

Load Forecasting using ANN

Hitesh Chaudhari

Department of Electrical Engineering, RCOEM Nagpur Department of Electrical Engineering, GP Nashik

Email address:

chaudharihn1996@gmail.com

Abstract: Accurate load forecasting plays a key role in economical use of energy. Artificial Neural Network (ANN) models have been extensively implemented to produce accurate results for short-term load forecasting with time lead ranging from an hour to a week. In this report daily peak load forecasting has been performed for the part of a town supplied by 2 distribution feeders on weekdays by taking into consideration the historical maximum Power consumption in MWH, Voltage in KV and Current in Amp data. Optimization of the network parameters is performed for both learning rules. Energy demand forecasting is of great importance in the management of power systems. In this report artificial neural network technique (ANN) is used for forecasting the load curve. Algorithms using these techniques have been programmed using MATLAB 15 and applied to the case study. The efficiency of both the model is determined from the load curve and the load is predicted as a testing sample. The ANN model trains the daily load data for a set of days and then forecast the load for next day. Actual data are obtained from "Mankapur Substation" is used to validate the result.

Keywords: Load forecasting; Load demand; Power Quality; MATLAB; Load

1

1. Abstract

Accurate load forecasting plays a key role in economical use of energy. Artificial Neural Network (ANN) models have been extensively implemented to produce accurate results for short-term load forecasting with time lead ranging from an hour to a week. In this report daily peak load forecasting has been performed for the part of a town supplied by 2 distribution feeders on weekdays by taking into consideration the historical maximum Power consumption in MWH, Voltage in KV and Current in Amp data. Optimization of the network parameters is performed for both learning rules. Energy demand forecasting is of great importance in the management of power systems. In this report artificial neural network technique (ANN) is used for forecasting the load curve. Algorithms using these techniques have been programmed using MATLAB 15 and applied to the case study. The efficiency of both the model is determined from the load curve and the load is predicted as a testing sample. The ANN model trains the daily load data for a set of days and then forecast the load for next day. Actual data are obtained from "Mankapur Substation" is used to validate the result.

2. Introduction

Electric load forecasting is the process used to forecast future electric load, given historical load, weather information along with current and forecasted weather information. There is a growing tendency towards unbundling the electricity system. This is continually confronting the different sectors of the industry (generation, transmission, and distribution) with increasing demand on planning management and operations of the network. Load forecasting plays a key role in helping an electric utility to make important decisions on power, load switching, voltage control, network reconfiguration, infrastructure development, purchasing and generating electric power, load switching, and infrastructure development. Load forecasts are extremely important for energy suppliers, ISOs, financial institutions, and other participants in electric energy generation, transmission, distribution, and markets. Load forecasting is however a difficult task because the load series is complex and exhibits several levels of seasonality systems. Daily maximum load forecasting is used for the applications like the unit commitment, security analysis of the system and the economical scheduling of the outages and fuel supply. Artificial Neural Network (ANN) is mostly used for the prediction of the load. The reason is, ANN methodology solves the complex relationships between the independent and dependent variables by a mathematical mapping algorithm. Short-term load forecasting (one hour to one week ahead) plays a key role in economic and secure system operation. Short term load forecasting displays a great ability for economic and secure operation of power. In the rapidly growing power markets like India with the limited generation capacity, this can be the powerful tool for the demand side management. Efforts are made in this work to develop, train and test an artificial neural network model which can forecast the peak load to a reasonable accuracy of a smaller area with data knowledge.

3. Artificial Neural Network

ANN is originally developed to mimic basic biological neural systems. An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. ANNs, like people, learn by example. Neural networks are essentially nonlinear circuits that have the demonstrated capability to do non-linear curve fitting.

4. ANN forecasting using model

The developed forecasting model, which considers temperature and humidity as input data, is shown in Fig. 1. Since the load demand does not depend only on temperature and humidity and in order to account for other factors, the input data (temperature and humidity) are fed to the neural network with historical load data for training and comparing for future load forecasting. ternational Journal of Scientific Research in Engineering and Management (IJSREM) Volume: 08 Issue: 07 | July - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

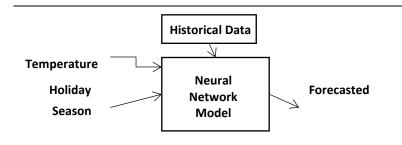
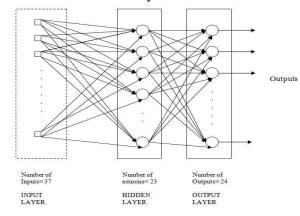


Fig. 1. The proposed ANN models

For non-linear curve fitting problems, neural networks have proved good performance. Neural network results, as an output, in linear or non-linear mathematical functions of the input data. Neural network elements might be arranged in different number of layers between the input and output; however, in practice, the number of used layers is relatively small. ANN uses data to learn the model and then to find the best weights that results in best fitting for the output. After that, new input data are used to forecast future outputs.

5. Data Collected


All data are collected from Mankapur substation of feeders (Ambajhari-1and Uppalwadi) for the months of June, July and August. The following parameters are considered.

- Maximum Voltage
- Minimum Voltage
- Maximum Current
- Minimum Current
- MWH consumption
- Temperature

6. Load Forecasting using ANN

- Short-term power load forecasting is used to provide utility company management with future information about electric load demand in order to assist them in running more economical and reliable day-to-day operations.
- A broad spectrum of factors affects the system's load level such as trend effects, cyclic-time effects, and weather effects, random effects like human activities, load management and thunderstorms.

- Thus, the load profile is dynamic in nature with temporal, seasonal and annual variations. In our project we developed a system that predicted 24 hours at a time load demand. As inputs we took the past load.
- Input to the ANN are past loads and the output of the ANN is the load forecast for a next day. The ANN was implemented using MATLAB 15. The training algorithm was used which is an adaptive learning algorithm using the epoch method of training. The number of epochs while training was set by which point the network was sufficiently trained.

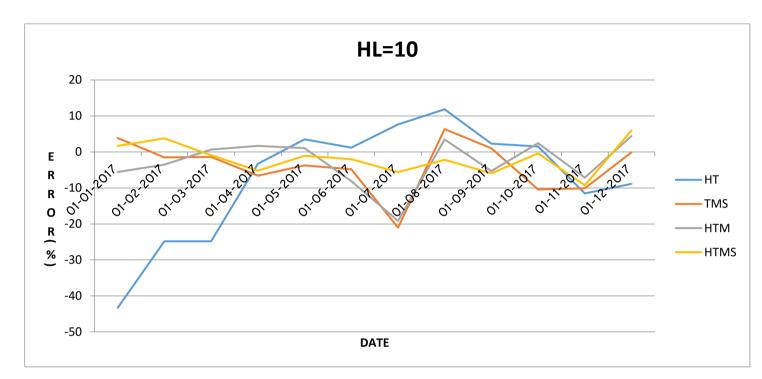
7. <u>Implementation</u>

- Gathering and arranging the data in MS Excel spreadsheet.
- Tagging the data into groups.
- Analyse the data.
- MATLAB simulation of data using ANN.

8. Steps for MATLAB simulation

- Type nnstart in MATLAB
- Select Fitting App (nftool)
- Create a variable input.
- Create a variable target.
- Select matrix rows
- Click next, next,
- Click train

nternational Journal of Scientific Research in Engineering and Management (IJSREM)Volume: 08 Issue: 07 | July - 2024SJIF Rating: 8.448ISSN: 2582-3930


Open Y1 to see the output.

Save Simulink model.

- Click next
- Click next and then Simulink diagram.
- Put input values in X1 and run the Simulink.
- **AMBAJHARI-I** HL=10 Date Actual HT Error (%) TMS Error (%) HTM Error (%) HTMS Error (%) 02-01-2017 1142 -43.2873 766.2 3.8644918 841.2 -5.545797 783.6 1.6813049 797 01-02-2017 1126 -24.8337 915.7 -1.518847 933.6 -3.503326 868 3.7694013 902 01-03-2017 1282 -24.8296 1041 1020 1036 1027 -1.3631938 0.6815969 -0.8763389 1471 1400 1498 01-04-2017 -3.30056 1518 -6.6011236 1.6853933 -5.1966292 1424 1371 1474 1406 01-05-2017 3.518649 -3.7297678 1.0555947 1436 -1.0555947 1421 01-06-2017 1331 1412 -4.8255382 1456 -8.092056 1374 -2.0044543 1.187825 1347 1085 1422 01-07-2017 7.659574 1400 -19.14894 1541 -31.148936 -21.021277 1175 1220 1296 01-08-2017 11.84971 6.3583815 1336 3.4682081 1414 -2.1676301 1384 01-09-2017 1220 2.321857 1236 1.0408327 1315 -5.284227 1323 -5.9247398 1249 1287 01-10-2017 1.530222 1443 -10.405509 1275 2.448355 1312 -0.3825555 1307 01-11-2017 1084 1070 1041 -7.098765 1062 972 -11.5226 -10.082305 -9.2592593 01-12-2017 1043 -8.87265 958.8 -0.0835073 915.7 4.4154489 900.7 5.9812109 958

T

9. Graphs for better comparison of Ambajhari-I

10. Conclusion

The historical data of previous year (2017) is collected from Mankapur substation and physical parameters like Temperature, Season, Holiday etc are used for analysis and this data is used in MATLAB simulation and results are obtained.

11. Future Work

Using this data and MATLAB simulation using ANN, we can analyse the electrical parameters of next month and this can be used in generating station for required generation of power and the effect of temperature and season can be determined.

12. <u>References</u>

- Mohan B. Tasre, Prashant P. Bedekar and Vilas N. Ghate, "Daily Peak Load Forecasting Using ANN", IEEE Trans., 8-10 December 2011.
- Mohammad Ghomi, Mahdi Goodarzi, Mahmood Goodarzi, "Peak Load Forecasting of Electric Utilities for West province of Iran

by using Neural Network without weather Information",IEEE Trans.,12th International Conference on Computer Modelling and Simulation 2010,Oct 2010.

- H.S. Hippert, C.E. Pedreira, and R.C. Souza. "Neural Networks for Short-Term Load Forecasting: A Review and Evaluation", IEEE Transactions on Power Systems, Vol: 16, pp:44–55, 2001.
- Howard Demuth Mark Beale Martin Haga, "Neural Network Toolbox5 User"s Guide", pp: 3-12.
- K.L. Ho,Y.Y Hsu, and C.C.Yang, "Short term load forecasting using a multilayer neural network with an adaptive learning algorithm," IEEE Trans .Power System, vol. 7, No.1, pp. 141-149, Feb. 1992.
- A.P. Rewagad and V.L. Soanawane, "Artificial neural network based short term load forecasting," IEEE region conference 10th International conference on global connectivity in energy, computer,

communication and control. Vol. 2, pp. 588-595, Dec. 1998

- R.L. Sullivan, "Power System Planning", pp: 18-60(Mc-Graw Hill International Book Company, 1977)
- R. Ramanathan, R. Engle, C. Granger, C. Vahid Aragui, and F. Brace, "Short-run forecasts of electricity load and peaks," Int. J. Forecasting, vol. 13, no. 2, pp. 161–174, 1997.