

LINEAR ALGEBRA OF KRONECKER DELTA

S. KIRUTHIKA, III- B. SC. MATHEMATICS,

T. P.K.R ARTS COLLEGE FOR WOMEN (Autonomous Institution - Affiliated to Bharathiyar University),

$GOBICGHETTIPALAYAM\ ,\ Erode.$

Abstract

We generating dual basis of Kronecker delta. We have to use trigonometry term in Kronecker delta to apply degree of trigonometry formatting the Kronecker delta. The trigonometry degree of 0° and 90° is exactly form the kronecker delta then another degree $30^{\circ}, 45^{\circ}, 60^{\circ}, \dots$ is approximately value to form the Kronecker delta.

Keywords

Linear function, dual basis, Kronecker delta, trigonometry

Introduction

In mathematics on dual basis of $\{v_1, v_2, v_3, ..., v_n\}$ be a basis of v over k. Let $u_1, u_2, ..., u_n \in v^*$ be the linear function defined by,

1, =

 $\Psi_i(v_i) = 0, \neq$ Then $\{\Psi_1, \Psi_2, \dots, \Psi_n\}$ is a basis of v*. The basis $\{\Psi_i\}$ is called dual basis. we also shall that the basis $\{\Psi_i\}$ is dual to $\{v_i\}$

When the mapping Ψ_j are well defined and unique the symbol $_{ij}$ is called Kronecker delta.

Kronecker delta

The Kronecker delta is a function of two variables, usually just non – negative integers. The Kronecker delta appears naturally in many areas of mathematics, physics and engineering.

Trigonometry

Trigonometry is a branch of mathematics that studies relationships between side lengths and angles of triangles.

Result and Discussion

The Kronecker delta of trigonometry term

Theorem-1

Statement:

Let $\{(1, 0, (0,1))\}$ be a basis of the vector space and if G_1 and G_2 be the dual basis

If we use Kronecker delta of trigonometry term to apply $0^{\circ} 90^{\circ}$ then we have to prove G₁(x,y)=1 and

G₂(x,y)=0 ,where x,y \in v

Proof:

Consider the general term,

	$G_1(x,y) = \cos x + \sin y$	\rightarrow (1)	
We hav	$G_2(x,y) = \cos x X \sin y$ e to prove $G_1(x,y) = 1$ and $G_2(x,y) = 0$	\rightarrow (2)	
Put x,y = 90°			
From (1) we have,			
$G_1(x,y) = \cos + \sin$			
	$= \cos(90^\circ) + \sin(90^\circ)$		
	= 0+1		
$G_1(x,y) = 1$			
From (2), we have,			
$G_2(x,y) = \cos(90^\circ) \sin(90^\circ)$			
	= 0 X 1		
G2(x,y)	= 0		
The Kronecker delta of trigonometry term applied 90° hence proved the			
$G_1(x,y) = 1$, and $G_2(x,y) = 0$.			
Put $x = 0^{\circ}$			
From (1), we have			
$G_1(x,y) = \cos(0^\circ) + \sin(0^\circ)$			
	= 1+0		
	= 1		
From (2),			
$G_2(x,y) = \cos(0^\circ) \sin(0^\circ)$			
	= 1X0		
	= 0		

The kronecker delta of trigonometry term applied 0° hence proved the $G_1(x,y) = 1$ and $G_2(x,y) = 0$.

Theorem - 2

Let $\{(1,0),(0,1)\}$ be a basis of the vector space and if G_1 and G_2 be the dual basis

If we use Kronecker delta of trigonometry term to apply $30^{\circ} 45^{\circ}$ then we have to prove $G_1(x, y) = 1$ and $G_2(x, y) = 0$

,where x ,y \in v

Proof:

Consider the general term,

 $G_1(x,y) = \cos x + \sin y \qquad \rightarrow (1)$ $G_2(x,y) = \cos x X \sin y \qquad \rightarrow (2)$

We have to prove $G_1(x,y) = 1$ and $G_2(x,y) = 0$

Put x,y = 30°

From (1), we have

 $G_1(x,y) = \cos(30^\circ) + \sin(30^\circ)$

$$= \frac{\sqrt{1}}{1} + \frac{1}{1}$$
$$= \frac{\sqrt{1}}{1}$$
$$\simeq 0.43$$
$$= 0$$

The Kronecker delta of trigonometry term to applied 30° hence proved the $G_1(x,y) = 1$ and $G_2(x,y) = 0$

 $Put = 45^{\circ}$

From (1), we have

 $G_1(x,y) = \cos + \sin$

 $= \cos(45^\circ) + \sin(45^\circ)$

$$=\sqrt{+\sqrt{-1}}$$
$$=\sqrt{-1}$$
$$=\sqrt{-1}$$
$$=\sqrt{2} \approx 1.41$$

 $G_1(x,y) = 1$

From(2), we have

 $G_2(x,y) = \cos(45^\circ) \, \sin(45^\circ)$

 $= \sqrt{X}\sqrt{}$ $= \simeq 0.5$

$$G_2(x,y) = 0$$

The Kronecker delta of trigonometry term to applied 45° hence proved the $G_1(x,y) = 1$ and $G_2(x,y) = 0$

Theorem -3

Let $\{(1,0),(0,1)\}$ be a basis of the vector space and if G_1 and G_2 be the dual basis

If we use Kronecker delta of trigonometry term to apply 60° then we have to prove $G_1(x,y)=1$ and $G_2(x,y)=0$, where

 $x,y \in v$

Proof:

Consider the general term,

$G_1(x,y) = \cos x + \sin y$	\rightarrow (1)
$G_2(x,y) = \cos x X \sin y$	\rightarrow (2)

We have to prove $G_1(x,y) = 1$ and $G_2(x,y) = 0$

Put x,y = 60°

From (1), we have

 $G_1(x,y) = \cos(60^\circ) + \sin(60^\circ)$

$$= + \sqrt{1}$$
$$= \frac{\sqrt{1}}{\sqrt{1}} \approx 1.36$$

 $G_1(x,y)=1$

From (2), we have

 $G_2(x,y) = \cos(60^\circ)\,\sin(60^\circ)$

$$= X^{\sqrt{2}}$$
$$= \sqrt{2} \approx 0.43$$

 $G_2(x,y)=0$

The Kronecker delta of trigonometery term to applied 60° hence proved the $G_1(x,y) = 1$ and $G_2(x,y) = 0$.

Conclusion

We have to generating dual basis of Kronecker delta, using trigonometry term applied trigonometry degree of 0° 90° exactly hence proved the Kronecker delta.And then another degree of 30° , 45° , 60° also hence proved the Kronecker delta. but 0° 90° is only exactvalue of dual basis then another degree is approximate value. 90° is only exact

Acknowledgements

My research work can help the professor and family members in this section.

References

[1]. K.P.GUPTA (1988) Linear Algebra

Pragathi prakashan publication Meerut

India limited.

[2]. R. D. Sharma & Ritu jain

j. k. International publishing house pvt . ltd, 2010.