
 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 1

LOCAL DEAL FINDER

RONAK PATEL, BIRJESH DONGA, RITIK PATEL, SARITHA K

Final Year Btech.CSE, PIT Parul University, Vadodara, Gujarat, India

Abstract:

We developed a test framework and tools

implemented as plugins for create and generate

to book nearby hotels. We used our test

environment to perform and we found

important performance differences across the

tested frameworks. These differences vary

between the last print of the application when

starting and its performance while already

loaded. The architecture of Web applications

has evolved in the last few years. The need to

provide a native-like quality user experience has

forced developers to move code to the client

side (AngularJS). The dramatic increase in size

of the AngularJS code was addressed first with

the help of powerful libraries (jQuery) and more

recently with the help of JavaScript frameworks.

But although nowadays most Web applications

use these powerful JavaScript frameworks,

there is not much information about the impact

on performance that the inclusion of the

additional code will produce. One possible

reason is the lack of simple, flexible tools to test

the application when it is actually running in a

real browser.

Introduction:

Local Deal Finder is a simply web application

which is managed by Angular framework. It

uses for hotel booking as well as to provide a

platform to new start-ups. The main focus of

this application is develop faster user-

experience using this framework.

Angular JS is framework manage by Google, it

help build responsive sites. Angular JS use to

make a smooth web performance. Angular JS is

a toolset for building the framework most

suited to your application development. It is

fully extensible and works well with other

libraries. Every feature can be modified or

replaced to suit your unique development

workflow and feature needs.

Angular JS is a JavaScript framework. It can be

added to an HTML page with a <script> tag.

Angular JS extends HTML attributes with

Directives, and binds data to HTML with

Expressions. AngularJS extends HTML with new

attributes.AngularJS is perfect for Single Page

Applications (SPAs).AngularJS is easy to learn.

The idea turned out very well, and the project is

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 2

now officially supported by Google AngularJS is

a structural framework for dynamic web

applications. It lets you use HTML as your

template language and lets you extend HTML's

syntax to express your application components

clearly and succinctly. Its data binding and

dependency injection eliminate much of the

code you currently have to write. And it all

happens within the browser, making it an ideal

partner with any server technology. It was

originally developed by MiskoHevery and Adam

Abrons. HTML is great for declaring static

documents, but it falters when we try to use it

for declaring dynamic views in web-

applications. AngularJS lets you extend HTML

vocabulary for your application. The resulting

environment is extraordinarily expressive,

readable, and quick to develop

IMPLIMENTATION:

Explaining architecture

Let’s start with a presentation of the system

from an architectural point of view. I think that

an image is worth more than a thousand word

so I’ll start from showing you this simple graph:

 Diagram of AWS modules and relations

between them

On the picture, there are all AWS presented and

I’ll try to characterize each of them shortly:

• EC2 container — a general purpose node

which freely can be described

as VPS (Virtual Private Server) thus it has

own OS and you have direct access to it.

• S3 bucket — simply, a data container. You

can keep here assets needed by your

website: documents, images, videos and

many more. It can be also used for serving

static files (just like a bundled Angular

2 application!).

• RDS database — AWS twisted name for a

relational database instance.

https://aws.amazon.com/ec2/
https://aws.amazon.com/s3/
https://aws.amazon.com/rds/

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 3

• VPC — Virtual Private Cloud realize the

concept of keeping all components inside

one network. In this particular case, we

place EC2 container and RDS in the

same VPC to make them communicate

with each other.

• CloudFront — a gateway component

which offers worldwide content delivery.

There are many of CloudFront edge

locations which ensure that user is

redirected to the nearest one. If the

content is available on that edge location,

a user receives the answer immediately.

At the beginning of communication, when users

tries to access the website, they are redirected

to CloudFront server which is configured to

serve a static content from S3 bucket (our data

container). If someone requested the same

content from the same edge server

before, CloudFront’s cache object is returned

instead of getting the object from S3 bucket

again. However, described caching behavior is

not available when you serve static content

directly from S3 bucket container.

In addition to serving a static

content, CloudFront instance redirects queries

to the node.js backend server thus a user has a

single endpoint both for backend and frontend

server.

The last part of the puzzle is establishing a

connection between EC2 server and a database

instance. Moreover, we should ensure

that DB instance is not exposed to the Internet

to avoid security problems.

To summarize, we must resolve following issues:

• Setup and expose S3 bucket

serving Angular 2 application.

• Create EC2 container which will be

serving node.js server.

• Create a database (RDS).

• Establish connection

between EC2 container and RDS instance.

• Configure CloudFront to serve Angular

2 and node.js applications.

In next paragraphs, I’ll try to explain how to

resolve mentioned cases. As a prerequisite, I

assume that you have created AWS account and

you have access to it using aws-cli.

S3 bucket setup

We will use the S3 bucket for serving static

content of a website. First, create

an S3 bucket with public read access. Then go

to Properties page and make sure that Static

website hosting is enabled. The last step is to

https://aws.amazon.com/vpc/
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 4

enable serving files from a bucket is adding

proper access policy in Permissions/Bucket

Policy page:Now your bucket can be read by

everyone and you are ready to place

your Angular 2 application in it using

However, gulp HYPERLINK

"https://github.com/pgherveou/gulp-

awspublish"plugin to automate an upload

process so after each build of the release

application new version is automatically placed

in S3.

Website URL patterns

It may be obvious for several reader, but I would

like to briefly elaborate about creating routes

for a website. After building some websites, I’m

convinced that this is the most common pattern

for routing:

• static content (frontend) —

 www.example.com/* (excluding api/)

• dynamic content (backend) —

 www.example.com/api/*

Such convention is pretty straight-forward and

prevents from mixing backend and frontend

paths. This will be very helpful when we will do

configuration for CloudFront.

EC2 container for node.js server

Let’s start from setting the heart of our system.

As I mentioned before, EC2 is a general purpose

component and in our case, we will setup it as

a node.jsbackend server.

Be aware when selecting Network in creation

wizard so you can be sure that newly created

container would be placed inside

selected VPC instance. You can choose this

option only once so step for a moment and

consider what private cloud you will use.

The last thing, you must pay attention to during

creation is Security Groupthat can be described

as firewall settings for AWS components.

For EC2 Linux instance you should have enabled

at least SHH and HTTP port (this should be

your node.js server port). These settings can be

changed in the future thus it’s not a big issue if

you made mistake during configuration. Try to

remember the name of that security group (or

change it to remember it easily). It will be

needed later for a database configuration.

Uff! We’ve finished! Make a coffee as a reward

and wait a few minutes when AWS will be

creating an EC2 instance for you. Next, prepare

yourself for a container’s environment

configuration. Make sure that

your node.js server is exposed

on/api URL because CloudFront would try

redirect requests here.

https://github.com/pgherveou/gulp-awspublish
https://github.com/pgherveou/gulp-awspublish
https://github.com/pgherveou/gulp-awspublish
http://www.example.com/*
http://www.example.com/api/*

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 5

RDS instance

Majority of the modern websites need a specific

container for keeping persistent data. The most

common approach for storing such data is

creating a database. So now let’s see how to

launch a DB instance using RDS (Relational

Database Service).

Log in into your AWS console, choose RDS and

launch a new instance. The parameters you

must be careful about during configuration:

• VPC instance — make sure that you create

a database in same cloud instance you

choose for EC2 container

• Public accessibility — for security reasons

you should disable access to a database

from the Internet.

• Backup — (optional) if you want to save

the state of your DB select this option.

After creating an instance it is essential to

configure its Security Group. Go to VPC

console and choose Security Groups. Select the

database security group (it should be

named rds-xxxx) and go to Inbound rules, then

click Edit. You should be able to add a new rule.

We need to create All TCP, All UDP and All

ICMP rules. While you will be adding a new

group, enter your EC2 security group as

a Source. As the result, you would have 3 new

inbound rules and the source of each rule is

your EC2 instance security group.

We are done with configuration! Now let’s

check if our setup works. Do the following:

• Extract an address of your database

instance. Try to run: awsrds describe-db-

instances

If you have the problem with access, go to

your IAM console and

set AdministratorAccess to your AWS CLI User.

The output from that command will

contain ENDPOINT section and this is basically

the address of your database instance. I do not

fully understand why there is no information

about the endpoint of a DB instance

in AWS console. Let’s hope that guys

from AWS will add such useful info in the near

future.

2. Use the gathered address to perform

connection to your database:

• Log in to your EC2 instance.

(This is example command for MySQL instance. If

you create another type of database, you need

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 6

to find similar command for connecting to the

database.)

CloudFront configuration

 explanation what CloudFront offers in

AWS website:

Amazon CloudFront is a web service that speeds

up distribution of your static and dynamic web

content, such as .html, .css, .js, and image files,

to your users. CloudFront delivers your content

through a worldwide network of data centers

called edge locations. When a user requests

content that you’re serving with CloudFront, the

user is routed to the edge location that provides

the lowest latency (time delay), so that content

is delivered with the best possible performance.

If the content is already in the edge location with

the lowest latency, CloudFront delivers it

immediately. If the content is not in that edge

location, CloudFront retrieves it from an Amazon

S3 bucket or an HTTP server (for example, a web

server) that you have identified as the source for

the definitive version of your content.

So if we sum up all this cool stuff, we can

imagine CF as a caching gateway for our

website. In our configuration, we want to cache

requests to S3 bucket because it contains static

content (until we would like to deploy a new

version of the Angular app to speed up user

experience) but we don’t want to do the same

with requests for a backend as these are

considered as a dynamic.

Before we take off, I feel obligated to warn you

about making frequent changes

for CF configuration — each save operation takes

about 10 minutes to replicate so try to bulk all

changes into one.

We have almost finished! This will be the last

step we need in our setup: let’s

create CloudFront Web instance. In the wizard,

we will setup CF for serving S3 bucket and later

we will add redirection

for EC2 node.js container. During this part you

must set:

• Origin Domain Name: choose S3 bucket.

• Viewer Protocol Policy: Redirect HTTP to

HTTPS.

• Allowed HTTP methods: GET, HEAD,

OPTIONS, PUT, POST, PATCH, DELETE.

• Query String Forwarding and Caching:

choose No if your Angular application

uses query string routes.

• Compress Objects Automatically: Yes.

• Default Root Object: write here

your index.html filename.

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
https://angular-2-training-book.rangle.io/handout/routing/routeparams.html

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 7

If you want to know more about these settings

read this article.

Congratulations, now you have your

new CloudFront for any project you like. At this

moment you should be able to enter your

website (get the Angular part of it) when you

enter the CloudFront address in the browser.

So let’s go further and try to pass a non-root URL

like www.app.cloudfront.com/about. Whoops!

Seems like CloudFront does not know about that

page. To avoid such situation just tell CF to

redirect all 404 and 403 errors to Angular

2 application in very simple way:

• Select CloudFront distribution.

• Enter Error Pages tab.

• Select Create Custom Error Response.

• Select 404 for HTTP Error Code.

• Set TTL to 0.

• Set Customize Error Response to Yes.

• In Response Page Path put the path to

your index.html file.

• HTTP response code: set to 200.

• Do the same for 403 error code.

Now, all of 404 and 403 errors should be

redirected to Angular 2 application so you

should deal with potentially incorrect URLs

there.

“We are almost there” step we need to do is to

enable the redirection of

URL www.cloudfront.com/api to the node.js

server. Moreover, it may be useful to remove

caching behavior of CloudFront because of

dynamic nature of responses. To achieve such

effect follow steps listed below:

• In the CloudFront console edit

the Distribution Settings.

• Go to Origins tab and Create Origin.

• Enter the address of your EC2 component

as an Origin Domain Name.

• Set the Origin Protocol Policy to HTTP

Only.

• Write your server HTTP Port.

• Click Create.

After that, you will create the

custom CloudFront origin. In the moment I’ve

written the article CF supports only S3 buckets

as origins. Every other component needs to be

configured as a custom one.

https://rynop.com/2017/04/20/howto-serve-angular2-app-from-s3-and-cloudfront-with-free-https/
http://www.app.cloudfront.com/about
http://www.cloudfront.com/api

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 8

OK, we’ve registered the origin and our final

step is to create the route for it. So:

• Go to the Behaviors tab.

• Click Create Behavior.

• As a Path Pattern enter a wildcard of your

backend base URL. In our case that will be

/api/*.

• Choose previously created EC2 origin

as Origin.

• In Viewer Protocol Policy choose: HTTP

and HTTPS.

• Allowed HTTP methods: GET, HEAD,

OPTIONS, PUT, POST, PATCH, DELETE.

• Object caching: Customize.

• Set all TTL to 0 as we don’t want to cache

responses.

• Probably you will need to disable Query

String Forwarding too.

• Compress Objects Automatically:

Yes.And that’s it! Now we have fully

functional CloudFront even for backend

request. Take a note thatwe disabled

caching via setting TTL of responses to 0.

Itmeans that all messages come from

backend are “hot” and a user browser will

need to request a new data from backend

when it’s needed.

But what about HTTPS?

CloudFront instance by default is configured to

use own certificate and it’s ready to use HTTPS.

That’s it — you don’t need to generate and sign a

certificate. The connection between a user and

your gateway can use both HTTP and HTTPS. But

for inner communication, you can choose a

more secure option.

And we did it! After completing all above steps

you have fully worked cloud server with a

scalable inner organization. It can stand against

user loads, it is safe and can be restored in case

of failure. But the most important for fans of

free solutions: all of presented

here AWS components are available in free tier.

Proposed Work:

The recent introduction of Internet technology

to general business has led to its wide-scale

application in the hotel industry. Consumers

have been increasingly using the Internet to

search for accommodation-related information

on hotel Websites. To facilitate a better

understanding of e-commerce, hospitality and

tourism researchers have shown the

importance of establishing content-rich and

user-friendly Websites. The existing hospitality

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 9

literature, however, has a very limited number

of published articles that investigated the

perceptions of hotel Website users on the

importance of specific features on hotel

Websites. The absence of prior studies on

assessing the importance of hotel Website

dimensions and attributes is particularly true in

the comparison of online browsers who only

search for information and online purchasers

who have made online bookings. This article

reports on a study that examined these two

groups of international hotel Website users on

their perceived importance level of specific

dimensions and attributes on hotel Websites.

Empirical evidence indicates that there was no

significant difference in most of the included

dimensions and attributes between these two

groups of users. In addition, the respondents

viewed that the included dimensions and

attributes are important on Websites of 3-star

or above hotels.

Screenshots:

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 10

Conclusion:

By using SAP suits, ERP one not only can

develop their business growth but also can

analyze financial risk as well as enterprise risk.

Even though by using this method small

agencies can also be benefited in different

aspect in different departments.

Even every user can be benefited in different

aspect like getting the better reviews from the

integrated article section by introducing this

section trusting online platform issues can be

cut down.

References:

Anonymous (2004). Online Frustrations. Hotel

Asia Pacific, 5(2), 31.Google Scholar

Chung, T. & Law, R. (2003). Developing a

Performance Indicator for Hotel

Websites. International Journal of Hospitality

Management, 22, 119–125.CrossRef

HYPERLINK

"http://scholar.google.com/scholar_lookup?tit

le=Developing%20a%20Performance%20Indica

tor%20for%20Hotel%20Websites&author=T..%

20Chung&author=R..%20Law&journal=Internat

ional%20Journal%20of%20Hospitality%20Man

agement&volume=22&pages=119-

125&publication_year=2003"Google Scholar

Cox, B. (2002). Online Travel — Still an E-

commerce Star? [Accessed on May 22, 2004].

www.internetnews.com/ec-

news/article.php/1437521.Google Scholar

http://scholar.google.com/scholar_lookup?title=Online%20Frustrations&author=.%20Anonymous&journal=Hotel%20Asia%20Pacific&volume=5&issue=2&pages=31&publication_year=2004
https://doi.org/10.1016/S0278-4319(02)00076-2
https://doi.org/10.1016/S0278-4319(02)00076-2
https://doi.org/10.1016/S0278-4319(02)00076-2
https://doi.org/10.1016/S0278-4319(02)00076-2
https://doi.org/10.1016/S0278-4319(02)00076-2
https://doi.org/10.1016/S0278-4319(02)00076-2
https://doi.org/10.1016/S0278-4319(02)00076-2
https://doi.org/10.1016/S0278-4319(02)00076-2
https://doi.org/10.1016/S0278-4319(02)00076-2
http://www.internetnews.com/ec-news/article.php/1437521
http://www.internetnews.com/ec-news/article.php/1437521
https://scholar.google.com/scholar?q=Cox%2C%20B.%20%282002%29.%20Online%20Travel%20%E2%80%94%20Still%20an%20E-commerce%20Star%3F%20%5BAccessed%20on%20May%2022%2C%202004%5D.%20www.internetnews.com%2Fec-news%2Farticle.php%2F1437521.

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com Page 11

Doolin, B., Burgess, L. & Cooper, J. (2002).

Evaluating the Use of the Web for Tourism

Marketing: a Case Study from New

Zealand. Tourism Management, 23, 557–

561.CrossRef HYPERLINK

"http://scholar.google.com/scholar_lookup?tit

le=Evaluating%20the%20Use%20of%20the%20

Web%20for%20Tourism%20Marketing%3A%2

0a%20Case%20Study%20from%20New%20Zea

land&author=B..%20Doolin&author=L..%20Bur

gess&author=J..%20Cooper&journal=Tourism%

20Management&volume=23&pages=557-

561&publication_year=2002"Google Scholar

Greenspan, R. (2003). Hotel Industry Makes

Room for Online Bookings. [Accessed on May

26, 2004]

www.clickz.com/stats/markets/travel/article.p

hp/1567141.Google Scholar

Morrison, A.M., Taylor, S., Morrison, A.J. &

Morrison, A.D. (1999). Marketing Small Hotels

on the World Wide Web. Information

Technology & Tourism, 2(2), 97–113.Google

Scholar

G. Bahmutov, Improving Angular web app

performance example. Available at:

http://bahmutov.calepin.co/improving-

angular-web-app-performance-example.html

(Accessed: 18 December 2014)

https://doi.org/10.1016/S0261-5177(02)00014-6
https://doi.org/10.1016/S0261-5177(02)00014-6
https://doi.org/10.1016/S0261-5177(02)00014-6
https://doi.org/10.1016/S0261-5177(02)00014-6
https://doi.org/10.1016/S0261-5177(02)00014-6
https://doi.org/10.1016/S0261-5177(02)00014-6
https://doi.org/10.1016/S0261-5177(02)00014-6
https://doi.org/10.1016/S0261-5177(02)00014-6
https://doi.org/10.1016/S0261-5177(02)00014-6
http://www.clickz.com/stats/markets/travel/article.php/1567141
http://www.clickz.com/stats/markets/travel/article.php/1567141
https://scholar.google.com/scholar?q=Greenspan%2C%20R.%20%282003%29.%20Hotel%20Industry%20Makes%20Room%20for%20Online%20Bookings.%20%5BAccessed%20on%20May%2026%2C%202004%5D%20www.clickz.com%2Fstats%2Fmarkets%2Ftravel%2Farticle.php%2F1567141.
http://scholar.google.com/scholar_lookup?title=Marketing%20Small%20Hotels%20on%20the%20World%20Wide%20Web&author=A.M..%20Morrison&author=S..%20Taylor&author=A.J..%20Morrison&author=A.D..%20Morrison&journal=Information%20Technology%20%26%20Tourism&volume=2&issue=2&pages=97-113&publication_year=1999
http://scholar.google.com/scholar_lookup?title=Marketing%20Small%20Hotels%20on%20the%20World%20Wide%20Web&author=A.M..%20Morrison&author=S..%20Taylor&author=A.J..%20Morrison&author=A.D..%20Morrison&journal=Information%20Technology%20%26%20Tourism&volume=2&issue=2&pages=97-113&publication_year=1999
http://bahmutov.calepin.co/improving-angular-web-app-performance-example.html
http://bahmutov.calepin.co/improving-angular-web-app-performance-example.html

