
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 04 | April - 2025                            SJIF Rating: 8.586                                     ISSN: 2582-3930                                                                                                        

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM44249                                              |        Page 1 
 

Leveraging Machine Learning for Classifying Assembly Language Snippets to Aid 

Programmers in Understanding Assembly Code 

Devdatt Sonkusare1, Jaydeep Tayshete2, Vardhan Bang3  

1,Dept. of Artificial Intelligence and Data Science, AISSMS IOIT, Pune 
2Dept. of Artificial Intelligence and Data Science, AISSMS IOIT, Pune 
3Dept. of Artificial Intelligence and Data Science, AISSMS IOIT, Pune 

 

---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - In this study, we propose a machine learning-

based approach to help programmers learn and understand 

assembly language by classifying assembly code snippets. 

Assembly language, while powerful, is often difficult to 

interpret due to its low-level nature and the lack of high-level 

context. Our model trains on assembly language snippets 

labeled with common programming patterns to classify unseen 

assembly code. By doing so, we offer a tool that can assist in 

reverse engineering, optimization, and the understanding of 

compiled programs. We generate a dataset by pairing C code 

snippets with corresponding assembly instructions, then train a 

recurrent neural network to classify these snippets. Our results 

demonstrate the feasibility of this approach, with the model 

showing strong performance in classifying assembly code 

types. We also discuss future directions, including generating 

pseudocode from assembly. 
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1. INTRODUCTION 

 
 Assembly Language refers to a low level programming 
language that uses mnemonic codes (eg. “ADD”, “SUB”) to 
represent machine instructions that provide direct control over 
computer hardware. It is important for tasks like reverse 
engineering, performance optimization, and embedded systems 
development. But the problem is that it is very difficult to 
understand assembly codes, making it challenging for 
programmers to map assembly instructions back to their  
higher-level language codes like C, hindering the debugging 
and analysis efforts. 

To overcome this problem, we propose to use a machine 
learning based approach that classifies assembly code snippets 
into common patterns present in programming languages. Our 
aim is to train a machine learning model on labelled assembly 
to C code pairs, which will be able to recognize the patterns in 
assembly sequences, enabling automatic classification into 
respective code snippets. For this we will be employing 
Recurrent Neural Network (RNN) which can make sequential 
predictions based on sequential inputs. 

This research aims to make the assembly languages easier 
to read and understand. Since assembly codes are complex and 
hard to follow, this machine learning model will help in 
identifying common patterns, almost like translating it to 
simpler concepts. This will be useful in tasks such as analyzing 
unknown software, improving program performance, or 
helping learn assembly structure.  

 

2. RELATED WORK 

 
A. Role of Assembly Language in Reverse Engineering and 

Optimization. 

  Assembly language plays an important role in reverse 

engineering by giving analysts direct access to binary 

instructions, making it possible to decompile and study 

software even without the original source code. Reverse 

Engineering frequently relies on assembly to uncover malware, 

analyze software and spot vulnerabilities. Beyond Reverse 

Engineering, assembly codes are also important for 

optimization, as it offers precise control over hardware, and 

developers can fine-tune performance-critical sections 

manually. This approach has been used for years, especially in 

embedded systems and high-performance computing, where 

optimization of speed and time is essential. 
 

B. Machine Learning Applications in Code Analysis and 
Reverse Engineering. 

 Machine Learning has revolutionized the process of code 
analysis and reverse engineering. ML models automate tasks 
like the vulnerability detection, binary classification, and even 
converting assembly back into readable high-level code 
(decompiling). For example, Ding et al. developed a data 
mining technique to analyze executable behavior statically, 
helping improve malware detection. Another example is 
Neutron, a neural decompiler that  uses deep learning to turn 
assembly into human readable code. These tools cut down on 
manual analysis while boosting the accuracy of disassembly 
and interpretation. 

 

C. Machine Learning-Based Classification and 
Interpretation of Assembly Code. 

 Studies suggest the application of ML to classify and 
interpret assembly code. One interesting approach, 
Instruction2Vev, borrows from natural language processing, it 
treats assembly instructions like words, embedding them as 
vectors to improve detection in compiled programs. Another 
method, UniBin, skips traditional disassembly by analyzing 
raw binary sequences with a transformer model, reducing errors 
and boosting vulnerability detection. Recurrent Neural 
Networks (RNNs) and Convolutional Neural Networks 
(CNNs) have also been successful in detecting cloned and 
malicious code, setting new benchmarks in binary analysis.    
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3. METHODOLOGY 

 
In this section, we describe the model architecture, how the 

model was trained and deployed to classify assembly language 

snippets. Figure-1 provides basic steps of the model building 

process. 

 

 
 

Figure-1: Model Flow 

 

A. Data Generation 

     The dataset required for training the model was generated in 

three broad phases. The goal was to map sequences of assembly 

instructions to the snippet-type of their respective source code. 

1. C snippets generation 

  A Python script was used to generate 7 types of code snippets 

in the C language. These snippets feature commonly used 

patterns in programming. These are: 

1. Arithmetic operation 

2. Arithmetic operation inside an if-block 

3. Arithmetic operation inside a for-loop 

4. Arithmetic operation inside an if-block inside an if-

block 

5. Arithmetic operation inside a for-loop inside an if-

block 

6. Arithmetic operation inside an if-block inside an for-

loop 

7. Arithmetic operation inside inside a for-loop inside a 

for-loop 

    For simplicity, the snippets were limited to only the main 

function, with one integer declaration to be used in the 

subsequent program. The arithmetic operations were limited to 

addition and subtraction. The snippets were generated with pre-

defined template functions, with only the numeric values and 

arithmetic operations being randomized. 

2. Assembly generation and cleanup 

  The C snippets were compiled using GCC (GNU C Compiler) 

on a machine with a processor of the x86-64 architecture. The 

generated assembly files were labelled with the snippet-type of 

their respective C snippet. 

    These assembly files were cleaned up to include only the 

instructions corresponding to the part of the program in the 

main function, from the integer declaration to the return 

statement. 

3. Data extraction 

    From the assembly snippets, two types of data are extracted: 

1. Main data: A sequence of just the instruction names in 

the given assembly snippet. Labels are also included 

as a separate instruction called ‘label’. 

2. Secondary data: All the numeric values as well as 

instructions corresponding to arithmetic operations. 

This data may be used in summary generation (See 

Future Scope). 

Figure-2 shows an example C- snippet through all of the data 

generation phases. 

 
 

Figure-2: Data Generation 

 

B. Model Architecture 
 

The model architecture designed for classifying assembly 

language snippets is based on a deep learning approach 

utilizing RNNs. Recurrent Neural Networks (RNNs) are used 

for sequential pattern recognition. Figure-2 provides the flow 

of data from CSV to Model. 

 

Table 2 presents the architecture of the model, which consists 

of an embedding layer, Long Short-Term Memory (LSTM) 

layer, dropout layer and two dense layers, along with their 

output shapes and parameter counts.  

 

Table -2:  Model Architecture 

 

 
 

1. Embedding Layer 

   The Embedding Layer takes a sequence of tokens (i.e. 

assembly language instructions) as input and maps each token 

into a dense vector representation. Each token is represented by 
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a 64-dimensional vector, allowing the model to capture 

semantic relationships between assembly language 

instructions, where similar instructions have similar vector 

representations. 

2. LSTM Layer 

   The Long Short-Term Memory (LSTM) layer is a type of 

recurrent neural network (RNN) preferred for sequence-based 

tasks, like processing assembly code snippets. The LSTM layer 

learns the relationships between the instructions in a sequence. 

3. Dropout Layer 

   To prevent overfitting and improve generalization during 

training, a Dropout Layer is included. Dropout works by 

randomly setting a fraction of neurons to zero during each 

training step. 

4. Dense Layer 

   A dense layer is a fully connected layer that processes the 

feature vectors learned by the previous layers. 

5. Dense_1 (Final Output Layer) 

   The final layer consists of 7 units, corresponding to the 7 

target classes. Softmax activation function is used to generate 

the probability distribution over the 7 classes.  

 

Figure-3: CSV to Model Flow of Data 

C. Training 
 

   Model was trained on preprocessed labelled dataset which 

consists of encoded and padded assembly language instruction 

sequences .Below we explain the key components involved in 

the training process: 

 

 

 

1. Model Compilation 

   Loss Function: The loss function used is Sparse Categorical 

Cross-Entropy. This loss function calculates the difference 

between the predicted probabilities and the true labels, helping 

to increase accuracy. 

  Optimizer: The Adaptive Moment Estimation (Adam) 

optimizer updates network weights iteratively based on training 

data. 

   Evaluation Metric: The model’s performance is evaluated 

using accuracy, which measures the proportion of correct 

predictions made by the model. 

 

2. Model Training 

   The model was trained on the encoded assembly language 

snippets (X_train) and their corresponding target labels 

(y_train). The training process was carried out over different 

numbers of epochs, where each epoch involves passing the 

entire training dataset through the model once and updating the 

model's weights. 

   Batch size was set to 32, meaning the model's weights are 

updated after every 32 samples. To validate the model's 

performance during training, the validation data (X_val, y_val) 

was used. 

3. Training History 

   The model’s performance is stored in the history object, 

which records the loss and accuracy values for both training 

and validation datasets. The history is used for evaluation 

graphs. 

4. Training Results 

   The model achieved a test accuracy of 100% (refer Figure-3)  

on the test set, confirming its ability to classify assembly 

language instructions into one of seven target classes. The 

training and validation accuracy curves (shown in Figure 1) 

indicate that the model successfully learned to classify the 

assembly code snippets. 
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Figure-3: Training and Validation Accuracy 

D. Evaluation 
 

   The model's performance was evaluated on the test dataset 

(X_test, y_test). This evaluation gives a final measure of how 

well the model is likely to perform when deployed in real-world 

scenarios with unseen assembly language snippets. 

 
E. Deployment and Web Interface 

 
   A Web Application was made which allows end-users to 

interact with the model by providing assembly code snippets 

through a web interface. The system processes the input and 

classifies the snippet based on the trained model's predictions.  

The provided input is preprocessed through pipeline and uses 

the encoding provided during training the model by loading the 

encoders. The workflow is as follow: 

System Workflow: 

1. User Input: The user submits an assembly code 

snippet via the web form. 

 

2. Data Preprocessing: The code snippet is tokenized, 

encoded, and padded. 

 

3. Model Prediction: The preprocessed data is passed to 

the trained model for prediction. 

 

4. Display Results: The predicted class label is displayed 

on the webpage. 

 

 

 

 

 

4. CONCLUSION 

 
   Training a deep learning model to identify common 

programming patterns from assembly code is a potential 

method to make understanding of machine languages easier. It 

can be used as a foundation to build upon more complicated 

summary/pseudocode generation tools. 

 

4. FUTURE SCOPE 

   Some ways in which this project can be improved: 

1. Support for multiple processor architectures (ARM, 

RISC-V) as well as multiple compilers (clang, TCC). 

2. Support for more languages. 

3. Using Fine Tuned Transformers( BERT, GPT, 

BART, etc.). 

4. Using extracted literal data (integers) as well 

information about arithmetic and comparison 

instructions to generate accurate summaries. 
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