2 3y
e
iz 1ISREM . . . e . . .
Hﬂzﬁlnternatlonal Journal of Scientific Research in Engineering and Management (IJSREM)
w Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

Leveraging Generative Al for Data-Driven Insights and Visualization in Python

Chitresh Goyal, Neelima Ratra, Swati Singh, Neha Kaushik

Abstract:

In this work, we introduce a novel solution that integrates Python, Streamlit, OpenAl, and embeddings to extract
insights and generate visualizations from various data sources. Our approach empowers users to interact with data in
plain text, enabling a more intuitive and efficient data analysis process. By leveraging Generative Al, our system not
only simplifies data exploration but also addresses the challenges of identifying and generating charts, making data
visualization more accessible. The solution accommodates diverse data sources, including PostgreSQL and CSV
files, while ensuring a secure and user-friendly experience. This paper aims to demonstrate the effectiveness of
combining unsupervised and supervised learning algorithms in real-time text analysis, providing a smart, quick, and
scalable method for data-driven decision-making.

Introduction:

The advent of Generative Al has revolutionized the way we interact with data. By combining the power of OpenAl's
language models with Python's versatility and Streamlit's interactivity, we have developed a solution that simplifies
data exploration and visualization. Our system supports multiple data sources, including PostgreSQL and CSV files,
and provides a secure and user-friendly interface for data analysis. In this paper, we delve into the details of our
solution, its development journey, and the impact it has on data analysis and visualization processes.

Background and Rationale

In today's fast-paced business environment, data-driven insights are crucial for making informed decisions.
Traditional data analysis tools often require specialized knowledge and can be time-consuming. There is a growing
need for solutions that can provide quick and intuitive access to data insights. Our solution addresses this need by
leveraging Generative Al to simplify the data analysis process and make it more accessible to users.

Problem Statement:

Despite the wealth of information contained in data, extracting meaningful insights can be challenging due to its
unstructured nature. For instance, a business may need to categorize products based on descriptions, a task that
traditionally requires manual effort and is prone to errors. Automating this process using unsupervised learning
algorithms can save time and resources, but conventional methods like Topic Modelling lack the ability to assign
understandable labels to the grouped data, making it difficult for non-technical users to interpret the results.
Moreover, the addition of new data often necessitates re-running the entire analysis, further complicating the process.

© 2024, [JSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 1

http://www.ijsrem.com/

g
]JSREM . . . e . . .
o mﬁlnternatlonal Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

Proposed Solution:

Our solution addresses these challenges by combining unsupervised and supervised learning algorithms in a two-
stage process:

- Stage 1: Using historical text data, we group similar texts based on content and assign a relevant label to each
group automatically, thus categorizing the texts.

- Stage 2: We build a supervised learning classification model using the labeled data from Stage 1. This model can
classify new texts into the predefined categories without the need to re-run the initial grouping process.

Technical Architecture

Our solution is built on a robust technical architecture that integrates Python for backend processing,
Streamlit for frontend interactivity, OpenAl's language models for natural language understanding, and embeddings
for efficient data representation. This architecture allows for seamless integration of various data sources and provides
a scalable framework for data analysis and visualization.

- Efficient Data Representation with Embeddings: A key challenge in our solution was managing the large
number of tokens required for processing extensive data sources. To address this, we leveraged embeddings to
represent data in a high-dimensional space. This approach significantly reduced the token count required for
OpenAl queries, enhancing the efficiency of our system. By measuring similarity between data points using
cosine similarity, we were able to generate more accurate and relevant insights with fewer tokens, thus optimizing
our solution for scalability and performance.

text enbedding
""nublic. tp_individual": [","[-6.823008581719613875, 0.81786579754782677, 0.R08T37397368173206, -0.0260467678308486%4, -0.018001144751906395, 0.821038930863142014,
n [HII[O UmnNaNyH"I ”H[Id"” L1} .lumn[latiT DEI”” H\IUAF' HAR”H ”"JaNDI‘PDatal"” \IH' \IIIJaND"PDataHlH‘ IH\ L} 3\III]!HJ

"[-6,8037417272105813026, 0.02903381788465042, -0.805 3877, -0.0026396184654021%4, -0.034B0486571786788, 0.0278384517878294, -0.0266138855367898%4, -0.01¢

{""columniame™": ""age_group", ""colunnDataType"": ""VARCHAR"", ""sampleDatal": "'50-54"", ""sampleData2'": ""%0-34""},",
"[-0.803982342313975898, 0.013408362804532051, [J‘[IOLUD"J-SWHF?UO 55, -0.60852233565175005, -0.04299385617355214, 0.020582742585063263, -0.008450253866612911, -0.0
" {"columfiane™"; ""education_level"", "columDataType'": ”"UAFIHAP””. "sampledatal"': "HIGHSCHOOL"", "'sampleData2"": "'COLLEGE™},",

[. 005300775548070669, 832@4;47213[14.441T1 -0, 00681601185 .510101, -0.017688032193484306, 00.1?2?09113 15811, B.033334556367620035, -0.0184511560546702%6, 0.8

Methodology:
Our solution operates in several stages:

1. Data Processing: Upon receiving a data source, the system generates a schema, tables, statistics, and
correlations. This structured representation of data serves as the foundation for further analysis.

© 2024, [JSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 2

http://www.ijsrem.com/

Wl

4

%ﬁﬁ;;nulnternatlonal Journal of Scientific Research in Engineering and Management (IJSREM)
%

w Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

db_config = {
"user": "airflow”,
"password”: "airflow”,
"driver": "org.postgresqgl.Driver”,
"host": "172.18.0.2",
"port": "5432",
"dbname": "udm_short"

}

sqlalchemy_url = F7"" postgresa :/f
{config.db_configf 'user']}:{config.db_config['password"']}@
{config.db_ cmrtﬂ’ host']}
{config.db _configf 'port']}/{config.db configf 'dbname'j}"""

f fetch_sample_data(engine, table_name, column_name, sample size=2):
th engine.connect() as conn:
query = text(f"""SELECT "{column_name}" FROM "{table _name}" WHERE "{column_name}l" IS NOT NULL LIMIT {sample_size};"""
result = conn.execute(query)
samples = [tr(sample[8]) for sample in result.fetchall()]

v

retur , '.joln(samples[:sample_size [/ 2]), '. '.joln(samples[sample_size [/ 2:])

f execute_query(sql, sqlalchemy_url):
engine = create_engine(sglalchemy_url)

df = pd.read_sql_query(sql, engine)
result = df.to_json{orient="'records")
return result

2. Embedding Generation: We employ embeddings to represent the data in a high-dimensional space,
enabling the measurement of similarity between different data points using cosine similarity.

def generate embeddlngs{anutText, eutputFLIe]
Initialize al token usage counter

total_token_usage = 8
print{f"Total to&eas {JAX TG(E&ST }

Generate embe Mo -

embeddings = []
accurate_token_counts = []
token_usages = [] # Store ind
for text in inputText:
truncated_text = truncate_text(text, MAX_TOKENS)
embedding, token usage = get embedding and token usage(truncated text)

if embedding:
embeddings. append{embedding)
accurate_token_counts.append(token_count(truncated_text))
token_usages.append(token_usage)

if tokem_usage '= 'Error’' and token_usage '= ‘Unknown’
total_token_usage += token_usage # Update total token usage
embeddings.append{Nones)
accurate_token_counts.append(@)
token_usages.append('Error ")
print{f"Chunk [{textf:28]}... | used: {token usagel’)

DFIHT(I Tbtue tO(EGS csnsumed : {total_token_usagel")

Upda DataFrame to include
e pd DataFrame({
"text": inputText,
"embedding"”: embeddings

B

Save DataFrame to C5\
df . to csv{eutputFlle index=False)
return “data/’

© 2024, [JSREM | www.ijsrem.com DOI: 10.55041/1)]SREM29192

http://www.ijsrem.com/

%g.’ 38

IJSREM . . . e . . .
mzﬁlnternatlonal Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

3. Contextual Query Generation: The embeddings, along with the schema and user-defined instructions, are
used to create a context for the OpenAl chat completion model. This context, combined with a user prompt
and a system prompt, guides the model to generate relevant insights and tags related to the data source.

Token usage -> Prompt: 2911 | Completion: 335 | Total: 3246

GPT generated Insights and Tags

Insights:
1. Demographics: The 'tp_individual' table contains a wealth of demographic information, including age group, education level, gender, home status, income, net

worth, occupation, marital status, and urbanicity. This data can be used to create detailed profiles of individuals.

2. Household Composition: The 'tp_individual' table also provides information about the number of adults and children in each household. This could be useful for

understanding family dynamics and targeting specific household types.

3. Contact Information: Each individual's first name, last name, phone number, and email address are stored in the "tp_individual' table. This information could be

used for direct marketing efforts.

4. Web Behavior: The 'monthly_visits' and "visits' columns in the 'tp_individual' table indicate how often each individual visits certain websites. This could provide

insights into online behavior and preferences.

5. App Usage: The 'no_of_apps' column in the "tp_individual' table shows how many apps each individual has in various categories. This could help identify popular

app categories among different demographic groups.

6. Segmentation: The 'tp_segments' table contains information about different segments, including their names and descriptions. This could be useful for

understanding how individuals are grouped based on their characteristics and behaviors.

7. Web Content Categories: The 'tp_web_categories_meta' table categorizes web content into tiers. This could be useful for understanding what types of content

users are consuming.
Broader Tags:

Demographics, Household Composition, Contact Information, Web Behavior, App Usage, Segmentation, Web Content Categories

4. Query Execution: The system is configured to generate two PostgreSQL queries: one for creating a relevant
view and another for selecting data from that view. The output is displayed as a Streamlit dataframe.

prompt(query: str, embeddings_csv_p : str, token_budget: int =

th)
.apply(ast.literal_eval)

lengths = df[" J.apply(
2 et(embedding_lengths)) 1:

© 2024, [JSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 4

http://www.ijsrem.com/

#gg.’ '3

iz 1ISREM . . . e . . .
Hﬂzﬁlnternatlonal Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

5. Visualization: The dataframe is used as input for generating graphs. The initial user prompt is included in
the context to ensure that the generated Python code for plotting (using Streamlit and Altair) is relevant to
the original query.

df: pd.DataFrame, csv_file_path: str) -» str:

Key Features:
1. Security: No data is sent to OpenAl, ensuring the privacy and security of the data.
2. Embeddings: Utilization of embeddings for efficient similarity measurement and context generation.
3. Clear Schema Context: The detailed schema context allows users to write complex queries with ease.
4. Configurable OpenAl Chat Completion: The system allows for customization of parameters such as 'n’,

‘top_n’, ‘temperature’, ‘frequency penalty’, and “presence penalty” to tailor the output to specific needs.

5. Robust Executors: The solution includes a Python executor and a PostgreSQL executor with proper handlers
to execute code and queries safely.

6. Restricted Operations: To ensure data integrity, the system restricts delete and update operations in both
the PostgreSQL and Python code.

Settings
Maodel

Ept-4-8k ~

Token

4800 32080

Openai

1.12.0 ~

Temperature

—l

0.00 1.00
n: Generating Multiple Responses

e
1 5
Frequency Penalty: Controlling Repetitive Responses

.10 1.00

Presence Penalty: Controlling Aveidance of Certain Topics

.10 1.80

Top P: Nucleus Sampling, Controlling Response Quality

—_—

.10 1.00

© 2024, [JSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 5

http://www.ijsrem.com/

#gg.’ '3
iz 1ISREM . . . e . . .
Hﬂzﬁlnternatlonal Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

Uniqueness of the Solution:

Our solution stands out by establishing an algorithmic process that not only groups text documents efficiently but
also assigns meaningful labels to each group, a feature not offered by traditional Topic Modelling algorithms.
Furthermore, the predictive model built in Stage 2 enables automatic classification of future texts, eliminating the
need for repetitive analysis.

Validation and Experiments:

To validate our proposed solution, we followed these steps for each stage:

- Stage I:
Data Pre-processing and Cleaning: We cleaned the text data of special characters, unnecessary numbers, and stop
words, and used tokenization to break the text into smaller chunks for analy

Optimal Number of Topics: Using coherence scores, we determined the optimal number of topics for Topic
Modelling.

Topic Model Building: We trained an unsupervised machine learning topic model on the data, assigning a topic
number to each document/text.

Naming Each Topic: We used Large Language Models like GPT-3.5 Turbo for automatic generation of names
for each topic.

- Stage 2:
Data Division: We divided the labeled data into training and testing datasets.

Classification Model Building: We built a Naive Bayes Text Classification Model using the training data.

Model Validation and Deployment: We validated the model using AUC and deployed it for predicting labels of
unknown texts.

Results and Analysis:

Our solution successfully categorized and grouped product descriptions based on their content, with the model
accurately grouping similar descriptions and assigning appropriate labels. The predictive model built in Stage 2
demonstrated high accuracy in classifying new texts into the identified categories, streamlining the text analysis
process and enabling real-time, efficient data categorization.

© 2024, [JSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 6

http://www.ijsrem.com/

SJIF Rating: 8.176 ISSN: 2582-3930
‘Your message
Create a chart displaying the distribution of the number of males and females for the whole population.
Submit
Token usage -> Prompt: 3228 | Completion: 52 | Total: 3280
gender count
0 MALE 5,941
1 FEMALE 6,059
Token usage -> Prompt: 521 | Completion: 285 | Total: 806
Distribution of Males and Females in the Population
gendes
M FEMALE

MALE

Al:

CREATE OR REPLACE VIEW gender_distribution AS
SELECT
gender: :VARCHAR AS Gender
COUNT(*) AS Count
FROM
public.tp_individual
GROUP BY
gender;

SELECT * FROM gender_distribution;

My Journey in Developing the Solution:

1. Initial Challenges with CSV Data:

- Encountered issues with graph plotting accuracy when using the entire dataframe.

- Resolved by sharing sample data instead of the full dataset to maintain graph accuracy without exposing
sensitive information.

- Faced a major setback when the entire POC stopped working due to updates in the pandas library and
azureopenai, leading to the abandonment of the langchain, azureopenai, and pandas combination.

2. Overcoming Challenges and Redesigning the Solution:

- Switched to using OpenAl versions 0.28 and 1.12 for chat completion and completion APIs.

- Adopted smart dataframes for better data handling and implemented regex-based handlers for script security.

- Redesigned the entire approach by sending a clear context of schema, correlation, statistics, user prompt, system
prompt, and instructions to OpenAl, along with using embeddings to reduce the number of tokens.

© 2024, I[JSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 7

http://www.ijsrem.com/

#gg.’ '3

iz 1ISREM . . . e . . .
Hﬂzﬁlnternatlonal Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

3. Implementing the Final Solution:

- Successfully executed Python scripts generated by GPT for direct CSV data analysis and graph plotting.

- Addressed security concerns by ensuring that the scripts do not alter data and by creating a temporary CSV
path for the uploaded file to be used in the script.

- Utilized Altair and Bokeh libraries for beautiful chart plotting, with only these two libraries installed in the
environment to prevent errors from other libraries.

4. Expanding to Database Data Analysis:

- Leveraged the CSV POC to handle database sources, initially connecting to databases using SQLAlchemy and

formatting the schema similarly to CSV data.

Faced challenges with large data leading to heavy token usage in OpenAl queries, which was mitigated by

sharing a sample of scrubbed data.

Adopted OpenAl's GPT-4 model for improved query generation and fine-tuned the solution with embeddings,

descriptive schema, and configurations like "'n’, 'top _n’, and "temperature” for better accuracy.

Continuous Improvement and Future Directions:

Continuously improved the solution based on feedback and new insights, such as using embeddings over fine-

tuning for better accuracy.

Explored the potential of integrating a vector database to enhance accuracy further by storing feedback and

maintaining an accuracy level rating for responses.

- Planned to seek feedback from senior management and explore additional applications of Generative Al in data
analysis and query generation.

User Query Samples:

- CSV: "Create a chart displaying the distribution of the number of males and females for the whole population.”
- DB: "Give me a clear view of the count of married and unmarried house owners."

Use Cases and Applications

Our solution has broad applications across industries such as healthcare, finance, and marketing. For
example, in healthcare, it can be used to analyze patient data and identify trends, while in finance, it can be used to
visualize market data and make investment decisions.

User Experience and Interface

The user interface is designed to be intuitive and user-friendly, allowing users to interact with data using
natural language. The workflow is streamlined to simplify data analysis and visualization.

How would you like to connect to the database?

csv v

Select Option
Connect with Default DB
Enter DB Details

csy

Matakars Crhama ~

© 2024, [JSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 8

http://www.ijsrem.com/

#gg.’ '3
iz 1ISREM . . . e . . .
Hﬂzﬁlnternatlonal Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

Future Enhancements

Future enhancements include integrating Al and machine learning for advanced data analysis, adding more
data sources, and improving the user interface for an even more seamless experience.

Community and Collaboration

The development of our solution has been a collaborative effort, with contributions from the open-source
community, partnerships with other organizations, and valuable user feedback. We encourage further collaboration
to enhance the solution.

Conclusion:

Our solution demonstrates the potential of Generative Al in enhancing data analysis and visualization. By
providing a user-friendly interface and leveraging the capabilities of OpenAl's language models, we enable users to
gain deeper insights into their data and make informed decisions.

References:
- OpenAl API Documentation: https://platform.openai.com/docs/api-reference/introduction

- Azure OpenAl Service QuickStart: https://learn.microsoft.com/en-us/azure/ai-services/openai/chatgpt-
quickstart?tabs=command-line%2Cpython&pivots=programming-language-python

- Chat Completion Parameters & Embeddings: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference

- GPT 3.5 Fine Tuning: https://learn.microsoft.com/en-us/azure/ai-services/openai/tutorials/fine-
tune?tabs=python%?2Cpowershell

- Customize a Model with Fine Tune (from UI): https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-
tuning?tabs=turbo%?2Cpython&pivots=programming-language-studio

- Embeddings Tutorial: https://learn.microsoft.com/en-us/azure/ai-
services/openai/tutorials/embeddings?tabs=python%2Ccommand-line&pivots=programming-language-python

- LAMA: https://github.com/facebookresearch/LAMA
- Embedding Wikipedia Articles for Search: https://cookbook.openai.com/examples/embedding_wikipedia articles for search

- Question Answering Using Embeddings-Based Search:
https://cookbook.openai.com/examples/question_answering_using_embeddings

- Understanding ChatGPT Embedding: https://medium.com/@iamamellstephen/understanding-chatgpt-embedding-unveiling-
the-core-of-conversational-ai-13b792ea0f92

- Build a Chatbot on Your CSV Data with Langchain and OpenAl: https://betterprogramming.pub/build-a-chatbot-on-your-csv-
data-with-langchain-and-openai-ed121£85f0cd

- Model Parameters in OpenAl API: https://medium.com/nerd-for-tech/model-parameters-in-openai-api-161a5b1f8129

- Voyage: Embeddings in Langchain and Chat Langchain: https://blog.langchain.dev/voyage-embeddings-in-langchain-and-
chat-langchain/

- Retrieval: https://blog.langchain.dev/retrieval/

© 2024, [JSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 9

http://www.ijsrem.com/

