. 2023.

[Online]. Available: https://www.thingspanel.cn/

[40] W. He et al., “Rethinking access control and

authentication for the home Internet of Things (IoT),”

in Proc. 27th USENIX Secur. Symp., USENIX Secur.,

2018, pp. 255–272.

[41] Y. Jia et al., “Who’s in control? on security risks of

disjointed IoT device management channels,” in Proc.

28th ACM SIGSAC Conf. Comput.Commun. Secur.,

2021, pp. 1289–1305.

[42] “MQTTX,” 2023. Accessed: Mar. 2023. [Online].

Available: https:// github.com/emqx/MQTTX

[43] “Postman,” 2023. Accessed: Mar. 2023. [Online].

Available: https://www. postman.com/

[44] “Wireshark,” 2023. Accessed: Mar. 2023.

[Online]. Available: https: //www.wireshark.org/

[45] “JetLinks official protocol document,” 2023.

Accessed: Mar. 2023.[Online]. Available:

http://doc.jetlinks.cn/basics-guide/jetlinks-protocol-

support.html

[46] “QDox,” 2023. Accessed: Mar. 2023. [Online].

Available: https://github.com/paul-hammant/qdox

[47] “Spoon,” 2023. Accessed: Mar. 2023. [Online].

http://www.ijsrem.com/
https://omaspecworks.org/what-is-oma-pecworks/iot/lightweight-m2m-lwm2m/
https://omaspecworks.org/what-is-oma-pecworks/iot/lightweight-m2m-lwm2m/
https://en.tuya/
https://www/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 17

Available: https://github.com/INRIA/spoon

[48] “Configuration of load-time weaving in AspectJ,”

2023. Accessed:Mar. 2023. [Online]. Available:

https://www.eclipse.org/aspectj/doc/

released/devguide/ltw-configuration.html

[49] “MongoDB,” 2023. Accessed: Mar. 2023.

[Online]. Available: https://www.mongodb.com/home

[50] “RandomStringUtils.randomAlphanumeric(),”

2023. Accessed:Mar. 2023. [Online]. Available:

https://commons.apache.org/proper/commons-

lang/javadocs/api-3.1/org/apache/commons/lang3/

RandomStringUtils.html#randomAlphanumeric(int)

[51] “LTW weavingagents,” 2023. Accessed: Mar.

2023. [Online].

Available:https://www.eclipse.org/aspectj/doc/released/

devguide/ltw-agents.html

[52] “ThingsPanel github,” 2023. Accessed: Mar. 2023.

[Online].

Available:https://github.com/ThingsPanel/ThingsPanel-

Go

[53] “Kaa IoT use cases,” 2023. Accessed: Mar. 2023.

[Online]. Available:https://www.kaaiot.com/use-cases

[54] “ThingsKit industry solutions,” 2023. Accessed:

Mar. 2023. [Online].Available:

https://www.thingskit.com/portfolio

[55] “IoT developer survey2018,” 2023. Accessed:

Mar. 2023. [Online]. Available:

https://www.slideshare.net/kartben/iotdeveloper-

survey-2018

[56] J. Chen et al., “Your IoTs are (Not) mine: On the

remote binding between IoT devices and users,” in

Proc. IEEE/IFIP 49th Annu. Int. Conf. Dependable

Syst. Netw., 2019, pp. 222–233.

[57] W. Zhou et al., “Discovering and understanding

the security hazards in the interactions between IoT

devices, mobile apps, and clouds on smart home

platforms,” in Proc. 28th USENIX Secur. Symp., 2019,

pp. 1133–1150.

[58] Y. J. Jia et al., “ContexloT: Towards providing

contextual integrity to appified IoT platforms,” in Proc.

24th Annu. Netw. Distrib. Syst. Secur. Symp., 2017,

pp. 1–15.

[59] Y. Tian et al., “SmartAuth: User-centered

authorization for the Internet of Things,” in Proc. 26th

USENIX Secur. Symp., 2017, pp. 361–378.

[60] Z. B. Celik, G. Tan, and P. D. McDaniel,

“IoTGuard: Dynamic enforcement of security and

safety policy in commodity IoT,” in Proc. 26th Annu.

Netw.Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[61] W. Ding and H. Hu, “On the safety of IoT device

physical interaction control,” in Proc. 25th ACM

SIGSAC Conf. Comput. Commun. Secur.,2018, pp.

832–846.

[62] E. Fernandes, J. Paupore, A. Rahmati, D.

Simionato, M. Conti, and A. Prakash, “FlowFence:

Practical data protection for emerging IoT application

frameworks,” in Proc. 25th USENIX Secur. Symp.,

2016,pp. 531–548.

[63] Q. Wang, W. U. Hassan, A. Bates, and C. A.

Gunter, “Fear and logging in the Internet of Things,” in

Proc. 25th Annu. Netw. Distrib. Syst. Secur. Symp.,

2018, pp. 1–15.

[64] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang,

and H. Zhu, “HoMonit:Monitoring smart home apps

from encrypted traffic,” in Proc. 25th ACM SIGSAC

Conf. Comput. Commun. Secur., 2018, pp. 1074–1088.

[65] B. Yuan et al., “SmartPatch: Verifying the

authenticity of the trigger-event in the IoT platform,”

IEEE Trans. Dependable Secure. Comput., vol. 20, no.

2, pp. 1656–1674, Mar./Apr. 2023.

[66] I. Bastys, M. Balliu, and A. Sabelfeld, “If this then

what?: Controlling flows in IoT apps,” in Proc. 25th

ACM SIGSAC Conf. Comput. Commun.Secur., 2018,

pp. 1102–1119.

[67] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and

C. A. Gunter, “Charting the attack surface of trigger-

action IoT platforms,” in Proc. 26th ACM SIGSAC

Conf. Comput. Commun. Secur., 2019, pp. 1439–1453.

[68] N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and

F. Qian, “Dangerous skills: Understanding and

mitigating security risks of voice-controlled third-party

functions on virtual personal assistant systems,” in

Proc. IEEE 40th Symp. Secur. Privacy, 2019, pp. 1381–

1396.

[69] L. Cheng, C. Wilson, S. Liao, J. Young, D. Dong,

and H. Hu, “Dangerous skills got certified: Measuring

the trustworthiness of skill certification in voice

personal assistant platforms,” in Proc. 27th ACM

SIGSAC Conf.

Comput. Commun. Secur., 2020, pp. 1699–1716.[70]

X. Li, J. Li, S. Yiu, C. Gao, and J. Xiong, “Privacy-

preserving edge-assisted

image retrieval and classification in IoT,” Front.

Comput. Sci., vol. 13,no. 5, pp. 1136–1147, 2019.

[71] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash,

“Security implications of permission models in smart-

home application frameworks,” IEEE Secur. Privacy,

vol. 15, no. 2, pp. 24–30, Mar./Apr. 2017.

[72] A. Rahmati, E. Fernandes, K. Eykholt, and A.

Prakash, “Tyche: A risk-based permission model for

smart homes,” in Proc. IEEE 3rd Cybersecu-rity

Develop., 2018, pp. 29–36.

[73] W. Wu, S. Hu, D. Lin, and G. Wu, “Reliable

resource allocation with RF fingerprinting

authentication in secure IoT networks,” Sci. China Inf.

Sci.,vol. 65, no. 7, pp. 1–16, 2022.

[74] Z. Guan, W. Yang, L. Zhu, L. Wu, and R. Wang,

“Achieving adaptively secure data access control with

privacy protection for lightweight IoTdevices,” Sci.

China Inf. Sci., vol. 64, no. 6, 2021, Art. no. 162301

http://www.ijsrem.com/

