
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44249 | Page 1

Leveraging Machine Learning for Classifying Assembly Language Snippets to Aid

Programmers in Understanding Assembly Code

Devdatt Sonkusare1, Jaydeep Tayshete2, Vardhan Bang3

1,Dept. of Artificial Intelligence and Data Science, AISSMS IOIT, Pune
2Dept. of Artificial Intelligence and Data Science, AISSMS IOIT, Pune
3Dept. of Artificial Intelligence and Data Science, AISSMS IOIT, Pune

---***---

Abstract - In this study, we propose a machine learning-

based approach to help programmers learn and understand

assembly language by classifying assembly code snippets.

Assembly language, while powerful, is often difficult to

interpret due to its low-level nature and the lack of high-level

context. Our model trains on assembly language snippets

labeled with common programming patterns to classify unseen

assembly code. By doing so, we offer a tool that can assist in

reverse engineering, optimization, and the understanding of

compiled programs. We generate a dataset by pairing C code

snippets with corresponding assembly instructions, then train a

recurrent neural network to classify these snippets. Our results

demonstrate the feasibility of this approach, with the model

showing strong performance in classifying assembly code

types. We also discuss future directions, including generating

pseudocode from assembly.

Key Words: Machine learning, compilers, pseudocode,

assembly language, deep learning, RNN, LSTM

1. INTRODUCTION

 Assembly Language refers to a low level programming
language that uses mnemonic codes (eg. “ADD”, “SUB”) to
represent machine instructions that provide direct control over
computer hardware. It is important for tasks like reverse
engineering, performance optimization, and embedded systems
development. But the problem is that it is very difficult to
understand assembly codes, making it challenging for
programmers to map assembly instructions back to their
higher-level language codes like C, hindering the debugging
and analysis efforts.

To overcome this problem, we propose to use a machine
learning based approach that classifies assembly code snippets
into common patterns present in programming languages. Our
aim is to train a machine learning model on labelled assembly
to C code pairs, which will be able to recognize the patterns in
assembly sequences, enabling automatic classification into
respective code snippets. For this we will be employing
Recurrent Neural Network (RNN) which can make sequential
predictions based on sequential inputs.

This research aims to make the assembly languages easier
to read and understand. Since assembly codes are complex and
hard to follow, this machine learning model will help in
identifying common patterns, almost like translating it to
simpler concepts. This will be useful in tasks such as analyzing
unknown software, improving program performance, or
helping learn assembly structure.

2. RELATED WORK

A. Role of Assembly Language in Reverse Engineering and

Optimization.

 Assembly language plays an important role in reverse

engineering by giving analysts direct access to binary

instructions, making it possible to decompile and study

software even without the original source code. Reverse

Engineering frequently relies on assembly to uncover malware,

analyze software and spot vulnerabilities. Beyond Reverse

Engineering, assembly codes are also important for

optimization, as it offers precise control over hardware, and

developers can fine-tune performance-critical sections

manually. This approach has been used for years, especially in

embedded systems and high-performance computing, where

optimization of speed and time is essential.

B. Machine Learning Applications in Code Analysis and
Reverse Engineering.

 Machine Learning has revolutionized the process of code
analysis and reverse engineering. ML models automate tasks
like the vulnerability detection, binary classification, and even
converting assembly back into readable high-level code
(decompiling). For example, Ding et al. developed a data
mining technique to analyze executable behavior statically,
helping improve malware detection. Another example is
Neutron, a neural decompiler that uses deep learning to turn
assembly into human readable code. These tools cut down on
manual analysis while boosting the accuracy of disassembly
and interpretation.

C. Machine Learning-Based Classification and
Interpretation of Assembly Code.

 Studies suggest the application of ML to classify and
interpret assembly code. One interesting approach,
Instruction2Vev, borrows from natural language processing, it
treats assembly instructions like words, embedding them as
vectors to improve detection in compiled programs. Another
method, UniBin, skips traditional disassembly by analyzing
raw binary sequences with a transformer model, reducing errors
and boosting vulnerability detection. Recurrent Neural
Networks (RNNs) and Convolutional Neural Networks
(CNNs) have also been successful in detecting cloned and
malicious code, setting new benchmarks in binary analysis.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44249 | Page 2

3. METHODOLOGY

In this section, we describe the model architecture, how the

model was trained and deployed to classify assembly language

snippets. Figure-1 provides basic steps of the model building

process.

Figure-1: Model Flow

A. Data Generation

 The dataset required for training the model was generated in

three broad phases. The goal was to map sequences of assembly

instructions to the snippet-type of their respective source code.

1. C snippets generation

 A Python script was used to generate 7 types of code snippets

in the C language. These snippets feature commonly used

patterns in programming. These are:

1. Arithmetic operation

2. Arithmetic operation inside an if-block

3. Arithmetic operation inside a for-loop

4. Arithmetic operation inside an if-block inside an if-

block

5. Arithmetic operation inside a for-loop inside an if-

block

6. Arithmetic operation inside an if-block inside an for-

loop

7. Arithmetic operation inside inside a for-loop inside a

for-loop

 For simplicity, the snippets were limited to only the main

function, with one integer declaration to be used in the

subsequent program. The arithmetic operations were limited to

addition and subtraction. The snippets were generated with pre-

defined template functions, with only the numeric values and

arithmetic operations being randomized.

2. Assembly generation and cleanup

 The C snippets were compiled using GCC (GNU C Compiler)

on a machine with a processor of the x86-64 architecture. The

generated assembly files were labelled with the snippet-type of

their respective C snippet.

 These assembly files were cleaned up to include only the

instructions corresponding to the part of the program in the

main function, from the integer declaration to the return

statement.

3. Data extraction

 From the assembly snippets, two types of data are extracted:

1. Main data: A sequence of just the instruction names in

the given assembly snippet. Labels are also included

as a separate instruction called ‘label’.

2. Secondary data: All the numeric values as well as

instructions corresponding to arithmetic operations.

This data may be used in summary generation (See

Future Scope).

Figure-2 shows an example C- snippet through all of the data

generation phases.

Figure-2: Data Generation

B. Model Architecture

The model architecture designed for classifying assembly

language snippets is based on a deep learning approach

utilizing RNNs. Recurrent Neural Networks (RNNs) are used

for sequential pattern recognition. Figure-2 provides the flow

of data from CSV to Model.

Table 2 presents the architecture of the model, which consists

of an embedding layer, Long Short-Term Memory (LSTM)

layer, dropout layer and two dense layers, along with their

output shapes and parameter counts.

Table -2: Model Architecture

1. Embedding Layer

 The Embedding Layer takes a sequence of tokens (i.e.

assembly language instructions) as input and maps each token

into a dense vector representation. Each token is represented by

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44249 | Page 3

a 64-dimensional vector, allowing the model to capture

semantic relationships between assembly language

instructions, where similar instructions have similar vector

representations.

2. LSTM Layer

 The Long Short-Term Memory (LSTM) layer is a type of

recurrent neural network (RNN) preferred for sequence-based

tasks, like processing assembly code snippets. The LSTM layer

learns the relationships between the instructions in a sequence.

3. Dropout Layer

 To prevent overfitting and improve generalization during

training, a Dropout Layer is included. Dropout works by

randomly setting a fraction of neurons to zero during each

training step.

4. Dense Layer

 A dense layer is a fully connected layer that processes the

feature vectors learned by the previous layers.

5. Dense_1 (Final Output Layer)

 The final layer consists of 7 units, corresponding to the 7

target classes. Softmax activation function is used to generate

the probability distribution over the 7 classes.

Figure-3: CSV to Model Flow of Data

C. Training

 Model was trained on preprocessed labelled dataset which

consists of encoded and padded assembly language instruction

sequences .Below we explain the key components involved in

the training process:

1. Model Compilation

 Loss Function: The loss function used is Sparse Categorical

Cross-Entropy. This loss function calculates the difference

between the predicted probabilities and the true labels, helping

to increase accuracy.

 Optimizer: The Adaptive Moment Estimation (Adam)

optimizer updates network weights iteratively based on training

data.

 Evaluation Metric: The model’s performance is evaluated

using accuracy, which measures the proportion of correct

predictions made by the model.

2. Model Training

 The model was trained on the encoded assembly language

snippets (X_train) and their corresponding target labels

(y_train). The training process was carried out over different

numbers of epochs, where each epoch involves passing the

entire training dataset through the model once and updating the

model's weights.

 Batch size was set to 32, meaning the model's weights are

updated after every 32 samples. To validate the model's

performance during training, the validation data (X_val, y_val)

was used.

3. Training History

 The model’s performance is stored in the history object,

which records the loss and accuracy values for both training

and validation datasets. The history is used for evaluation

graphs.

4. Training Results

 The model achieved a test accuracy of 100% (refer Figure-3)

on the test set, confirming its ability to classify assembly

language instructions into one of seven target classes. The

training and validation accuracy curves (shown in Figure 1)

indicate that the model successfully learned to classify the

assembly code snippets.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44249 | Page 4

Figure-3: Training and Validation Accuracy

D. Evaluation

 The model's performance was evaluated on the test dataset

(X_test, y_test). This evaluation gives a final measure of how

well the model is likely to perform when deployed in real-world

scenarios with unseen assembly language snippets.

E. Deployment and Web Interface

 A Web Application was made which allows end-users to

interact with the model by providing assembly code snippets

through a web interface. The system processes the input and

classifies the snippet based on the trained model's predictions.

The provided input is preprocessed through pipeline and uses

the encoding provided during training the model by loading the

encoders. The workflow is as follow:

System Workflow:

1. User Input: The user submits an assembly code

snippet via the web form.

2. Data Preprocessing: The code snippet is tokenized,

encoded, and padded.

3. Model Prediction: The preprocessed data is passed to

the trained model for prediction.

4. Display Results: The predicted class label is displayed

on the webpage.

4. CONCLUSION

 Training a deep learning model to identify common

programming patterns from assembly code is a potential

method to make understanding of machine languages easier. It

can be used as a foundation to build upon more complicated

summary/pseudocode generation tools.

4. FUTURE SCOPE

 Some ways in which this project can be improved:

1. Support for multiple processor architectures (ARM,

RISC-V) as well as multiple compilers (clang, TCC).

2. Support for more languages.

3. Using Fine Tuned Transformers(BERT, GPT,

BART, etc.).

4. Using extracted literal data (integers) as well

information about arithmetic and comparison

instructions to generate accurate summaries.

REFERENCES

1. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term

memory. Neural Computation, 9(8), 1735–1780.

2. Katz, O., Olshaker, A., Goldberg, Y., & Yahav, E. (2019).

Towards Neural Decompilation. arXiv preprint

arXiv:1905.08325.

3. Alex Sherstinsky, Fundamentals of Recurrent Neural

Network (RNN) and Long Short-Term Memory (LSTM)

network, Physica D: Nonlinear Phenomena, Volume 404,

2020, 132306, ISSN 0167-2789,

https://doi.org/10.1016/j.physd.2019.132306.

4. D. S. Katz, J. Ruchti and E. Schulte, "Using recurrent neural

networks for decompilation," 2018 IEEE 25th International

Conference on Software Analysis, Evolution and

Reengineering (SANER), Campobasso, Italy, 2018, pp. 346-

356, doi: 10.1109/SANER.2018.8330222.

http://www.ijsrem.com/
https://doi.org/10.1016/j.physd.2019.132306

