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 Abstract —  In today’s and future wireless communications, 

especially in 5G and 6G networks, machine learning (ML) 

methods are crucial. Potentially, these techniques bring 

many benefits such as increased data throughput, improved 

security, reduced latency, and, on the whole, enhanced 

network efficiency. Furthermore, to facilitate the processing 

of large amounts of data in real-time situations, machine 

learning is used for various functions in wireless networks. 

This article aims to explore the significance and application 

of machine learning, with a particular focus on classic 

reinforcement learning, in the context of predicting optimal 

beam configurations within wireless communications 

scenarios. Our goal is to minimize interference between 

transmitters by finding the optimal beamforming angles. For 

this, ray tracing techniques are deployed. We see this 

research as a step forward towards integrating digital twin 

(DT) technology in network management and control. In this 

article, different machine learning methods are used and 

their performance is compared. Firstly, the most effective 

angles for beamforming, maximizing channel capacity are 

identified. Then, by using these methods and after verifying 

their accuracy, the optimal antenna angles in scenarios with 

an increased number of transmitters and receivers is found 

and evaluated 

I. INTRODUCTION  

For reaching the ambitious goals of next generation 

networks, more optimal utilization of the limited resource 

bandwidth by spatial re-use and multiplexing is needed. To 

meet the evolving demands of future networks, 6G is slated to 

embrace an extensive integration of artificial intelligence (AI) 

and machine learning (ML) techniques. This deployment of AI 

and ML is aimed at achieving heightened automation and 

superior operational reliability, currently unattainable by the 

incumbent 5G technology. Many research endeavors are 

already underway to lay the foundations for 6G wireless 

communication networks. 

Machine learning, which mimics human cognitive processes, 

is critical for improving wireless communication in various 

ways. It enhances computer vision, image processing, 
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parallel processing, distributed processing, analytics, and 

prediction capabilities. In machine learning, models are 

extensively trained using datasets to ensure they perform well  

across a variety of examples. This is particularly crucial for 

tasks such as image classification and sentiment analysis . The 

use of machine learning in controlling communication systems 

has seen significant growth recently. Key references cover a 

range of applications, including source and channel coding 

waveform design  signal detection  resource allocation and 

channel estimation among others. This expanding field, 

highlights the effectiveness of a machine-learning approach in 

automatically finding optimal solutions based on training data. 

communication using intelligent reflective surfaces (IRS) in 

innovative solution, tackling both AI’s data demands and the 

aleadingmethod in machine learning.Exploringthesynergy 

between machine learning and wireless communication system 

design, another study provides three practical examples In the 

first example, machine learning optimizes reflection 

coefficients, enhancing performance by bypassing channel 

estimation. The second example explores distributed source 

coding in massive Multiple Input Multiple Output (MIMO), 

emphasizing the feasibility of short block-length code design 

for significant performance gains and the third example 

illustrates machine learning’s role in navigating the 

optimization landscape for millimeter-wave initial alignment in 

a complex sequential learning problem. Furthermore, in the 

context of the B5G network, ML-enabled scheduling is 

highlighted for its crucial role in reducing queuing latency and 

ensuring reliable services. In  a reinforcementlearning-based 

framework is presented for wireless channel access 

mechanisms in IEEE 802.11 standards, particularly in the 

context of Massive Internet of Things (mIoT). Reference 

classifies application scenarios, including strengthened 

eMBB/mMTC/uRLLC and novel scenarios like space–air–

ground–sea integrated networks and AI-enabled networks. 

These scenarios illustrate the integration of AI and big data 

techniques with key technologies and applications, improving 

their comprehensive utility. A different perspective is explained 

by a study that outlines ten key roles for machine learning in 

joint sensing and communication (JSC), sensing-aided 

communication, and communicationaided sensing. 

Additionally, proposes an RL-based model for RADAR 

operation prediction, facilitating the identification of unused 

communication channels. Reference recommends the 

development of ad hoc AI/ML models to enhance their practical 

usability. Reference clarifies the potential of machine learning 

in the link-to-link aspects of communication systems, with a 

http://www.ijsrem.com/
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focus on neural-networkbased reinforcement learning 

algorithms and on-orbit testing. 

In addition, beamforming as a technique recognized for its 

capacity to enhance wireless communication performance, 

holds promise for increasing 6G internet capabilities. In  

Qi et al. present a novel 6G IoT network with UAVs and 

Intelligent Reflective Surfaces (IRS) for efficient data 

transmission by backscattering communication (BackCom). 

IRS, using beamforming, enhances signal energy, improving 

BackCom system performance and range. In  Ihsan and et al. 

aim to improve energy efficiency in 6G wireless a non-

orthogonal multiple access beamforming (NOMA-BF) system. 

It optimizes beamforming, power allocation, and performance 

while keeping complexity low. In  Jiang and et al. present a 

novel initial beamforming approach that uses complementary 

beams to achieve an equal gain in all directions, ensuring 

comprehensive coverage. Numerical results confirm its 

potential for significantly enhancing 6G internet performance. 

This article investigates the practical application of machine 

learning, especially reinforcement learning and, for 

comparison, a Monte Carlo approach. Ray tracing simulations 

are used, for detecting the best angles for beamforming in 

transmitters and receivers, thereby aiming to achieve the 

maximum total channel capacity. To our knowledge, no article 

has employed classic machine learning methods to determine 

optimal angles for antennas on transmitters and receivers using 

ray tracing in a indoor room environment and subsequently 

compared these approaches based on channel capacity. 

In Section II, an overview of machine learning, with a 

particular focus on reinforcement learning, is provided. 

Furthermore, it is also briefly explained how the Monte Carlo 

method is applied. Section III offers extensive information on 

the experimental setup, clarifying the methodology employed 

for antenna pattern generation and detailing the classic 

reinforcement learning methods and Monte Carlo method 

utilized. The ensuing section, Section IV, presents the results of 

our simulations and of our analytical efforts. In Section V, we 

provide conclusions from our findings. Additionally, we outline 

potential areas for future research in this field. 

           II.    OVERVIEW OF MACHINE LEARNING                                                                        

WIRELESS  NETWORK OPERATION 

  

  
Machine Learning (ML) is highly useful for solving 

complex problems with intricate patterns, like those found in 

tasks such as network density and traffic load estimation. ML 

techniques are typically classified into supervised learning 

(SL), unsupervised learning (uSL), and Reinforcement 

Learning (RL) . In supervised learning, the agent learns from 

labeled data with clear input-output pairs. Unsupervised 

learning, on the other hand, does not require labeled data and 

relies on the inherent structure of the data. Reinforcement 

Learning (RL), the main approach in this article, involves a 

dynamic balance between exploration and exploitation in an 

environment, using both labeled and unlabeled input data. In 

RL, the goal is to maximize expected rewards by learning the 

best policies and actions that connect current states to unknown 

future states in the environment. This learning process involves 

states, actions, rewards, and state-transition probabilities, 

which together define the new environment. RL-aware 

frameworks are well-suited for next-generation wireless 

communications because of their adaptability and 

effectiveness. Notably, RL algorithms have lower 

computational complexity compared to other supervised and 

unsupervised techniques, as they learn from real-time 

experiences rather than relying on preexisting datasets. This 

approach involves a balance between exploration (randomly 

selecting actions with a probability ‘ε’) and exploitation 

(choosing actions with the highest value function with a 

probability of ‘1 - ε’). This exploration-exploitation trade-off is 

pivotal in determining the optimal solution . Fig. 1 offers an 

overviewofvariousMachineLearning(ML)algorithms,with 

aspecificfocusonReinforcementLearning(RL)-algorithms that 

we will examine more in the future. 

 

FIGURE 1. An overview of machine learning algorithms. 

Reinforcement Learning (RL) is a crucial part of machine 

learning that focuses on creating smart agents capable of 

making a series of decisions. These agents aim to maximize a 

total reward, representing rational and goal-oriented behavior . 

Initially, we explored supervised learning methods in our 

research. However, we faced challenges due to nonlinear 

relationships and complex interactions among antenna angles 

and maximum total channel capacity. The complexity of the 

data made regression techniques impractical. Consequently, we 

changed our focus to classic reinforcement learning (RL) and 

Monte Carlo as a stochastic method. RL, known for effectively 

handling nonlinearity and decoding complex relationships in 

data, became a more suitable and effective approach for 

covering our specific problem. In addition, in a scenario 

involving a massive number of combinations, evaluating all 

possible configurations exhaustively may not be feasible. 

http://www.ijsrem.com/
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Monte Carlo methods allow us to explore a representative 

subset of the solution space by randomly sampling 

configurations . This approach provides a reasonable 

approximation of the optimal solution while significantly 

reducing the computational burden associated with an 

exhaustive search . The motivation behind comparing 

reinforcement learning (RL) with Monte Carlo methods stems 

from their distinct approaches to problem-solving and decision-

making. Each methodology possesses distinct strengths and 

weaknesses, prompting a comparative analysis to evaluate 

which approach proves more effective within a specific context. 

In the following discussion, we will briefly introduce the Monte 

Carlo method and some potentially suitable RL methodologies. 

A. MONTE CARLO 

Monte Carlo methods are a general class of computational 

algorithms that rely on random sampling to obtain numerical 

results. They are especially suitable for tasks structured in 

episodes, where the agent interacts with the environment and 

gathers returns. In such episodic tasks, the agent interacts with 

the environment over a sequence of episodes, with each episode 

consisting of a series of steps or time-steps. In mathematical 

terms, they approximate the action-value function Q (s, a) by 

averaging returns obtained from multiple episodes: 

 

Q(s,a)=1/NƩ N i=1Gi(s,a) 

The averaging process involves sampling and averaging the 

returns achieved by taking a specific action in a particular state 

across different episodes. This allows for a more robust 

estimation of the action’s value in that state, as it considers the 

variability in returns across different episodes . 

B. Q-LEARNING 

Q-learning is a fundamental reinforcement 

learningalgorithm that trains an agent to make sequential 

decisions to maximize cumulative rewards in an environment. 

It is model-free, requiring no prior knowledge of the 

environment’s dynamics, and is off-policy, allowing it to learn 

from past experiences . The central concept in Q-learning is the 

Q-value, denoted as Q (s, a), which signifies the expected 

cumulative reward when taking action ‘a’ in state ‘s’ and 

subsequently following the optimal policy. Q-values are 

iteratively updated using the Bellman equation : 

Q(s,a) ← Q(s,a) + α [R + γ.max[Q s′,a′ − Q(s,a)]] 

where: 

• Q(s,a) is the Q-value for state-action pair (s,a). 

• α is the learning rate, determining the step size in updates. 

• R is the immediate reward received after taking action 

‘a’ instate ‘s’. 

• γ is the discount factor that balances immediate and future 

rewards. 

• Q s′,a′ represents the Q-value for the next state-action pair 

after the action ‘a’ is taken in state ‘s’. 

Through a process of exploration and exploitation, Q-

learning guides the agent to refine its Q-values over time, 

enabling it to make better decisions. Q-learning is particularly 

effective in solving problems where agents must learn to 

navigate uncertain environments to maximize their cumulative 

rewards. 

C. DOUBLE Q-LEARNING 

Double Q-learning is a sophisticated technique within the 

domain of reinforcement learning. It was developed to adjust a 

common challenge known as overestimation bias, which can 

lead to inaccuracies in estimating the values of actions. This 

method extends the conventional Q-learning framework by 

introducing two distinct Q-value functions and employs an 

alternating approach during the learning process. In 

mathematical terms, Double Q-learning involves the following 

steps: 

1) Initialization of two separate sets of Q-values, denoted 

as Q1(s,a) and Q2(s,a) where s signifies the state, and a 

represents the action. 

2) During each learning iteration, a decision is made 

between these two sets of Q-values with a 50% probability: 

• if rand () < 0.5,Q1 is updated using the Bellman equation: 

Q1 (s,a) ← Q1 (s,a) 

+ α[R + γ.Q2(s′,argmaxaQ1 s′,a
 
− Q1(s,a)] 

• if rand () ≥ 0.5,Q2 is updated similarly: 

Q2(s,a) ← Q2(s,a) + α.[R + γ.Q1(s′,argmaxaQ2(s′,a) 

− Q2(s,a)]] 

3) The agent consistently alternates between Q1 and Q2 

during learning iterations, which effectively decreases the 

problem of overestimation bias. 

Double Q-learning finds particular relevance in scenarios 

where accurately estimating action values is critical, as it helps 

prevent potential inaccuracies that can adversely affect 

decision-making in dynamic environments. 

D.SARSA(STATE-ACTION-REWARD-STATE-ACTION) 

SARSA, or State-Action-Reward-State-Action, is a 

reinforcement learning technique where an agent learns to 

make decisions within an environment. It associates states 

(environmental conditions), actions (choices), and rewards 

(immediate outcomes). SARSA aims to optimize cumulative 

rewards over time . In SARSA, the agent estimates Q-values 

for state-action pairs (Q(s,a)). It updates these estimates using 

a formula: 

Q(S,A) ← Q(S,A) + α.[R + γ.Q S′,A′ − Q(S,A)] 

http://www.ijsrem.com/
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(3) 

where: 

• α (alpha) is the learning rate, controlling update size. 

• R is the immediate reward. 

• γ (gamma) is the discount factor, valuing future rewards. 

• (S′, A′) represents the next state-action pair based on the 

agent’s policy. 

In summation, SARSA is a basic algorithm for 

reinforcement learning, emphasizing on-policy learning, where 

decisions are made in line with the current policy. Through the 

estimation of Q-values, SARSA prepares agents to make 

progressively informed decisions within a dynamic and 

uncertain environment, ultimately optimizing their long-term 

rewards. 

E. EXPECTED SARSA 

Expected SARSA is a reinforcement learning algorithm that 

estimates the expected value of action-values under the current 

policy. It’s less sensitive to noise in the environment compared 

to SARSA. 

The algorithm updates its estimates using the formula: 

𝑄(𝑠, 𝑎) − 𝑄(𝑠, 𝑎) + 𝛼[𝑅 + ϒƩπ (aʹ̸ sʹ) -Q(s,a)  (4) 
                                                                            a′ 

In this formula: 

• Q(s,a) represents the estimated action-value. 

• α is the learning rate. 

• R is the immediate reward. 

• γ is the discount factor. 

• π a′ |s′ is the probability of taking action a′ in the next state 

s′. 

Expected SARSA calculates the expected value by 

combining Q-values for all possible next-state actions, 

weighted by their probabilities according to the current policy 

’π’. This reduces sensitivity to noisy rewards, making it a 

robust choice for uncertain environments. 

Moreover, it’s important to note that the computational 

complexity of the four learning methods—Q-Learning, Double 

Q-Learning, SARSA, and Expected SARSA—is O(S∗A), 

where S represents the number of states in the problem and A 

represents the number of possible actions in each state. 

Additionally, for the Monte Carlo Method, the complexity is 

O(S∗A∗T), with T denoting the episode length. 

A more detailed discussion on these ML categories and 

techniques is out of the scope of this article, and we suggest 

readers refer to for further details.  

1  

 III.  EXPERIMENTAL SETUP 

 

In this section, the focus is on maximizing the total channel 

capacity by exploring transmitter (Tx) and receiver (Rx) 

beamforming angles. A wide range from -60 to +60 degrees in 

a 5-degree step size is covered, totaling 254 = 390,625 

combinations. Fig. 2 shows the setup of a 3D room model 

(‘‘office.stl’’) measuring 8m × 5m × 2.75m. In our model, the 

mmWave communication nodes are configured to operate at a 

frequency of 60 GHz with a bandwidth of 2 GHz. The transmit 

power is 0.5 W. The gain of each antenna varies based on its 

beamforming angle and is not constant. However, the 

maximum antenna gain reaches 15.95 dBi. The four nodes 

deploy antennas arranged in a 8 × 4 Uniform Rectangular Array 

(URA) each, with half-wavelength spacing between elements. 

The exact locations of transmitters (Tx) and receivers (Rx) are 

specified as: 

Tx1: (0.02, 8, 2) 

Tx2: (5, 8, 2) 

Rx1: (4.5, 3.5, 0.85) 

Rx2: (2, 4, 0.85) 

It’s important to note that the setup we’re discussing here 

doesn’t involve any unique or specific room conditions. 

Instead, it’s based on a standard layout that’s readily available 

within the MATLAB environment. We’ve opted for a general 

room setup and layout with a generalized configuration. 

 

FIGURE 2. (a) The 3D room layout model. (b) The antenna placement in the model     

room. 

Additionally, the choice of antenna locations isn’t tied to 

any particular scenario. We anticipate that the conclusions 

drawn won’t be affected even if we were to alter the rooms and 

locations of the antennas. 

Raytracing is employed for channel modeling, allowing one 

maximum reflection with a ‘‘concrete’’ surface material to 

evaluate the channel capacity across various Tx and Rx angles. 

Antenna patterns are calculated within our computational 

framework using MATLAB’s Phased Array System Toolbox, 

employing these four key steps: 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
            Volume: 08 Issue: 06 | June - 2024                         SJIF Rating: 8.448                                    ISSN: 2582-3930                                                                                                                                               

 

 

5  

 © 2024, IJSREM      | www.ijsrem.com                                                                                                                     |        Page 5 
 

1. Creating a steering vector to represent the 

antennaarray’s spatial response. 

2. Defining desired scan angles for the main lobe beam. 

3. Calculating beamforming weights. 

4. Using the pattern function to compute the 

antennaarray’s radiation pattern. 

Various radiation patterns are created by customizing scan 

angles and weights, considering antenna element options such 

as ‘‘patchMicrostrip’’ and ‘‘phased.CosineAntenna Element’’. 

Custom antenna elements are generated based on these patterns, 

and transmitter (‘‘Tx’’) and receiver (‘‘Rx’’) objects are 

constructed accordingly. Path characteristics for selected rays, 

including path loss, phase, angle of departure (AoD), and angle 

of arrival (AoA), are then calculated. The Signal-to-Noise and 

Interference Ratio (SNIR) depends on the specific interference 

generated by each transmitter for the others. This variability is 

influenced by the particular radiation pattern employed in the 

system. 

                     IV.  SIMULATION RESULTS 

 

In the subsequent section, our approach will cover two 

distinct implementation phases. In the initial phase, emphasis 

will be placed on evaluating the precision and 

accuracyofthelearningmethods. Subsequently,inthesecond 

phase, when the computational demands of exhaustive search 

become impractical, according to the accuracy determined in 

Phase 1 will be utilized to predict optimal transmit-receive 

angles and calculate the maximum attainable channel capacity 

using these learning methods. 

PHASE I: Validation Using 2 Tx and 2 Rx with Exhaustive 

Search Results 

Recognizing the computational complexity involved in 

processing all 254 = 390,625 combinations of beam patterns, 

which necessitates a simulation time of 3 days, we decided to 

use classic reinforcement learning methods and the Monte 

Carlo method for finding the optimal solution within a 

reasonable time. Subsequently, a comparison is performed 

between the results derived from an exhaustive search and those 

obtained through machine learning. The exhaustive search, 

which demanded around 3 days, was performed using a 

machine equipped with the specification: 72 cores, 4 E7-4880 

CPUs operating at a speed of 2.5 GHz, and 1TB RAM. 

This evaluation aims to measure the time required for 

ascertaining the optimal antenna angles and estimating channel 

capacity. The primary objective of this comparison is to 

evaluate the accuracy of the classic reinforcement learning-

based approach in contrast to the exhaustive search method. 

Fig. 3 offers a comparison of different classic reinforcement 

learning methods and Monte Carlo, focusing on the average 

achieved channel capacity after 10 execution cycles for each 

method. The decision to conduct 10 execution cycles was made 

to ensure that the results were not influenced by random 

variations. The average of these runs provides a more reliable 

assessment. Additionally, the figure provides 

 

FIGURE 3. Comparison of reinforcement learning methods for channel capacity   and 

accuracy for 2 Tx and 2 Rx. 

the associated error values and accuracy averages for each 

method. The left axis of the figure represents channel capacity, 

measured in bits per second (bps), while the right axis 

illustrates the accuracy of the learning methods, expressed as a 

percentage. Among the methods, SARSA has the best 

performance in both channel capacity and accuracy. It achieves 

an impressive 99.88% accuracy and presents superior channel 

capacity results. Following SARSA, Expected SARSA obtains 

the second-highest accuracy at 99.85%. It shows great 

performance in terms of channel capacity, though it doesn’t 

perform as well as SARSA. The remaining methods are ranked 

based on their accuracy, with Double Q-learning achieving 

99.76%, Q-learning at 99.09%, and Monte Carlo at 70.14%. 

While these methods show varying levels of accuracy, they still 

provide reasonable solutions for enhancing channel capacity. 

Table 1 displays the maximum total channel capacity 

achieved through the learning process, along with the 

corresponding optimal angles for all four antennas for each 

learning method. It is noteworthy that most methods converged 

to similar angle configurations for all four antennas and most 

of them have been able to find the maximum total channel 

capacity which is 29 Gbps. 

TABLE 1. Maximum total channel capacity and optimal antenna angles. 

 
    

 

      

According to Table 1, Fig. 4 provides a schematic 

representation of the optimal positioning of transmitting and 

receiving 

http://www.ijsrem.com/
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FIGURE 4. Schematic representation of maximum interference points according to 4 

antennas placement in 2D space for 2 Tx and 2 Rx. 

antennas to achieve maximum total channel capacity. To 

simplify the display in a 2D format, we assume that all antennas 

have a parallel viewing direction aligned with the Y-axis.  

Arectangularcubeisdepicted, proportionallyscaledtomatch 

the dimensions of the room under examination, and antennas 

are positioned accordingly. The figure integrates data derived 

from the Q-learning method to determine emission angles and 

the line of rays. The intersection line between these planes 

which has been indicated by the red line, describes the location 

characterized by maximum interference. This intersection 

signifies the interference point in a scenario involving two 

transmitters and two receivers aligned in a single line, 

effectively representing the interference of two planes. 

Fig. 5, displays the maximum standard deviation values for 

the implemented methods, which are the square root of their 

variances and it shows how much the values of each method 

vary from their averages. Monte Carlo exhibits the highest 

deviation at 2.93E+9 bps, while Q-Learning follows at 5.25E+9 

bps. Double Q Learning shows a lower deviation of 1.1E+9 bps, 

SARSA at 8.5E+8 bps, and Expected SARSA with the lowest 

deviation at 8.3E+8 bps. This plot highlights Expected 

SARSA’s superior consistency and accuracy compared to other 

methods, emphasizing its stability in optimizing channel 

capacity. In contrast, Monte Carlo exhibits higher variability, 

showing reduced reliability in channel capacity optimization. 

 

FIGURE 5. Standard deviation analysis of reinforcement learning methods for 2 Tx and 

2 Rx. 

Fig. 6 summarizes the analysis of how long it takes and the 

errors observed in 10 runs for each method. This comparison 

allows us to evaluate the efficiency of these methods, taking 

into account their varying execution times. Among the 

implemented methods, Monte Carlo demands the most 

significant computational time, which may appear surprising 

considering its lower accuracy. In contrast, SARSA 

demonstrates 

 

FIGURE 6. Computation time of learning methods for 2 Tx and 2 Rx. 

the most efficient execution time, approximately 1724 s, 

making it an efficient choice. Expected SARSA shows the 

second-longest execution time, approximately 1971 s while 

presenting favorable accuracy. Q-learning ranks next in terms 

http://www.ijsrem.com/
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of execution time, followed by Double Q-learning and Monte 

Carlo. The extended computational time for the Monte Carlo 

method can be attributed to its inherent reliance on random 

sampling and statistical approximation. Monte Carlo needs a 

large number of tries to make sure the result is close enough to 

the true solution with a good level of confidence. This high 

number of attempts contributes to the longer computational 

time. 

Combining accuracy and complexity (execution time) we 

attempt to generate a single figure of merit for the different ML-

techniques and Monte Carlo method. According to Equation 5, 

Fig. 7 uses effect sizes of 0.7 for accuracy and 0.3 for execution 

time, providing an evaluation of their combined impact on the 

observed results. Selecting the effect size is contingent on the 

preference. In our case, prioritizing accuracy instead of time led 

us to assign a larger coefficient to it. Fig. 7 shows that SARSA, 

Expected SARSA and Q-Learning methods exhibit superior 

performance, achieving a balance between time efficiency and 

accuracy with scores of 55%, 53%, and 44%, respectively. 

These methods deliver accurate results within shorter 

computational times, making them efficient choices for 

optimization tasks. In contrast, Double Q-Learning and the 

Monte Carlo demonstrate lower weighted efficiency scores. 

Weighted efficiency 

= (Normalized Accuracy of Algorithms 

∗0.7)−(Normalized Execution Time of Algorithms ∗0.3) 

(5) 

 

FIGURE 7. Weighted efficiency scores of RL methods for 2 Tx and 2 Rx. 

The choice of effect size depends on the specific preferences 

and priorities of the analysis. In our case, our priority was 

accuracy rather than time efficiency, which led us to assign a 

larger coefficient to accuracy in Equation 5. We prioritize 

accuracy in our results, even if it means taking extra time for 

computations. 

PHASE II: Prediction using 3 Tx and 3 Rx without Exhaustive 

Search Results 

In the next step, after our evaluation and accuracy assessment 

of the classic reinforcement learning methods in the prior step, 

the configuration is extended by adding one additional-pair of 

transmitter and receiver, creating a scenario with 3 transmitters 

and 3 receivers. This expansion introduces a total of 256 = 

244,140,625 distinct states, exceeding the computational 

capabilities of our system for exhaustive search. 

Consequently, machine learning techniques and the Monte 

Carlo method are exclusively employed to estimate optimal 

angles and calculate the maximum total channel capacity in this 

context. To enhance the accuracy of the result and ensure 

convergence, the machine learning code execution comprises 

20,000 iterations. The positioning of the new antennas within 

the room is outlined below: 

Tx3: (1,2.75, 2) 

Rx3: (2.5,6.5,1) 

Fig. 8 compares different methods, focusing on the average 

channel capacity after 10 runs. The measurements are in bits 

per second (bps). Double Q-learning stands out as the top 

performer with a channel capacity of 2.47E+10 bps. Following 

closely is Q-learning, achieving the second-highest channel 

capacity at 2.40E+10 bps, showing commendable performance 

but slightly trailing Double Q-learning. Expected SARSA 

reaches a channel capacity of 2.39E+10 bps, 

SARSA attains 2.38E+10 bps, and Monte Carlo records 

 

FIGURE 8. Comparative analysis of reinforcement learning methods for channel 

capacity (average after 10 runs) for 3 Tx and 3 Rx. 

2.10E+10 bps. These rankings are based on their respective 

channel capacity measurements, offering insights into their 

comparative performance. 

http://www.ijsrem.com/
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Table 2 presents the maximum total channel capacity 

attained via the learning process, in addition to the optimal 

antenna angles for all six antennas, as per each learning method. 

It’s worth mentioning that several of these methods tend to 

converge on similar angle configurations for particular 

antennas. Moreover, the majority of them have approximated 

the total channel capacity to be around 2.5E+10 bps. 

TABLE 2. Prediction of maximum total channel capacity and optimal antenna angles 

FOR 3 Tx and 3 Rx. 

 
      

 

        

Fig. 9 presents a schematic diagram, similar to Fig. 4, with 3 

transmitters and 3 receivers. In this figure, we have 

incorporated the angles derived from the Q-learning method to 

show the positions of six antennas. Consequently, the 

intersection points among these three planes, representing each 

pair of transmitters and receivers, signify areas with the highest 

interference levels. It’s essential to note that these points do not 

form an interference line; rather, they make an interference 

plane. Any ray path traversing 

 

FIGURE 9. Schematic representation of maximum interference points according to 6 

antennas placement in 2D space for 3 Tx and 3 Rx. 

this plane will experience increased interference, resulting 

in reduced channel capacity compared to alternative pathways. 

Fig. 10 presents the maximum standard deviation values for 

the maximum channel capacity of various reinforcement 

learning methods and Monte Carlo Method, showing their 

respective values in bits per second (bps). SARSA has the 

highest deviation at 1.1E+9 bps, followed by Expected SARSA 

at 9.5E+8 bps. On the other hand, Q-Learning shows a lower 

deviation of 7.6E+8 bps, and Double Q Learning has even less 

deviation at 6.7E+8 bps. Notably, Monte Carlo exhibits the 

lowest deviation at 3.2E+8 bps. The difference in standard 

deviation between Monte Carlo and SARSA is attributed to 

their exploration strategies. The Monte Carlo method 

completes episodes before updating, resulting in more stable 

output. In contrast, SARSA’s on-policy approach 

 

FIGURE 10. Standard deviation analysis of reinforcement learning methods for 3 Tx 

and 3 Rx. 

introduces variability due to exploration, leading to a higher 

standard deviation. In addition, Monte Carlo method in 

prediction phase has less standard deviation than validation 

phase because the implementation covers a broader range of 

scenarios, accounting for various configurations. This diversity 

helps mitigates the influence of outlier scenarios and making 

the results more stable and less variable. 

Fig. 11 provides an analysis of computational time versus 

error values across 10 runs for each implemented method. This 

plot highlights the crucial role of machine learning in handling 

demanding computational tasks. In our scenario, performing an 

exhaustive search would have demanded around 1875 days, 

rendering it practically unfeasible, despite utilizing a powerful 

machine with 72 cores. However, by employing reinforcement 

learning techniques, we can achieve (near-)optimal solutions in 

less than 15 minutes. Among the methods, Double Q-learning 

demands the most extensive computational time, 

approximately 8985 s. SARSA follows with the second-longest 

execution time, roughly 8740 s. Expected SARSA ranks third 

in execution time, around 6556 s. Q-learning occupies the next 

position, with an execution time of 4156 s, followed by Monte 

Carlo, which, despite its shorter execution time of 3390 s, 

http://www.ijsrem.com/
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yielded a lower maximum total channel capacity 

 

 

FIGURE 11. Computational time of learning methods for 3 Tx and 3 Rx. 

 

FIGURE 12. Relative efficiency of channel capacity optimization methods with 

computational time considerations for 3 Tx and 3 Rx. 

It involves comparing the maximum channel capacity 

achieved by each method after 10 runs to the maximum channel 

capacity determined by all learning models and Monte Carlo 

method, which is attributed to the Q-learning method. This 

comparison is achieved by dividing the former by the latter and 

multiplying the result by 0.7, emphasizing the importance of 

capacity optimization. 

 

Furthermore, we normalize the average execution time of 

each method after 10 runs by dividing it by the average of the 

longest execution time, associated with the Double Q-learning 

method. Finally, we subtract the result of the execution time 

normalization from the capacity optimization factor, providing 

the relative efficiency (or ‘figure of merit’) of the implemented 

methods in optimizing channel capacity by considering the 

computational time. It should be mentioned that the increase 

from 4 nodes to 6 nodes notably benefited the Monte Carlo 

approach. This can be attributed to its inherent scalability, 

efficient handling of increased combinatorial complexity, and 

the provision of realistic uncertainty quantification. The 

stochastic nature of Monte Carlo simulations proved 

particularly advantageous in capturing the complexities of 

larger communication systems. 

V. CONCLUSION 

In this investigation, we compare different techniques of 

machine learning (ML) for application in wireless 

communications. The research involved two main phases: 

initially validating various learning methods and the Monte 

Carlo method through an exhaustive search and then applying 

classic reinforcement learning techniques and the Monte Carlo 

technique to optimize total channel capacity, determining 

optimal transmitter and receiver beamforming antenna angles. 

Due to the impractical computational complexity of exhaustive 

search, classic reinforcement learning techniques are essential. 

Our results highlighted the accuracy of SARSA, Expected 

SARSA, Q-Learning, and Double Q-Learning methods, all 

achieving 99% accuracy with two transmitters and two 

receivers. Particularly, when dealing with configurations 

involving three transmitters and three receivers, these methods 

outperform the Monte Carlo approach. Among them, Double 

Q-learning appears with a higher average channel capacity, 

being the best method evaluated. It’s noteworthy that the Q-

learning family, overall, outperformed the SARSA family, 

though Double Q-learning required a more significant 

computational time investment. Choosing between these 

methods depends on application-specific priorities and 

constraints. However, our work emphasizes that using classic 

reinforcement learning can compete with exhaustive search 

results in much shorter execution time periods. The 

investigated reinforcement learning techniques show 

promising results in handling complex tasks in wireless 

communications that involve large amounts of data. As a future 

work, our model could be extended beyond current limitations, 

exploring the application of machine learning to optimize 

antenna configurations in a dynamic real urban environment. 
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