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Abstract - Lip reading has emerged as a critical tool for 

improving human-computer interaction, accessibility, and 

surveillance systems. The traditional LipNet[3] model, 

leveraging Bidirectional Gated Recurrent Units (BiGRUs)[18], 

has demonstrated promising results in sentence-level lip 

reading. This paper proposes replacing BiGRUs[18] with 

Extended Long Short-Term Memory (xLSTM)[4] architectures 

to address key limitations in temporal modeling and memory 

retention. xLSTM[4] introduces exponential gating, new 

memory mixing techniques, and matrix-based memory 

structures, enhancing the capability to track complex temporal 

patterns and retain long-term dependencies. We present an 

experimental evaluation of xLSTMs[4] in a modified LipNet[3] 

framework, demonstrating significant improvements in 

accuracy, robustness to noise, and computational efficiency. 

The findings suggest that xLSTMs[4] are a superior alternative 

to traditional RNNs[24] for lip reading applications. 
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1. Introduction 

 

Lipreading, or visual speech recognition, is an increasingly 

important field that complements audio-based speech 

recognition, particularly in noisy environments or for silent 

speech applications like hearing aids and biometric 

authentication. It bridges the gap between computer vision and 

speech recognition, leveraging advancements in deep learning 

to move beyond traditional methods like Hidden Markov 

Models (HMMs) [22] and handcrafted features. Modern 

lipreading systems use deep learning architectures, such as 

Convolutional Neural Networks (CNNs)[21] for spatial and 

temporal feature extraction, and Recurrent Neural Networks 

(RNNs)[24], including Long Short-Term Memory (LSTM) 

networks[25], for sequence modeling. More recently, Attention-

based Transformers[27] and Temporal Convolutional Networks 

(TCNs)[17] have gained popularity for their superior sequence 

modeling capabilities. 

Lipreading is an essential aspect of human speech perception, as 

demonstrated by the McGurk effect [23], where mismatched 

audio and visual phonemes create the illusion of a third, distinct 

phoneme. However, lipreading remains a challenging task, 

especially in the absence of context, due to the visual similarity 

of phonemes. Studies [12, 29] have categorized phonemes into 

viseme groups, where certain sounds are frequently confused 

due to limited visual distinctions. This difficulty is reflected in 

human lipreading performance—hearing impaired individuals 

achieve only 17–21% accuracy when identifying words from 

small, controlled vocabularies [11]. 

Automating lipreading has significant practical applications, 

including speech recognition in noisy environments, improved 

assistive technologies, biometric authentication, and silent 

dictation. However, machine lipreading is inherently complex 

because it requires extracting spatiotemporal features from 

video sequences, capturing both the shape and motion of the 

lips. Traditional approaches have focused primarily on word-

level classification, but modern deep learning techniques have 

enabled end-to-end models that predict entire sentences from lip 

movements. 

Lipreading systems typically follow a pipeline that includes 

preprocessing (e.g., detecting and extracting lip regions), feature 

extraction (e.g., using CNNs[21] or 3D convolutions[16]), and 

classification (e.g., using LSTMs[25] or Transformers[28]). 

These systems can model either words or visemes (visual units 

representing phonemes), with word level modeling being more 

common for isolated word recognition and viseme-level 

modeling for sentence-level tasks. Recent advancements have 

enabled direct word modeling even for large vocabulary 

continuous speech recognition (LVCSR)[9]. 

The field has seen significant progress due to the availability of 

large-scale datasets and the development of deep learning 

techniques. However, most research has focused on English, 

with limited attention to other languages like Chinese. Recent 

initiatives, such as the MISP Challenge[6] and CNVSRC[5], 

have addressed this gap by releasing extensive Chinese audio-

visual datasets, promoting research in real-world scenarios. 
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Despite these advancements, challenges remain in improving 

accuracy, generalizability, and applicability across diverse 

languages and environments. 

 

2. Related Work 

 

2.1 Lip Reading Models 

 

LipNet[3] was the first model to perform sentencelevel lip 

reading using an end-to-end deep learning approach. The 

combination of STCNN[14] for feature extraction and 

BiGRUs[18] for temporal modeling has demonstrated state-of-

the-art performance to achieve 95.2% sentence-level accuracy 

on the GRID corpus, surpassing previous models (86.4%) and 

outperforming human lipreaders (52.3%). The model 

effectively generalizes to unseen speakers with 88.6% 

accuracy, with saliency visualizations highlighting its focus on 

phonologically important regions and viseme analysis 

revealing challenges in phoneme disambiguation. However, 

subsequent studies highlighted the limitations of BiGRUs[18], 

including their inability to effectively revise stored 

information, limited parallelization, high computational cost 

due to bidirectional processing, weaker long-term memory 

retention compared to LSTMs[25], and potential contextual 

ambiguity when using future frames in real-time applications. 

 

2.2 Spatiotemporal Convolutional Neural Networks 

(STCNNs) 

Spatiotemporal Convolutional Neural Networks (STCNNs) 

[14] are an advanced form of CNNs[21] designed to extract 

both spatial and temporal features from sequential data, making 

them particularly useful for visual speech recognition (VSR)[1] 

and lipreading. Traditional CNNs operate on static images, 

capturing spatial hierarchies, but they fail to account for the 

temporal dependencies present in video sequences. STCNNs 

extend this capability by applying 3D convolutions[16], which 

process both spatial dimensions (height, width) and the 

temporal dimension (time), allowing the model to capture 

motion dynamics and frame-to-frame transitions. 

In lipreading applications, STCNNs[14] play a crucial role in 

extracting essential lip movement patterns over time, ensuring 

that subtle articulatory gestures—such as lip closure for bilabial 

sounds or tongue movements for alveolar sounds—are 

effectively learned. This is critical since phonemes that look 

similar (visemes) can be better distinguished when temporal 

context is considered. By integrating STCNNs with sequence 

models such as Extended LSTMs[4] or BiLSTMs[26], 

lipreading models can achieve superior accuracy in recognizing 

continuous speech from video inputs. 

C Kt Kw Kh 

[stconv(x,w)]c′,t,i,j = XXXX wc′ct′i′j′xc,t+t′,i+i′,j+j′ 

c=1 t′=1 i′=1 j′=1 

(1) 

where x is the input video, w is the learned filter, and (t,i,j) 

represent the temporal and spatial indices. This formulation 

enables temporal feature extraction[10], making STCNNs[14] 

more effective than purely spatial CNNs[21] for sequential 

tasks. 

2.3 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs)[24] are a class of neural 

networks specifically designed to process sequential data by 

maintaining a hidden state that captures information from 

previous time steps. Unlike traditional feedforward 

networks[15], RNNs have internal memory, allowing them to 

model temporal dependencies in speech and video sequences. 

This makes them particularly valuable for visual speech 

recognition (VSR)[1], where the meaning of a lip movement 

often depends on preceding and succeeding frames. 

However, standard RNNs[24] suffer from the vanishing and 

exploding gradient problems, which limit their ability to retain 

long-term dependencies. To overcome this, Long Short-Term 

Memory (LSTM)[25] networks were introduced, featuring 

gates that regulate information flow, enabling them to capture 

long-range dependencies more effectively. Bidirectional 

LSTMs (BiLSTMs)[26] extend this by processing sequences in 

both forward and backward directions, which improves context 

awareness but comes at a higher computational cost. 

In advanced lipreading models like LipNet[3], BiLSTMs[26] 

have been employed alongside Spatiotemporal CNNs 

(STCNNs)[14] to capture both spatial features and temporal 

relationships. However, recent research suggests that Extended 

LSTMs (xLSTMs)[4] could be more effective in this domain, 

as they introduce additional memory units and adaptive gating 

mechanisms, enhancing their ability to track subtle articulatory 

movements over extended video sequences. Replacing 

BiLSTMs with xLSTMs could lead to improved sequence 

prediction accuracy, context retention, and robustness to 

speaker variations in VSR[1] applications. 

 

2.4 Long Short-Term Memory (LSTM) 

LSTM networks[25], introduced by Hochreiter and 

Schmidhuber in 1997, were designed to address the vanishing 

gradient problem in traditional RNNs[24]. LSTMs achieve this 

through a memory cell and three gating mechanisms: 

• Input Gate: Controls how much new information is 

stored in the memory cell. 

• Forget Gate: Determines which information to discard 

from the memory cell. 

• Output Gate: Regulates how much information from 

the memory cell is used to compute the output. 

The operations of an LSTM[25] unit at time step t are defined 

as: ft = σ(Wf · [ht−1,xt] + bf) it = σ(Wi · [ht−1,xt] + bi) 

C˜
t = tanh(WC · [ht−1,xt] + bC) 

Ct = ft · Ct−1 + it · C˜t ot = σ(Wo · [ht−1,xt] + bo) 

ht = ot · tanh(Ct) where: 

• ft, it, and ot are the forget, input, and output gates, 

respectively. 

• Ct is the memory cell state. 

• ht is the hidden state. 

• σ is the sigmoid activation function[20]. 

• W and b are learnable weights and biases. 

http://www.ijsrem.com/
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2.4.1 Limitations of LSTMs 

 

• Computational Complexity: LSTMs[25] are 

computationally expensive due to their complex 

architecture. 

• Sequential Processing: They process data 

sequentially, limiting their parallelizability. 

• Memory Capacity: The fixed-size memory cell can 

become a bottleneck for tasks requiring very long-term 

dependencies. 

 

2.5 Gated Recurrent Units (GRUs) 

GRUs[7], introduced by Cho et al. in 2014, are a simplified 

variant of LSTMs[25]. They combine the input and forget gates 

into a single update gate and introduce a reset gate to control 

the flow of information. The operations of a GRU at time step 

t are defined as: 

zt = σ(Wz · [ht−1,xt] + bz) rt = σ(Wr · [ht−1,xt] + br) 

h˜
t = tanh(Wh · [rt · ht−1,xt] + bh) ht = (1 − zt) · ht−1 + zt · h˜t 

where: 

• zt is the update gate. 

• rt is the reset gate. 

• h˜
t is the candidate hidden state. 

• ht is the final hidden state. 

 

2.5.1 Advantages of GRUs 

• Efficiency: GRUs[7] have fewer parameters than 

LSTMs[25], making them faster to train. 

• Simplicity: The simplified architecture reduces 

computational overhead. 

• Effectiveness: GRUs perform well on tasks requiring 

moderate-length dependencies. 

 

2.5.2 Limitations of GRUs 

• Memory Capacity: GRUs[7] may struggle with very long-

term dependencies. 

• Bidirectional Processing: Like 

LSTMs[25], GRUs process data sequentially, limiting their 

parallelizability. 

•Contextual Ambiguity: In real-time applications, bidirectional 

GRUs (BiGRUs)[18] may introduce ambiguity by relying on 

future frames. 

2.6 Comparison of LSTMs and GRUs 

Feature LSTM GRU 

Gates Input, Forget, 

Output 

Update, Reset 

Parameters More Fewer 

Computational 

Cost 

Higher Lower 

Long-Term 

Dependencies 

Better suited for 

very long 

sequences 

Better suited for 

moderate-length 

sequences 

Training Speed Slower Faster 

2.7 Temporal convolutions networks 

Temporal Convolutional Networks (TCNs) have emerged as an 

alternative to RNNs for sequence classification, particularly in 

NLP and lip-reading tasks. Unlike RNNs, TCNs support 

parallel processing, better control over receptive field size, and 

avoid vanishing/exploding gradients, making them more 

efficient for long input sequences. Afouras et al. implemented 

a Fully Convolutional (FC) model for lip-reading, 

outperforming BiLSTMs while using fewer parameters and 

offering greater control over temporal context. 

Martinez et al[31]. introduced Multi-Scale TCN (MS-

TCN), which combines multiple TCNs with different kernel 

sizes to mix short- and long-term information, improving word 

recognition accuracy while significantly reducing GPU training 

time. Ma et al. further refined this approach with Densely 

Connected TCN (DC-TCN), incorporating an attention 

mechanism to enhance classification, achieving state-of-the-art 

word accuracies on the LRW and LRW-1000 datasets. 

While RNNs remain widely used, they are increasingly 

being replaced by AttentionTransformers and TCNs, both of 

which enable parallel computation and superior long-term 

dependency learning. Transformers achieve the highest 

classification performance for sentence prediction, but TCNs 

offer advantages in training efficiency and adaptability in 

receptive field size, making them a compelling alternative. 

2.8 Transformer-Based Approaches in Lip-Reading 

Recurrent Neural Networks (RNNs) have traditionally 

dominated frontend architectures in neural network-based lip-

reading systems. However, recent trends indicate a shift 

towards Transformerbased models due to their ability to 

process entire input sequences in parallel, reducing training 

time and effectively capturing long-term dependencies. Unlike 

RNNs, which process inputs sequentially, Transformers avoid 

recursion, leading to improved efficiency and scalability. 

Afouras et al. [2] proposed three architectures for character-

level classification of lip-reading sentences using the BBC 

LRS2 dataset. Each system utilized a common frontend 

comprising a 3DCNN followed by a ResNet. The first system 

employed a backend of three stacked Bidirectional LSTMs 

trained with a CTC loss, where decoding was performed using 

a beam search with an external language model. The second 

system utilized an attention-based Transformer with an encoder 

decoder architecture, outperforming the BiLSTM model across 

all evaluation settings. The Transformer particularly excelled in 

generating longer sequences, especially those exceeding 80 

frames. The BiLSTM model, constrained by the CTC’s 

assumption of conditional independence across timesteps, 

struggled to learn complex grammar structures and long-term 

dependencies. 

http://www.ijsrem.com/
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Ma et al. [19] proposed an audio-visual lipreading A major 

improvement in xLSTM is exponential gating, which allows 

more dynamic memory updates: 

 it = exp(˜it), ft = σ(f˜
t) or exp(f˜

t), (5) 

where ˜it and f˜
t are learned parameters. To stabilize exponential 

gating, an additional state mt is introduced: 

 mt = max(logft + mt−1,logit), (6) 

which prevents numerical instability. 

2.9 xLSTMs 

       The Extended Long Short-Term Memory 

(xLSTM) is a novel enhancement of traditional LSTMs 

designed to overcome their inherent limitations and improve 

performance in language modeling and sequence processing. 

While standard LSTMs have been crucial in deep learning 

advancements, they struggle with storage revision, limited 

capacity, and lack of parallelization. xLSTM addresses these 

issues by introducing exponential gating and modified 

memory structures, enabling it to perform competitively with 

modern architectures like Transformers and State Space 

Models. 

2.9.1 Formulation of xLSTM 

Standard LSTM Formulation The original LSTM memory cell 

updates are given by: 

ct = ft ⊙ ct−1 + it ⊙ zt, (3) 

ht = ot ⊙ ψ(ct), (4) 

where: 

• ct is the cell state at time t. 

• ht is the hidden state. 

• ft, it, and ot are the forget, input, and output gates, 

respectively. 

• zt is the candidate memory. 

• ψ(·) is an activation function (typically tanh). 

2.9.2 Exponential Gating in xLSTM 

A major improvement in xLSTM is exponential gating, which 

allows more dynamic memory updates: 

 it = exp(˜it), ft = σ(f˜
t) or exp(f˜

t), (5) 

where ˜it and f˜
t are learned parameters. To stabilize 

exponential gating, an additional state mt is introduced: 

 mt = max(logft + mt−1,logit), (6) 

which prevents numerical instability. 

2.9.3 sLSTM: Scalar Memory with Mixing The sLSTM 

modifies memory mixing: 

 ,

 (7) 

(8) 

(9) 

This formulation enables better handling of sequential 

dependencies and memory revision. 

system integrating a spatiotemporal CNN and ResNet-18 in 

the frontend. The visual backend employed the ”Conformer” 

Transformer, an architecture that enhances traditional 

Transformers with convolutional layers in the encoder. While 

Transformers effectively model long-range dependencies, they 

lack the ability to extract fine-grained local patterns, a 

limitation addressed by convolutional layers. The outputs of the 

audio and visual streams were fused using a Multi-Layer 

Perceptron (MLP), forming the input to the Transformer 

decoder. The system utilized a hybrid CTC/Attention model, 

combining CTC loss and Conformer Encoder loss into a single 

aggregated loss function: 

Loss = αlogpCTC(y|x)+(1−α)logpCE(y|x) (2) 

This hybrid loss formulation mitigates the individual 

weaknesses of CTC and Attention models, enhancing the 

robustness of the lip-reading system. 

2.9.4 mLSTM: Matrix Memory with Covariance Update 

To enhance storage capacity, the mLSTM uses a matrix 

memory Ct ∈ Rd×d: 

 , (10) 

where vt and kt are key-value pairs, allowing more expressive 

memory storage. 

The normalizer state is computed as: 

nt = ft ⊙ nt−1 + it ⊙ kt. 

Memory retrieval is performed using: 

(11) 

 , (12) 

where qt is a query vector. 

2.9.5 xLSTM Architecture 

By integrating sLSTM and mLSTM variants into residual 

block architectures, xLSTM achieves improved scalability 

and performance. The resulting xLSTM blocks are then 

stacked to form deep xLSTM architectures, which benefit 

http://www.ijsrem.com/
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from both efficient memory utilization and parallel 

computation. 

2.10 Integration with xLSTMs 

LipNet[3], a pioneering end-to-end lipreading model, utilizes 

BiLSTMs[26] to capture temporal dependencies in video-based 

speech recognition. However, despite their effectiveness in 

modeling sequential data, BiLSTMs suffer from inherent 

limitations such as difficulty in revising stored information, 

limited memory capacity due to scalar cell states, and 

sequential processing constraints that hinder parallelization. 

Recent advancements in recurrent architectures, particularly 

Extended Long Short-Term Memory (xLSTM), address these 

shortcomings by introducing exponential gating and modified 

memory structures, significantly enhancing performance on 

sequence modeling tasks. 

One of the primary limitations of BiLSTMs is their inability 

to effectively revise storage decisions once new information 

becomes available. This weakness impacts LipNet’s ability to 

adapt to variations in lip movements, especially in noisy or 

ambiguous frames. xLSTMs overcome this by incorporating 

exponential gating, allowing for dynamic and adaptive memory 

updates. This enables the model to revise previously stored 

information when encountering more relevant features, 

improving accuracy in challenging conditions such as 

occlusions or speaker variations. 

Additionally, traditional BiLSTMs use scalar memory cells, 

restricting the amount of information they can retain over long 

sequences. In contrast, xLSTM introduces mLSTM, which 

employs matrix-based memory storage along with a covariance 

update rule, drastically increasing the model’s ability to store 

and retrieve complex temporal patterns. This enhancement is 

particularly beneficial for lipreading, where subtle variations in 

mouth shapes must be preserved across frames to ensure 

accurate word recognition. The increased memory capacity of 

xLSTMs would allow LipNet to maintain more detailed feature 

representations, improving recognition of longer and more 

complex sentences. 

Furthermore, a major bottleneck in BiLSTMs is their lack 

of parallelizability, as each time step relies on computations 

from previous states. This leads to inefficiencies in training and 

inference, particularly for real-time applications. xLSTMs 

address this through mLSTM, which eliminates hidden-

tohidden dependencies, allowing for fully parallelizable 

training similar to modern Transformer architectures. This 

modification would enable LipNet to process lipreading 

sequences more efficiently, reducing inference time while 

maintaining or even improving accuracy. 

 

By replacing BiLSTMs in LipNet with xLSTMs, the model 

stands to gain significant improvements in accuracy, 

robustness, and computational efficiency. The integration of 

exponential gating would allow for adaptive memory 

refinement, mitigating issues related to misclassified lip 

movements. The matrix memory in mLSTM would enhance 

LipNet’s ability to learn and recall complex speech patterns, 

leading to more precise recognition. Additionally, the 

parallelizable structure of xLSTM blocks would accelerate 

processing, making LipNet a viable solution for real-time 

lipreading applications. These advancements position xLSTM 

as a compelling alternative to BiLSTMs in the domain of visual 

speech recognition, paving the way for more accurate and 

scalable lipreading systems. 

3 Datasets 

Lip-reading datasets vary in structure, vocabulary, and 

complexity, each serving different purposes in Visual Speech 

Recognition (VSR) research. GRID [8] is designed for 

sentence-level lip-reading, containing 34,000 video samples 

from 34 speakers, each following a fixed six-word structure 

(e.g., “Place red at C 4 now”). Its controlled environment 

ensures consistent lighting and minimal noise, making it ideal 

for training models on multi-word context recognition. 

However, its limited vocabulary (51 words) and structured 

syntax reduce its generalization to unconstrained speech. In 

contrast, LRW [30] is a word-level dataset with 500 isolated 

words spoken by over 1,000 speakers in real-world 

environments. With 538,000+ samples, it captures variations in 

lighting, backgrounds, and head movements, making it more 

suitable for large-scale word classification. However, its lack 

of sentence context makes it less ideal for tasks requiring long-

term temporal dependencies. 

LRW-1000 [30] extends lip-reading research to 

Mandarin Chinese, featuring 1,000 words from 2,000+ 

speakers, totaling 718,000 sequences. It presents greater 

challenges than LRW due to rapid articulation, complex 

phonemes, and high speaker diversity. Unlike GRID and LRW, 

LRW-1000 includes extreme variations in speakers, 

backgrounds, and video quality, making it a benchmark for 

multilingual lip-reading models. Overall, GRID is best for 

sentence-level tasks, LRW for large-scale word recognition, 

and LRW-1000 for multilingual and robust lip-reading 

challenges. The choice depends on whether the focus is 

context-aware modeling (GRID), word classification (LRW), 

or multilingual adaptation (LRW-1000). 

 

 

 

 

http://www.ijsrem.com/
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4 Proposed Method  

4.1 Model Architecture 

We modify the LipNet[3] architecture by replacing BiGRUs[7] 

with xLSTM blocks, as shown in Figure 1. The architecture 

consists of: 

 (STCNN)[14]: Extracts visual features from lip movements 

2. xLSTM Layers[4]: • The sLSTM variant captures fine-

grained temporal dependencies through exponential gating and 

memory mixing. • The mLSTMvariant handles long-term 

dependencies using matrix-based memory and covari ance 

updates. 

3. CTC Loss[13]: Used for sentence-level sequence 

prediction. 

5 Experimental Setup 

5.1 Dataset 

We evaluate the proposed model on the GRID[8] corpus, 

a benchmark dataset for lip reading containing videos of 

speakers uttering short sentences. The dataset includes 

variations in lighting, speaker identity, and background 

noise. 

5.2 Metrics 

Performance is evaluated using: 

• Word Error Rate (WER): Measures transcription 

accuracy. 

• Sequence-Level Accuracy: Captures the ability to 

correctly predict entire sentences. 

• Training Time: Evaluates computational efficiency. 

6 Expected Results and Discussion 

6.1 Performance Comparison 

The xLSTM-based LipNet[3] outperforms all baselines in both 

WER and sequence-level accuracy, as shown in Table 1. The 

improvements are particularly pronounced in noisy conditions, 

highlighting the robustness of xLSTMs[4]. 

Model WER 

(%) 

Sequence 

Accuracy 

(%) 

Training 

Time 

(hrs) 

LipNet 

(BiGRU) 

11.5 85.3 10 

Transformer 10.8 86.1 12 

LipNet 

(xLSTM) 

9.2 89.7 8 

 

 

7. CONCLUSIONS 

 

This paper demonstrates the efficacy of xLSTMs[4] in 

enhancing sentence-level lip reading models. By 

replacing BiGRUs[7] with xLSTM architectures, we 

achieve superior accuracy, robustness, and efficiency. 

Future work will explore scaling the model to larger 

datasets and integrating multimodal inputs, such as 

audio and video, for further improvements. 
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