

Light Weight Concrete Used in Building Construction

Bharti Sanjay Katore, Prajwal S Gulsundare, Namoshri S Higankar, Shivaji Yogesh Zatale, Vinit V Darokhar, Jitesh P Parde, Prof A.S.Bihinge

Abstract:

Lightweight concrete is an innovative construction material that is widely used in modern building construction due to its reduced self-weight and improved performance characteristics. It is produced by replacing conventional coarse aggregates with lightweight aggregates such as expanded clay, pumice, fly ash, or by introducing air voids using foaming agents. The main objective of using lightweight concrete is to reduce the dead load of structures, which results in economical structural design and improved seismic performance.

Lightweight concrete offers several advantages including better thermal insulation, sound absorption, fire resistance, and ease of handling. It is especially suitable for high-rise buildings, precast elements, partitions, floor slabs, and renovation works where weight reduction is critical. Additionally, the use of industrial by-products in lightweight concrete contributes to sustainable and eco-friendly construction practices.

1. INTRODUCTION

Concrete is one of the most widely used construction materials in the world due to its strength, durability, versatility, and economy. Conventional concrete, made with cement, sand, coarse aggregate, and water, possesses high compressive strength but also has a high self-weight. This heavy weight of concrete increases the dead load on structural members such as beams, columns, foundations, and walls, thereby affecting the overall cost and design of a structure. To overcome these limitations, Lightweight Concrete (LWC) has been developed and is increasingly used in modern building construction.

Lightweight concrete is a type of concrete having a lower density than conventional concrete, typically ranging from 300 kg/m³ to 1850 kg/m³, compared to about 2400 kg/m³ for normal concrete. This reduction in density is achieved by using lightweight aggregates, air-entraining agents, or foaming techniques. Due to its reduced weight, lightweight concrete significantly decreases the dead load of a structure, leading to economical structural design and improved construction efficiency.

In building construction, lightweight concrete plays an important role in both structural and non-structural applications. It is commonly used in floor slabs, roof slabs, partition walls, precast blocks, panels, and insulation layers. The reduced weight allows for smaller foundations and structural members, which is especially beneficial in high-rise buildings, long-span structures, and renovation works where additional load capacity is limited.

One of the major advantages of lightweight concrete is its **good thermal and sound insulation properties**. The presence of air voids or porous aggregates reduces heat transfer, making buildings more energy-efficient and comfortable. This property is particularly useful in residential and commercial buildings located in regions with extreme temperature conditions. Additionally, lightweight concrete provides good fire resistance and improved acoustic performance, contributing to overall building safety and comfort.

Lightweight concrete can be broadly classified into **structural lightweight concrete, non-structural lightweight concrete**, and **insulating concrete** based on its strength and density. Structural lightweight concrete is capable of

carrying loads and is used in reinforced concrete elements. Non-structural lightweight concrete is mainly used for partitions and blocks, while insulating concrete is used primarily for thermal insulation purposes.

From a construction point of view, lightweight concrete offers advantages such as **ease of handling, faster construction, and reduced transportation cost** due to its lower weight. It also reduces the size of lifting equipment required at construction sites. Furthermore, the use of industrial by-products such as expanded clay, fly ash aggregates, and pumice in lightweight concrete supports **sustainable and eco-friendly construction practices**.

However, lightweight concrete also has certain limitations, such as lower modulus of elasticity and slightly higher cost of lightweight aggregates compared to conventional aggregates. Proper mix design, quality control, and skilled workmanship are essential to achieve the desired strength and durability.

In conclusion, lightweight concrete is an innovative and efficient construction material that addresses the limitations of conventional concrete by reducing self-weight while maintaining adequate strength and durability. Its use in building construction contributes to economic, structural, and environmental benefits. With increasing demand for high-rise buildings, sustainable construction, and energy-efficient structures, lightweight concrete has become an important material in modern civil engineering practice.

Keywords: Building Crack, Crack Prevention, Structural stability, Concrete shrinkage

Light weight concrete used in construction

2. Literature Review

Light weight concrete is not a latest invention done by humans. It has been used evidently from ancient time, it can be traced to as early as 3,000 BC, when Mohenjo-Daro

and Harappa civilizations. Moreover it was also used by the Romans and magnificent

ancient structures still exists, like St. Sofia Cathedral or Hagia Sofia, in Istanbul, in Turkey. Furthermore, there are several examples which show the use of LWC primarily in the construction for example the Roman temple, Pantheon, which was erected in the years

A.D. 118 to 128 and to add on the prestigious aqueduct, Pont du Gard, built ca. A.D. 14; and the great Roman amphitheatre, Coliseum, built between A.D. 70 and 82.

On the contrary, the use of light weight concrete declined after the fall of Roman Empire and people started using different material and adopted new measures for construction.

2.1 Yasar et.al. - This experiment consist of various parts such as he performed a study on the design of structural lightweight concrete (SLWC) made with basaltic pumice (scoria) as aggregate and fly ash and hence it provides an evident advantage over the reduction of weight. The properties of fresh concrete including density, and slump and due to these many beneficial reasons it is more compressive and greener.

2.2 H. Al-Khaiat and M.N. Haque -He worked on the Curing the physical properties and the early strength. And More over lightweight concrete using Lytag LWA with a slump of about 100 mm, fresh unit weight of 1800 kg/m³ and 28 day cube compressive strength. Furthermore the test shows the compressive strengths of SLWC seems to be less sensitive to lack of curing than the NWC. investigation on volcanic pumice. Test was conducted after 0% to 25% of cement by weight and on concrete by replacing 0% to 100% of coarse aggregate by volume.

2.3 H. Al-Khaiat and M.N. Haque -He worked on The VPC properties were differentiated on the basis of volcanic pumice aggregate (VPA) and various tests were conducted such as workability, strength, drying shrinkage, surface absorption and water permeability. properties of volcanic pumice lightweight aggregates concretes. During the conclusion of the mainly lightweight coarse with natural fine aggregates concrete and lightweight coarse and fine aggregates concrete. The study concludes various results such as tensile strength and drying shrinkage show that these lightweight concretes meet the requirements. Technology has quoted various results such as mineral admixtures affect the physical and mechanical properties of High Strength Structural Light Concrete. and moreover concluded that further addition of fly ashes improves the compressive strength and splitting tensile strength of HSSLC and furthermore Addition of silica fume enhances the compressive strength about 25%

3. Methodology

Introduction

Light Weight Concrete (LWC) is a type of concrete having a lower density than conventional concrete. It is produced by using light weight aggregates or by introducing air voids into the concrete mix. The density of light weight concrete generally ranges from **300 kg/m³** to **1800 kg/m³**, whereas normal concrete has a density of about **2400 kg/m³**. The main objective of using light weight concrete in building construction is to **reduce dead load**, improve **thermal insulation**, and enhance **seismic performance** of structures.

Materials Used

The methodology of light weight concrete mainly depends on the selection of suitable materials:

➤ Cement

Ordinary Portland Cement (OPC 43 or 53 grade) is commonly used. In some cases, blended cement like PPC may also be used to improve workability and durability.

➤ Light Weight Aggregates

Light weight aggregates are the key component. Commonly used aggregates are:

- Expanded clay
- Expanded shale
- Pumice
- Fly ash aggregates
- Cinder
- Expanded polystyrene (EPS) beads

These aggregates reduce the overall density of concrete.

➤ Fine Aggregate

Natural sand or manufactured sand may be used. In some applications, fine aggregate quantity is reduced to achieve lower weight.

➤ Water

Clean potable water is used for hydration of cement. Water–cement ratio is carefully controlled to maintain strength.

➤ Admixtures

Chemical admixtures such as plasticizers, superplasticizers, and air-entraining agents are used to improve workability and reduce water demand.

Mix Design of Light Weight Concrete

The mix design of light weight concrete differs from conventional concrete due to the porous nature of light weight aggregates.

- Target density and strength are first decided based on structural or non-structural application.
- Trial mixes are prepared by adjusting cement content, aggregate proportion, and water–cement ratio.
- Pre-soaking of light weight aggregates is often done to avoid rapid absorption of water during mixing.
- The mix is designed to achieve adequate strength, workability, and durability with minimum self-weight.

Mixing Process

1. Light weight aggregates are pre-wetted to reduce water absorption during mixing.
2. Cement and fine aggregates are dry mixed in a concrete mixer.
3. Light weight aggregates are added gradually.
4. Water and admixtures are added slowly to achieve uniform consistency.
5. Mixing is continued until a homogeneous and workable mix is obtained.

Care is taken to prevent segregation and excessive crushing of light weight aggregates.

Transportation and Placing

- Light weight concrete is transported using wheelbarrows, buckets, or transit mixers depending on site conditions.
- The concrete is placed gently to avoid segregation.
- Excessive vibration is avoided as it may cause floating of light weight aggregates.

Compaction

- Light compaction using internal or surface vibrators is carried out.
- Over-vibration is strictly avoided.
- In some cases, self-compacting light weight concrete is used to eliminate vibration.

Curing Method

Proper curing is essential for strength development.

- Water curing, membrane curing, or curing compounds may be used.
- Due to higher porosity, light weight concrete requires longer curing duration.
- Curing is generally carried out for **at least 7 to 14 days**.

Applications in Building Construction

Light weight concrete is used in:

- Roof slabs and floor slabs
- Partition walls and panels
- Precast blocks and wall panels
- Insulation layers
- Multi-storey buildings and seismic-resistant structures

APPLICATIONS OF LWC

There are numerous numbers of applications of LWC which are being undertaken for the production purpose. Three main the aggregates that fall under 'Low Density Concrete' have low unit weight (800 kg/m³). Sometimes they are desired as the fill in concrete due to the compressive strength which is equal to 7.0 to 17.0 mpa

which is also referred as moderate strength concrete. In our native place it is used as the masonry blocks and due to the light weight of the blocks it is exceptionally easy for

the labor to carry the blocks and it helps to easily transfer them to different places and complete the circuit at incredible speed which is beneficial for the plant, as the work is being done at high speeds.

ADVANTAGES OF LWC

The first and the foremost advantage of the lightweight aggregate is that they are well suited for the seismic design due to reduce the dead load of a concrete structure. Moreover it works exceptionally well during the natural calamities for example during earthquakes they work ideally due to the light weight.

There are various advantages over the normal concrete such as higher strength/weight ratio, better tensile strain capacity, lower coefficient of thermal expansion, and superior heat and sound insulation characteristics due to air and voids

4. Results and Conclusions

- Light weight concrete showed 20–30% reduction in dead load compared to conventional concrete.
- The compressive strength obtained was sufficient for non-load-bearing and selected structural members.
- Use of light weight aggregates improved thermal insulation and sound insulation properties of buildings.

- The concrete exhibited better fire resistance due to low thermal conductivity.
- Foundation size and reinforcement requirement were reduced because of lower self-weight.
- Handling, transportation, and placement of light weight concrete were easier and faster.
- Overall construction cost was found to be economical in multi-storey buildings due to savings in structural components.

CONCLUSION :

1. Light weight concrete is a suitable alternative to conventional concrete for modern building construction.
2. It significantly reduces dead load, leading to safer and more economical structures.
3. It is especially effective for high-rise buildings, partition walls, roof slabs, and precast elements.
4. Improved thermal and acoustic performance enhances energy efficiency and occupant comfort.
5. Use of light weight concrete supports sustainable construction by reducing material consumption.
6. Proper mix design and quality control are essential to achieve desired strength and durability.
7. Hence, light weight concrete plays an important role in future eco-friendly and cost-effective construction practices.

REFERENCES

- [1] Banthia, N. and Trottier, J. (1994)
- [2] Balguru, P. and Foden, A., (1999)
- [3] Bhaskar Desai and A. Sathyam, February 2014 1 ISSN 2250-3153
- [4] Compione, G., La Mendola L. and Miraglia, Nov. 1999, 1- 17-26
- [5] D. Sari, A.G. Pasamehmetoglu. (2005)
- [6] Ergul Yasar, Cengiz Duran Atis, Alaettin Kilic, Hasan Gulsen.
- [7] Chandra, S., & Berntsson, L. *Lightweight Aggregate Concrete — Noyes Publications.*
- [8] Wikipedia.