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Abstract: 

In this work, we introduce a novel solution that integrates Python, Streamlit, OpenAI, and embeddings to extract 

insights and generate visualizations from various data sources. Our approach empowers users to interact with data in 

plain text, enabling a more intuitive and efficient data analysis process. By leveraging Generative AI, our system not 

only simplifies data exploration but also addresses the challenges of identifying and generating charts, making data 

visualization more accessible. The solution accommodates diverse data sources, including PostgreSQL and CSV 

files, while ensuring a secure and user-friendly experience. This paper aims to demonstrate the effectiveness of 

combining unsupervised and supervised learning algorithms in real-time text analysis, providing a smart, quick, and 

scalable method for data-driven decision-making. 

 

Introduction: 

The advent of Generative AI has revolutionized the way we interact with data. By combining the power of OpenAI's 

language models with Python's versatility and Streamlit's interactivity, we have developed a solution that simplifies 

data exploration and visualization. Our system supports multiple data sources, including PostgreSQL and CSV files, 

and provides a secure and user-friendly interface for data analysis. In this paper, we delve into the details of our 

solution, its development journey, and the impact it has on data analysis and visualization processes. 

 

Background and Rationale 

In today's fast-paced business environment, data-driven insights are crucial for making informed decisions. 

Traditional data analysis tools often require specialized knowledge and can be time-consuming. There is a growing 

need for solutions that can provide quick and intuitive access to data insights. Our solution addresses this need by 

leveraging Generative AI to simplify the data analysis process and make it more accessible to users. 

 

Problem Statement: 

Despite the wealth of information contained in data, extracting meaningful insights can be challenging due to its 

unstructured nature. For instance, a business may need to categorize products based on descriptions, a task that 

traditionally requires manual effort and is prone to errors. Automating this process using unsupervised learning 

algorithms can save time and resources, but conventional methods like Topic Modelling lack the ability to assign 

understandable labels to the grouped data, making it difficult for non-technical users to interpret the results. 

Moreover, the addition of new data often necessitates re-running the entire analysis, further complicating the process. 
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Proposed Solution: 

Our solution addresses these challenges by combining unsupervised and supervised learning algorithms in a two-

stage process: 

 

- Stage 1: Using historical text data, we group similar texts based on content and assign a relevant label to each 

group automatically, thus categorizing the texts. 

- Stage 2: We build a supervised learning classification model using the labeled data from Stage 1. This model can 

classify new texts into the predefined categories without the need to re-run the initial grouping process. 

 

Technical Architecture 

Our solution is built on a robust technical architecture that integrates Python for backend processing, 

Streamlit for frontend interactivity, OpenAI's language models for natural language understanding, and embeddings 

for efficient data representation. This architecture allows for seamless integration of various data sources and provides 

a scalable framework for data analysis and visualization. 

- Efficient Data Representation with Embeddings: A key challenge in our solution was managing the large 

number of tokens required for processing extensive data sources. To address this, we leveraged embeddings to 

represent data in a high-dimensional space. This approach significantly reduced the token count required for 

OpenAI queries, enhancing the efficiency of our system. By measuring similarity between data points using 

cosine similarity, we were able to generate more accurate and relevant insights with fewer tokens, thus optimizing 

our solution for scalability and performance. 

 

 

Methodology: 

Our solution operates in several stages: 

1. Data Processing: Upon receiving a data source, the system generates a schema, tables, statistics, and 

correlations. This structured representation of data serves as the foundation for further analysis. 
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2. Embedding Generation: We employ embeddings to represent the data in a high-dimensional space, 

enabling the measurement of similarity between different data points using cosine similarity. 
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3. Contextual Query Generation: The embeddings, along with the schema and user-defined instructions, are 

used to create a context for the OpenAI chat completion model. This context, combined with a user prompt 

and a system prompt, guides the model to generate relevant insights and tags related to the data source. 

 
 

4. Query Execution: The system is configured to generate two PostgreSQL queries: one for creating a relevant 

view and another for selecting data from that view. The output is displayed as a Streamlit dataframe. 
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5. Visualization: The dataframe is used as input for generating graphs. The initial user prompt is included in 

the context to ensure that the generated Python code for plotting (using Streamlit and Altair) is relevant to 

the original query. 

 

 

 

Key Features: 

1. Security: No data is sent to OpenAI, ensuring the privacy and security of the data. 

2. Embeddings: Utilization of embeddings for efficient similarity measurement and context generation. 

3. Clear Schema Context: The detailed schema context allows users to write complex queries with ease. 

4. Configurable OpenAI Chat Completion: The system allows for customization of parameters such as `n`, 

`top_n`, `temperature`, `frequency_penalty`, and `presence_penalty` to tailor the output to specific needs. 

5. Robust Executors: The solution includes a Python executor and a PostgreSQL executor with proper handlers 

to execute code and queries safely. 

6. Restricted Operations: To ensure data integrity, the system restricts delete and update operations in both 

the PostgreSQL and Python code. 
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Uniqueness of the Solution: 

Our solution stands out by establishing an algorithmic process that not only groups text documents efficiently but 

also assigns meaningful labels to each group, a feature not offered by traditional Topic Modelling algorithms. 

Furthermore, the predictive model built in Stage 2 enables automatic classification of future texts, eliminating the 

need for repetitive analysis. 

 

Validation and Experiments: 

To validate our proposed solution, we followed these steps for each stage: 

 

- Stage 1: 

Data Pre-processing and Cleaning: We cleaned the text data of special characters, unnecessary numbers, and stop 

words, and used tokenization to break the text into smaller chunks for analy 

 

Optimal Number of Topics: Using coherence scores, we determined the optimal number of topics for Topic 

Modelling. 

 

Topic Model Building: We trained an unsupervised machine learning topic model on the data, assigning a topic 

number to each document/text. 

 

Naming Each Topic: We used Large Language Models like GPT-3.5 Turbo for automatic generation of names 

for each topic. 

 

- Stage 2: 

Data Division: We divided the labeled data into training and testing datasets. 

 

Classification Model Building: We built a Naïve Bayes Text Classification Model using the training data. 

 

Model Validation and Deployment: We validated the model using AUC and deployed it for predicting labels of 

unknown texts. 

 

Results and Analysis: 

Our solution successfully categorized and grouped product descriptions based on their content, with the model 

accurately grouping similar descriptions and assigning appropriate labels. The predictive model built in Stage 2 

demonstrated high accuracy in classifying new texts into the identified categories, streamlining the text analysis 

process and enabling real-time, efficient data categorization. 
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My Journey in Developing the Solution: 

 

1. Initial Challenges with CSV Data: 

- Encountered issues with graph plotting accuracy when using the entire dataframe. 

- Resolved by sharing sample data instead of the full dataset to maintain graph accuracy without exposing 

sensitive information. 

- Faced a major setback when the entire POC stopped working due to updates in the pandas library and 

azureopenai, leading to the abandonment of the langchain, azureopenai, and pandas combination. 

2. Overcoming Challenges and Redesigning the Solution: 

- Switched to using OpenAI versions 0.28 and 1.12 for chat completion and completion APIs. 

- Adopted smart dataframes for better data handling and implemented regex-based handlers for script security. 

- Redesigned the entire approach by sending a clear context of schema, correlation, statistics, user prompt, system 

prompt, and instructions to OpenAI, along with using embeddings to reduce the number of tokens. 
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3. Implementing the Final Solution: 

- Successfully executed Python scripts generated by GPT for direct CSV data analysis and graph plotting. 

- Addressed security concerns by ensuring that the scripts do not alter data and by creating a temporary CSV 

path for the uploaded file to be used in the script. 

- Utilized Altair and Bokeh libraries for beautiful chart plotting, with only these two libraries installed in the 

environment to prevent errors from other libraries. 

4. Expanding to Database Data Analysis: 

- Leveraged the CSV POC to handle database sources, initially connecting to databases using SQLAlchemy and 

formatting the schema similarly to CSV data. 

- Faced challenges with large data leading to heavy token usage in OpenAI queries, which was mitigated by 

sharing a sample of scrubbed data. 

- Adopted OpenAI's GPT-4 model for improved query generation and fine-tuned the solution with embeddings, 

descriptive schema, and configurations like `n`, `top_n`, and `temperature` for better accuracy. 

- Continuous Improvement and Future Directions: 

- Continuously improved the solution based on feedback and new insights, such as using embeddings over fine-

tuning for better accuracy. 

- Explored the potential of integrating a vector database to enhance accuracy further by storing feedback and 

maintaining an accuracy level rating for responses. 

- Planned to seek feedback from senior management and explore additional applications of Generative AI in data 

analysis and query generation. 

 

User Query Samples: 

- CSV: "Create a chart displaying the distribution of the number of males and females for the whole population." 

- DB: "Give me a clear view of the count of married and unmarried house owners." 

 

Use Cases and Applications 

Our solution has broad applications across industries such as healthcare, finance, and marketing. For 

example, in healthcare, it can be used to analyze patient data and identify trends, while in finance, it can be used to 

visualize market data and make investment decisions. 

 

User Experience and Interface 

The user interface is designed to be intuitive and user-friendly, allowing users to interact with data using 

natural language. The workflow is streamlined to simplify data analysis and visualization. 
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Future Enhancements 

Future enhancements include integrating AI and machine learning for advanced data analysis, adding more 

data sources, and improving the user interface for an even more seamless experience. 

 

Community and Collaboration 

The development of our solution has been a collaborative effort, with contributions from the open-source 

community, partnerships with other organizations, and valuable user feedback. We encourage further collaboration 

to enhance the solution. 

 

Conclusion: 

Our solution demonstrates the potential of Generative AI in enhancing data analysis and visualization. By 

providing a user-friendly interface and leveraging the capabilities of OpenAI's language models, we enable users to 

gain deeper insights into their data and make informed decisions. 
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