
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 1

Leveraging Generative AI for Data-Driven Insights and Visualization in Python

Chitresh Goyal, Neelima Ratra, Swati Singh, Neha Kaushik

Abstract:

In this work, we introduce a novel solution that integrates Python, Streamlit, OpenAI, and embeddings to extract

insights and generate visualizations from various data sources. Our approach empowers users to interact with data in

plain text, enabling a more intuitive and efficient data analysis process. By leveraging Generative AI, our system not

only simplifies data exploration but also addresses the challenges of identifying and generating charts, making data

visualization more accessible. The solution accommodates diverse data sources, including PostgreSQL and CSV

files, while ensuring a secure and user-friendly experience. This paper aims to demonstrate the effectiveness of

combining unsupervised and supervised learning algorithms in real-time text analysis, providing a smart, quick, and

scalable method for data-driven decision-making.

Introduction:

The advent of Generative AI has revolutionized the way we interact with data. By combining the power of OpenAI's

language models with Python's versatility and Streamlit's interactivity, we have developed a solution that simplifies

data exploration and visualization. Our system supports multiple data sources, including PostgreSQL and CSV files,

and provides a secure and user-friendly interface for data analysis. In this paper, we delve into the details of our

solution, its development journey, and the impact it has on data analysis and visualization processes.

Background and Rationale

In today's fast-paced business environment, data-driven insights are crucial for making informed decisions.

Traditional data analysis tools often require specialized knowledge and can be time-consuming. There is a growing

need for solutions that can provide quick and intuitive access to data insights. Our solution addresses this need by

leveraging Generative AI to simplify the data analysis process and make it more accessible to users.

Problem Statement:

Despite the wealth of information contained in data, extracting meaningful insights can be challenging due to its

unstructured nature. For instance, a business may need to categorize products based on descriptions, a task that

traditionally requires manual effort and is prone to errors. Automating this process using unsupervised learning

algorithms can save time and resources, but conventional methods like Topic Modelling lack the ability to assign

understandable labels to the grouped data, making it difficult for non-technical users to interpret the results.

Moreover, the addition of new data often necessitates re-running the entire analysis, further complicating the process.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 2

Proposed Solution:

Our solution addresses these challenges by combining unsupervised and supervised learning algorithms in a two-

stage process:

- Stage 1: Using historical text data, we group similar texts based on content and assign a relevant label to each

group automatically, thus categorizing the texts.

- Stage 2: We build a supervised learning classification model using the labeled data from Stage 1. This model can

classify new texts into the predefined categories without the need to re-run the initial grouping process.

Technical Architecture

Our solution is built on a robust technical architecture that integrates Python for backend processing,

Streamlit for frontend interactivity, OpenAI's language models for natural language understanding, and embeddings

for efficient data representation. This architecture allows for seamless integration of various data sources and provides

a scalable framework for data analysis and visualization.

- Efficient Data Representation with Embeddings: A key challenge in our solution was managing the large

number of tokens required for processing extensive data sources. To address this, we leveraged embeddings to

represent data in a high-dimensional space. This approach significantly reduced the token count required for

OpenAI queries, enhancing the efficiency of our system. By measuring similarity between data points using

cosine similarity, we were able to generate more accurate and relevant insights with fewer tokens, thus optimizing

our solution for scalability and performance.

Methodology:

Our solution operates in several stages:

1. Data Processing: Upon receiving a data source, the system generates a schema, tables, statistics, and

correlations. This structured representation of data serves as the foundation for further analysis.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 3

2. Embedding Generation: We employ embeddings to represent the data in a high-dimensional space,

enabling the measurement of similarity between different data points using cosine similarity.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 4

3. Contextual Query Generation: The embeddings, along with the schema and user-defined instructions, are

used to create a context for the OpenAI chat completion model. This context, combined with a user prompt

and a system prompt, guides the model to generate relevant insights and tags related to the data source.

4. Query Execution: The system is configured to generate two PostgreSQL queries: one for creating a relevant

view and another for selecting data from that view. The output is displayed as a Streamlit dataframe.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 5

5. Visualization: The dataframe is used as input for generating graphs. The initial user prompt is included in

the context to ensure that the generated Python code for plotting (using Streamlit and Altair) is relevant to

the original query.

Key Features:

1. Security: No data is sent to OpenAI, ensuring the privacy and security of the data.

2. Embeddings: Utilization of embeddings for efficient similarity measurement and context generation.

3. Clear Schema Context: The detailed schema context allows users to write complex queries with ease.

4. Configurable OpenAI Chat Completion: The system allows for customization of parameters such as `n`,

`top_n`, `temperature`, `frequency_penalty`, and `presence_penalty` to tailor the output to specific needs.

5. Robust Executors: The solution includes a Python executor and a PostgreSQL executor with proper handlers

to execute code and queries safely.

6. Restricted Operations: To ensure data integrity, the system restricts delete and update operations in both

the PostgreSQL and Python code.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 6

Uniqueness of the Solution:

Our solution stands out by establishing an algorithmic process that not only groups text documents efficiently but

also assigns meaningful labels to each group, a feature not offered by traditional Topic Modelling algorithms.

Furthermore, the predictive model built in Stage 2 enables automatic classification of future texts, eliminating the

need for repetitive analysis.

Validation and Experiments:

To validate our proposed solution, we followed these steps for each stage:

- Stage 1:

Data Pre-processing and Cleaning: We cleaned the text data of special characters, unnecessary numbers, and stop

words, and used tokenization to break the text into smaller chunks for analy

Optimal Number of Topics: Using coherence scores, we determined the optimal number of topics for Topic

Modelling.

Topic Model Building: We trained an unsupervised machine learning topic model on the data, assigning a topic

number to each document/text.

Naming Each Topic: We used Large Language Models like GPT-3.5 Turbo for automatic generation of names

for each topic.

- Stage 2:

Data Division: We divided the labeled data into training and testing datasets.

Classification Model Building: We built a Naïve Bayes Text Classification Model using the training data.

Model Validation and Deployment: We validated the model using AUC and deployed it for predicting labels of

unknown texts.

Results and Analysis:

Our solution successfully categorized and grouped product descriptions based on their content, with the model

accurately grouping similar descriptions and assigning appropriate labels. The predictive model built in Stage 2

demonstrated high accuracy in classifying new texts into the identified categories, streamlining the text analysis

process and enabling real-time, efficient data categorization.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 7

My Journey in Developing the Solution:

1. Initial Challenges with CSV Data:

- Encountered issues with graph plotting accuracy when using the entire dataframe.

- Resolved by sharing sample data instead of the full dataset to maintain graph accuracy without exposing

sensitive information.

- Faced a major setback when the entire POC stopped working due to updates in the pandas library and

azureopenai, leading to the abandonment of the langchain, azureopenai, and pandas combination.

2. Overcoming Challenges and Redesigning the Solution:

- Switched to using OpenAI versions 0.28 and 1.12 for chat completion and completion APIs.

- Adopted smart dataframes for better data handling and implemented regex-based handlers for script security.

- Redesigned the entire approach by sending a clear context of schema, correlation, statistics, user prompt, system

prompt, and instructions to OpenAI, along with using embeddings to reduce the number of tokens.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 8

3. Implementing the Final Solution:

- Successfully executed Python scripts generated by GPT for direct CSV data analysis and graph plotting.

- Addressed security concerns by ensuring that the scripts do not alter data and by creating a temporary CSV

path for the uploaded file to be used in the script.

- Utilized Altair and Bokeh libraries for beautiful chart plotting, with only these two libraries installed in the

environment to prevent errors from other libraries.

4. Expanding to Database Data Analysis:

- Leveraged the CSV POC to handle database sources, initially connecting to databases using SQLAlchemy and

formatting the schema similarly to CSV data.

- Faced challenges with large data leading to heavy token usage in OpenAI queries, which was mitigated by

sharing a sample of scrubbed data.

- Adopted OpenAI's GPT-4 model for improved query generation and fine-tuned the solution with embeddings,

descriptive schema, and configurations like `n`, `top_n`, and `temperature` for better accuracy.

- Continuous Improvement and Future Directions:

- Continuously improved the solution based on feedback and new insights, such as using embeddings over fine-

tuning for better accuracy.

- Explored the potential of integrating a vector database to enhance accuracy further by storing feedback and

maintaining an accuracy level rating for responses.

- Planned to seek feedback from senior management and explore additional applications of Generative AI in data

analysis and query generation.

User Query Samples:

- CSV: "Create a chart displaying the distribution of the number of males and females for the whole population."

- DB: "Give me a clear view of the count of married and unmarried house owners."

Use Cases and Applications

Our solution has broad applications across industries such as healthcare, finance, and marketing. For

example, in healthcare, it can be used to analyze patient data and identify trends, while in finance, it can be used to

visualize market data and make investment decisions.

User Experience and Interface

The user interface is designed to be intuitive and user-friendly, allowing users to interact with data using

natural language. The workflow is streamlined to simplify data analysis and visualization.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29192 | Page 9

Future Enhancements

Future enhancements include integrating AI and machine learning for advanced data analysis, adding more

data sources, and improving the user interface for an even more seamless experience.

Community and Collaboration

The development of our solution has been a collaborative effort, with contributions from the open-source

community, partnerships with other organizations, and valuable user feedback. We encourage further collaboration

to enhance the solution.

Conclusion:

Our solution demonstrates the potential of Generative AI in enhancing data analysis and visualization. By

providing a user-friendly interface and leveraging the capabilities of OpenAI's language models, we enable users to

gain deeper insights into their data and make informed decisions.

References:

- OpenAI API Documentation: https://platform.openai.com/docs/api-reference/introduction

- Azure OpenAI Service QuickStart: https://learn.microsoft.com/en-us/azure/ai-services/openai/chatgpt-

quickstart?tabs=command-line%2Cpython&pivots=programming-language-python

- Chat Completion Parameters & Embeddings: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference

- GPT 3.5 Fine Tuning: https://learn.microsoft.com/en-us/azure/ai-services/openai/tutorials/fine-

tune?tabs=python%2Cpowershell

- Customize a Model with Fine Tune (from UI): https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-

tuning?tabs=turbo%2Cpython&pivots=programming-language-studio

- Embeddings Tutorial: https://learn.microsoft.com/en-us/azure/ai-

services/openai/tutorials/embeddings?tabs=python%2Ccommand-line&pivots=programming-language-python

- LAMA: https://github.com/facebookresearch/LAMA

- Embedding Wikipedia Articles for Search: https://cookbook.openai.com/examples/embedding_wikipedia_articles_for_search

- Question Answering Using Embeddings-Based Search:

https://cookbook.openai.com/examples/question_answering_using_embeddings

- Understanding ChatGPT Embedding: https://medium.com/@iamamellstephen/understanding-chatgpt-embedding-unveiling-

the-core-of-conversational-ai-13b792ea0f92

- Build a Chatbot on Your CSV Data with Langchain and OpenAI: https://betterprogramming.pub/build-a-chatbot-on-your-csv-

data-with-langchain-and-openai-ed121f85f0cd

- Model Parameters in OpenAI API: https://medium.com/nerd-for-tech/model-parameters-in-openai-api-161a5b1f8129

- Voyage: Embeddings in Langchain and Chat Langchain: https://blog.langchain.dev/voyage-embeddings-in-langchain-and-

chat-langchain/

- Retrieval: https://blog.langchain.dev/retrieval/

http://www.ijsrem.com/

