
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 01 | January - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17310 | Page 1

Logo Detection using Machine Learning

Kandala Sreeja1, I.S Harshitha Yadav2, Gogu. Nagaraju3

1CSE Department, Sreenidhi Institute of Science and Technology.
2CSE Department, Sreenidhi Institute of Science and Technology.

 3CSE Department, Sreenidhi Institute of Science and Technology.

---***---
Abstract - Logo detection is a part of a broader family

of object detection. In this paper, we discuss about the

methods which help in logo detection using the python

libraries like OpenCV, Sklearn, Skimage and machine

learning ,computer vision techniques. In the project, we

develop a model for logo detection using K nearest

Neighbors classifier which detects the logo in the image

and is used to predict the logo name. To detect the logo,

we transform the images by removing the unwanted data

like color of the image by changing it to gray color and

detecting the edges of the image, resizing the image and

performing feature extraction. Then we use the KNN

classifier to train our model to predict the logo names.

Key Words: KNN classifier, OpenCV, canny edge

detection, feature extraction, logo detection, machine

learning, computer vision.

1. INTRODUCTION

 With increasing in brands, companies and

organizations as startups, existing ones as market rulers;

there is also increment in the scams of fake/cloned

variants of products and services from the existing

companies. Users are unable to distinguish between the

original and a duplicate variant of the services and

products provided from one company or brand. So there

comes “Logo Detection Using Machine Learning”, with

our detection mechanism implementing KNN (K

Nearest Neighbors) algorithm, we compare the user

provided logo from the original ones and predict the

logo name. Our proposed system detects by the original

logo based on pixel’s color, design format, service

marks and slogan/quotation. . Logo detection is an

aspect of image recognition, a computer vision

technology that can serve a large number of purposes.

Logo detection has many use cases like brand

monitoring and social listening, counterfeit detection,

product authentication, copyright and trademark

compliance, sponsorship monitoring, digital piracy

monitoring.

The input data taken is the set of logo images.

We preprocess the data, apply edge detection function

and feature extraction is done and the resultant image is

inputted to the KNN classifier to train the model and it is

used to predict the new logos.

2. HARDWARE AND SOFTWARE

REQUIREMENTS

Any Windows(or any operating system) PC having:

• 2 GB RAM

• Camera Device

• Internet (Optional, If accessing through online

database)

• Enough disk space for the datasets/database

• =/> 1.60 GHz Processor

Software requirements:

• Python

• Windows 7 or later OS

3. METHODS AND IMPLEMENTATION:

The following are the steps to be performed for

logo detection:

1. Load the image, convert it to grayscale, and detect

edges.

 2. Extract HOG(Histogram of oriented gradients)

features from our training data to characterize and

quantify each logo.

3. Train a machine learning classifier to distinguish

between each logo.

4. Apply a classifier to recognize new, unseen logos.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 01 | January - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17310 | Page 2

Fig 1. Flowchart

The input data is the set of logo images taken from the

internet. We start by importing the required libraries

numpy, cv, sklearn, skimage, glob, os.

First we load the images by defining the path of the files

by using the python OS module .OS module in Python

provides various methods for interacting with the

operating system. Os.path.abspath()method returns the

pathname to the path passed as a parameter to this

function. os.path.dirname() method in Python is used to

get the directory name from the specified path.

os.path.split() method in Python is used to Split the path

name into a pair head and tail. Here, tail is the last path

name component and head is everything leading up to

that. We define the paths to the training data and testing

data.The first path specified is –training, which is the

path to where the example logos reside on disk. The

second is –test, the path to our directory of testing

images we’ll use to evaluate our logo classifier.

The glob module is a useful part of the Python standard

library. Glob (short for global) is used to return all file

paths that match a specific pattern.

We’ll also initialize hists and labels, two lists that will

hold the HOG features and brand name for each image

in our training set, respectively.

Next, we start looping over each of the image paths in

the training directory. An example image path looks like

this: car_logos/audi/audi_01.pngUsing this image path,

we are able to extract the logo brand by splitting the path

and extracting the second sub-directory name, or in this

case Audi.

cv2.imread() method takes an absolute path/relative path

of your image file as an argument and returns its

corresponding image matrix. cv2.cvtColor() method is

used to convert an image from one color space to

another. We perform a bit of pre-processing and prepare

the logo to be described using the Histogram of Oriented

Gradients descriptor.

gray = cv.cvtColor(image,

cv.COLOR_BGR2GRAY)

So what we to do is to load the image from disk, convert

it to grayscale, and then use our canny function to detect

edges in the brand logo.

❖ CANNY EDGE DETECTION

edged = cv.Canny(gray, low, up)

Canny () Function in OpenCV is used to detect the

edges in an image.

numpy.median(arr, axis = None) : Compute the median

of the given data (array elements) along the specified

axis.

Fig 2. Edge detection of logos.

These contours are then used as a parameter in the

Boundingrect function to get the best fitting rectangle of

the set of points. This slices the gray array. It basically

selects row starting with y till y+h & column starting

with x till x+w. So essentially you are selecting height

of gray pixels starting up from y and going till y+h (as h

denotes height). And selecting width staring

from x pixel and going till x+w pixels (w denotes width

here).Having various widths and heights for our image

can lead to HOG feature vectors of different sizes — in

nearly all situations this is not the intended behavior that

we want. So, we resize the image.

Now that our logo is resized to a known, pre-

defined 200 x 100 pixels, we can then apply the HOG

descriptor using orientations=9 , pixels_per_cell=(10,

10) , cells_per_block=(2, 2) , and square-root

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 01 | January - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17310 | Page 3

normalization.hist = feature.hog(logo,

orientations=9,pixels_per_cell=(10,

10),cells_per_block=(2, 2), transform_sqrt=True,

block_norm="L1")

A feature descriptor is a representation of an image or an

image patch that simplifies the image by extracting

useful information and throwing away extraneous

information. Typically, a feature descriptor converts an

image of size width x height x 3 (channels) to a feature

vector / array of length n. In the case of the HOG feature

descriptor, the input image is of size 64 x 128 x 3 and

the output feature vector is of length 3780.HOG

descriptors are mainly used to describe the structural

shape and appearance of an object in an image, making

them excellent descriptors for object classification.

However, since HOG captures local intensity gradients

and edge directions, it also makes for a good texture

descriptor. The HOG descriptor returns a real-valued

feature vector. The dimensionality of this feature vector

is dependent on the parameters chosen for

the orientations, pixels_per_cell,

and cells_per_block parameters. Implementing this

descriptor requires dividing the image into small

connected regions called cells, and then for each cell,

computing a histogram of oriented gradients for the

pixels within each cell. We can then accumulate these

histograms across multiple cells to form our feature

vector.

Fig 3. HOG Images

Finally, given the HOG feature vector, we then update

our data matrix and labels list with the feature vector

and car make, respectively. Given our data and labels we

can now train our classifier. To recognize and

distinguish the difference between our logo brands, we

are going to use scikit-learns KNeighborsClassifier.

model =

KNeighborsClassifier(n_neighbors=1)

model.fit(hists, labels)

KNN algorithm:

 The k-nearest neighbor classifier is a type of “lazy

learning” algorithm where nothing is actually “learned”.

Instead, the k-Nearest Neighbor (k-NN) training

phase simply accepts a set of feature vectors and labels

and stores them — that’s it! Then, when it is time to

classify a new feature vector, it accepts the feature

vector, computes the distance to all stored feature

vectors (normally using the Euclidean distance, but any

distance metric or similarity metric can be used), sorts

them by distance, and returns the top k “neighbors” to

the input feature vector. From there, each of

the k neighbors vote as to what they think the label of

the classification is. In our case, we are simply passing

the HOG feature vectors and labels to our k-NN

algorithm and ask it to report back what is the closest

logo to our query features using k=1 neighbors.

Let’s see how we can use our k-NN classifier to

recognize various logos. We start looping over the

images in our testing set. For each of these images, we’ll

load it from disk; convert it to grayscale; resize it to a

known, fixed size; and then extract HOG feature vectors

from it in the exact same manner as we did in the

training phase. We, then make a call to our k-NN

classifier, passing in our HOG feature vector for the

current testing image and asking the classifier what it

thinks the logo is.

4. RESULTS

Fig 4. Output(Logo detection)

5.CONCLUSION

Logo detection is one of the most useful and popular

computer vision application dealing with object

localization and classification of a logo. By using the

machine learning classifier and computer vision, sklearn

techniques and modules, we are able to detect the logo

precisely. The latest research on this area has been

making great progress in many directions. Future

http://www.ijsrem.com/
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 01 | January - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17310 | Page 4

enhancements can be focused by implementing the

project on the system having GPU for faster results and

better accuracy. We mainly review the recent advances

in deep learning-based logo detection by summarizing

classical solutions. In addition, we comprehensively

review the commonly used datasets, summarize the

related applications of logo detection, and predict future

research directions. Although the achievement of logo

detection has been effective recently, there is still much

room for further development.

ACKNOWLEDGEMENT

We would like to express our special gratitude to

our Guide Mr.Prabhakar Vadakattu and Mentor

Mr.Devarapu Sreenivasa rao who gave us a golden

opportunity to do a wonderful project on this topic. It

makes us to do a lot of research and learnt new things.

We are really thankful to that.

In addition to that, we would also thank my

friends who helped us a lot in finalizing this project

within the limited time frame.

REFERENCES

[1] https://learnopencv.com/histogram-of-oriented-gradients/

[2] https://customers.pyimagesearch.com/lesson-sample-

histogram-of-oriented-gradients-and-car-logo-recognition/

[3] https://www.geeksforgeeks.org/python-os-path-abspath-

method-with-example/

[4] https://www.geeksforgeeks.org/numpy-median-in-python/

[5] https://www.geeksforgeeks.org/k-nearest-neighbours/

[6] https://www.pythonpool.com/cv2-boundingrect/

[7] https://docs.opencv.org/4.x/index.html

[8] https://towardsdatascience.com/fit-vs-predict-vs-fit-predict-in-

python-scikit-learn-f15a34a8d39f

[9] https://docs.opencv.org/3.4/da/d54/group__imgproc__transfor

m.html

[10] https://www.geeksforgeeks.org/python-opencv-cv2-puttext-

method/

[11] https://www.geeksforgeeks.org/python-opencv-cv2-imshow-

method/

[12] https://www.geeksforgeeks.org/python-opencv-waitkey-

function/

[13] https://www.analyticsvidhya.com/blog/2019/09/feature-

engineering-images-introduction-hog-feature

http://www.ijsrem.com/
https://learnopencv.com/histogram-of-oriented-gradients/

