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Abstract -Breast cancer remains one of the leading causes 

of cancer-related mortality worldwide, emphasizing the need for 

timely and accurate detection. This research proposes a machine 

learning-based framework to classify samples as cancerous or 

non-cancerous by leveraging high-dimensional genomic 

information combined with clinical data. The core model used is 

an XGBoost classifier, embedded within a user-friendly web 

interface, and benchmarked against other models such as 

SVM, KNN, Decision Tree, Random Forest, and a one- 

dimensional Convolutional Neural Network (1D CNN). These 

models were trained and evaluated using the METABRIC dataset. 

Among them, the 1D CNN achieved the highest performance, with 

72% accuracy and a ROC-AUC of 0.71, while XGBoost followed 

closely with 68% accuracy and an AUC of 0.57. The overall 

system is built using the Flask framework, allows healthcare 

professionals to upload gene expression data and obtain instant 

predictions along with explanations of key contributing features. 

This study delivers a practical and accessible solution for breast 

cancer prediction, combining high reliability with clinical 

interpretability. 
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I. INTRODUCTION 

 

 
Breast cancer remains one of the most significant global health 

concerns, with approximately 2.3 million new cases reported 

worldwide in 2020 [1][2]. While early detection greatly enhances 

survival rates, conventional screening methods such as biopsies can be 

invasive, costly, and inaccessible to many. Advances in genomic 

technology have introduced high-throughput gene expression 

profiling, which captures tumor characteristics at the molecular level. 

However, this data is often high-dimensional and noisy, leading to 

challenges like overfitting and the "large p, small n" problem [3][4]. 

To overcome these issues, a combination of effective feature selection 

techniques and robust machine learning algorithms is employed. This 

study presents an end-to-end diagnostic pipeline centred around 

XGBoost, a high-performance classifier recognized for its efficiency 

and accuracy in genomic analysis [5]. In addition to XGBoost, several 

models—including Support Vector Machine (SVM), K-Nearest 

Neighbors (KNN), Random Forest, Decision Tree, and a one- 

dimensional Convolutional Neural Network (1D CNN)—are 

implemented to classify breast tissue as cancerous or non-cancerous. 

The top-performing model is deployed through a streamlined web 

application, allowing clinicians to upload patient gene expression 

profiles and receive immediate, interpretable predictions. By merging 

advanced machine learning techniques with an accessible interface, 

this system offers a practical tool for improving breast cancer 

diagnostics in clinical settings. 

 

II. RELATED WORK 

 

 

Machine learning (ML) has become a pivotal tool in oncology, 

delivering high accuracy and adaptability for cancer prediction across 

varied datasets. Classical approaches such as Support Vector 

Machines (SVM) and Random Forest have demonstrated strong 

predictive capability, achieving reported accuracies in the range of 88– 

90% with balanced sensitivity and specificity [3], [5]. Advances in 

ensemble and hybrid strategies have further improved outcomes. The 

SVOF-KNN method, which incorporates spatial voting into the 

traditional K-Nearest Neighbors algorithm, achieved 92% accuracy on 

benchmark breast cancer datasets [2], while the integration of SVM 

and Random Forest for cervical cancer risk analysis yielded 93% 

accuracy [7]. Gradient boosting, particularly XGBoost, continues to 

excel in cancer classification tasks. Kumar et al. [1] achieved 96% 

training accuracy and 89% validation accuracy using genomic and 

clinical datasets, while Sruthi et al. [5] reported 90% accuracy with an 

ROC-AUC of 0.93, highlighting its balance between predictive 

performance and computational efficiency. 

Deep learning techniques, especially 1D Convolutional Neural 

Networks (CNNs), have shown strong capability in automatically 

extracting intricate genomic features, significantly enhancing 

classification accuracy when applied to large-scale datasets [6]. These 

models, however, often face challenges related to interpretability and 

computational cost, which can hinder clinical integration. Large, 

heterogeneous datasets such as METABRIC pose additional 

complexity but provide a more realistic representation of real-world 

populations compared to smaller, curated datasets [4]. Incorporating 

feature importance visualization has proven valuable for identifying 

the most influential genes in predictions, thereby supporting 

transparency in clinical decision-making. Current research trends in 

cancer informatics focus on explainable AI, multi-modal data 

integration including imaging and genomics and development of 

deployment-ready systems capable of real-time diagnostic support 

[8][10]. Collectively, these advancements are steering the field toward 

robust, interpretable, and scalable solutions for precision oncology. 

 

III. METHODOLOGY 

 

 
a. Dataset and Preprocessing 

The METABRIC breast cancer cohort, a publicly available dataset 

containing gene expression profiles of 1,992 patients, serves as the 

primary data source for this study [8]. Each sample includes thousands 

of gene expression values along with associated clinical attributes such 

as age and menopausal status. Given the high dimensionality of the 
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data, a comprehensive Preprocessing pipeline is applied: 

• Data Cleaning: Samples with excessive missing gene values are 

excluded. For remaining missing entries, imputation 

techniques—such as mean imputation for continuous features— 

are utilized. Categorical clinical variables are encoded using 

appropriate schemes like one-hot or label encoding. 

• Normalization: Each gene feature is standardized using z-score 

normalization, resulting in features with a mean of 0 and unit 

variance. This ensures consistency across feature scales. 

• Feature Selection: To mitigate the "large p, small n" challenge 

[3] [4], dimensionality reduction is performed. Initially, genes 

with minimal variance across samples are discarded. 

Subsequently, statistical techniques such as t-tests or mutual 

information are employed to rank genes based on their relevance 

to breast cancer classification. A subset of the top-ranked genes 

is selected for model input.. 

• Further features are refined using an embedded approach: 
training an initial XGBoost model and using its built-in feature 
importance to prune the least important genes. By focusing on the 

most informative genes, reduce noise and overfitting and is 
reduced [4]. 

After preprocessing, we split the data into training (80%) and test 

(20%) sets in a stratified fashion. All model selection and 

hyperparameter tuning (via 5-fold cross-validation) occur on the 

training set to ensure an unbiased evaluation on the held-out test data. 
b. Model Implementation 

Six machine learning models were implemented using Python, with 

the help of scikit-learn and TensorFlow/Keras libraries: Decision Tree, 

K-Nearest Neighbors (KNN), Support Vector Machine (SVM), 

Random Forest, XGBoost, and a custom one-dimensional 

Convolutional Neural Network (1D CNN): 

• Decision Tree:A simple tree-based model using Gini impurity 

for splits, offering high interpretability. Prone to overfitting in 

high-dimensional datasets, making it less reliable for complex 

genomic patterns. 

• KNN: A non-parametric method classifying samples based on 

the majority label of the nearest neighbors, with k typically 

optimized to 5. Performance decreases in high-dimensional data 

due to the curse of dimensionality. 

• SVM:Utilizes an RBF kernel with parameters C and γ tuned 

through cross-validation. Effective for capturing non-linear 

relationships but computationally demanding and sensitive to 

feature scaling. 

• Random Forest: An ensemble of 100 decision trees trained with 

bootstrap sampling and random feature selection to improve 

generalization. Provides feature importance scores while 

reducing overfitting compared to single trees. 

• XGBoost:A gradient boosting approach that builds trees 

sequentially, optimizing parameters like learning rate and depth 

through grid search. Delivers strong performance, high 

efficiency, and built-in feature importance for explainability. 

• 1D CNN: Processes one-dimensional gene expression vectors 

through convolutional, pooling, and dense layers. Excels at 

learning local genomic patterns but demands high computational 

resources. 

All models are trained on the same preprocessed training data and 

evaluated on a held-out test set. Performance is assessed using 

standard classification metrics: accuracy, 

 

IV. SYSTEM ARCHITECTURE AND DEPLOYMENT 

 

 
A user-friendly web application was developed using Python's Flask 

framework to deploy the trained XGBoost classifier for real-time 

breast cancer prediction. The system architecture is modular (as 

illustrated in Figure 1), guiding the workflow from data upload to 

result generation with interpretability features. 

• Input Validator: Ensures the uploaded CSV has required gene 

columns and correct formatting, rejecting invalid inputs 

gracefully. 

• Preprocessing Module:Applies identical normalization and 
feature-selection steps from training, removing unused genes and 
standardizing values for consistency. 

• Prediction Engine: Loads the pre-trained XGBoost model to 

generate cancer probability scores and classification labels, 

offering high accuracy with low computational overhead. 

• Result Renderer: Displays the predicted class, confidence score, 
and the most influential genes contributing to the classification 
decision 

• Web Front-End:Provides a simple HTML/CSS interface for file 

upload and prediction display, ensuring an accessible and user- 
friendly interaction process. 

For example, Figure 1 outlines the end-to-end workflow, from data 

ingestion to output generation. The application is fully self-contained 

and can operate locally without internet access, which is essential for 

maintaining patient privacy. Each prediction completes in under two 

seconds on a standard laptop. All computations are performed server- 

side, and no user data is retained by default, aligning the system with 

privacy-sensitive environments such as clinical settings. 
 

 

Figure 1: Architecture of Breast Cancer Prediction from Genomic 
Data. 

 
Figure 1 Architecture for Breast Cancer Prediction Using Genomic 
Data, illustrats the end-to-end data pipeline. Gene expression profiles 
in CSV format are uploaded by clinicians through the web interface. 
The system performs input validation and preprocessing (including 
normalization and feature selection), then passes the processed data to 
the XGBoost prediction engine. The model outputs a classification 
result along with confidence scores and highlights the top contributing 
gene markers for interpretability. 

 

Figure 2: Breast Cancer Classifier Web Interface 

 
Figure 2, is the screenshot of the Breast Cancer Classifier web interface. 
Users can upload a gene-expression CSV file and receive an instant 
prediction (“Cancer” or “Normal”) with confidence score. The 
interface also lists the top gene features contributing to the decision, 
aiding interpretability. 
 

 

V. RESULTS 
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All six models were evaluated on an independent test set, and the 
results are summarized in Table 1, comparing accuracy, ROC-AUC, 
precision, and recall. Among the evaluated models, the one- 
dimensional Convolutional Neural Network (1D CNN) demonstrated 
the highest overall performance, achieving an accuracy of 72% and an 
ROC-AUC of 0.71. Within the classical machine learning category, 
XGBoost emerged as the most effective model, reaching 68% accuracy 
and an AUC of 0.57. 

In comparison, Support Vector Machine (SVM) attained 64% 
accuracy with a slightly higher AUC of 0.58, while Random Forest 
yielded 66% accuracy and an AUC of 0.55. K-Nearest Neighbours 
(KNN) followed with 61% accuracy, and the Decision Tree baseline 
recorded the lowest performance with 56% accuracy and an AUC 
approximating 0.50—indicative of near-random classification. 

These findings highlight the capability of CNNs to capture complex 
patterns within high-dimensional genomic data. However, XGBoost 
remains a strong, interpretable, and computationally efficient 
alternative. Notably, XGBoost achieved a balanced precision of 0.67 
and recall of 0.68, demonstrating its effectiveness in minimizing false 
positives while maintaining strong true positive identification. Fig 2 
presents a bar chart comparing model accuracy and AUC, offering a 
visual summary of performance differences across the implemented 
classifiers. 

 

 

Figure 3: Model Comparison Bar. 

 
Figure 3 shows Model performance comparison. For each classifier, the 
yellow bar shows test-set accuracy and the orange bar shows ROC- 
AUC (as a percentage). The 1D CNN has the tallest bars (best accuracy 
and AUC), while XGBoost is the strongest of the non-neural models. 
Simpler models (Decision Tree, KNN) perform worse. This bar chart 
highlights the gap between deep learning and traditional methods on 
this genomic dataset. 
 

Model Accuracy AUC Precision Recall 

Decision 

Tree 
56% 0.50 0.54 0.57 

KNN 61% 0.56 0.60 0.62 

SVM 64% 0.58 0.63 0.64 

Random 

Forest 
66% 0.55 0.65 0.65 

XGBoost 68% 0.57 0.67 0.68 

CNN 

(1D) 
72% 0.71 0.70 0.74 

Table 8.1 Evaluation metrics of all tested models 

Receiver Operating Characteristic (ROC) and Precision-Recall 
(PR) curve analyses were conducted to evaluate the trade-offs across 
all models. The 1D Convolutional Neural Network (CNN) 
demonstrated the most favorable performance, with its ROC curve 
bowing closest to the top-left corner and achieving the highest AUC 

(~0.71), indicating strong discriminatory ability. In contrast, the 
Decision Tree model displayed a nearly diagonal ROC curve (AUC ≈ 
0.50), suggesting poor classification performance. Models such as 
XGBoost, SVM, and KNN showed intermediate ROC curves with 
AUC values between 0.55 and 0.58. Although confusion matrices are 
not presented, the CNN achieved the highest recall (0.74), minimizing 
false negatives—an essential aspect in cancer detection. XGBoost 
maintained a balanced classification profile with a precision of 
approximately 0.67 and recall of 0.68, effectively controlling both false 
positives and false negatives, making it a reliable and interpretable 
alternative to deep learning models. 
 

Figure 4: ROC Curve for Decision Tree Model. 

 
Figure 4 shows the ROC curve for the Decision Tree classifier on the 
test set. The curve is close to the diagonal, yielding AUC 0.50, 
indicating nearly random performance. 
 

Figure 5: ROC Curve for SVM Model. 

 
Figure 5 shows ROC curve for the SVM classifier (RBF kernel). The 
AUC (0.58) is modest, showing some predictive ability but with 
moderate sensitivity and specificity. 
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Figure 6: ROC Curve for RF Model. 

Figure 6 shows ROC curve for the Random Forest classifier. 
Despite a decent accuracy, its AUC (0.55) is relatively low, perhaps 
due to overfitting on the majority class in this high-dimensional setting. 
 

Figure 7: ROC Curve for 1D CNN Model. 

 
Figure 7 shows ROC curve for the 1D CNN model. This curve achieves 
the highest AUC (~0.71), indicating the CNN’s superior ability to rank 
true positives above false positives across thresholds. 

To enable direct comparison across all models, combined 
Precision-Recall and ROC curves were plotted (Figures 8 and 9). These 
visual summaries align with the previously reported metrics, where the 
1D CNN consistently outperforms other models—its Precision-Recall 
curve remains the highest overall. XGBoost follows closely, with its 
curve positioned below that of the CNN but above most traditional 
classifiers, reinforcing its role as a strong and efficient alternative for 
genomic-based cancer prediction. 
 

Figure 8: Precision-Recall Curves of all the proposed models. 

Figure 8 shows combined precision-recall curve offers a detailed 
evaluation of six classifiers used for breast cancer prediction on gene 
expression data, highlighting their ability to handle class imbalance and 
identify positive cases effectively. The Decision Tree records the 
lowest average precision (AP) of 0.57, reflecting unstable performance 
and a high tendency to misclassify minority class instances due to 
overfitting. Random Forest shows slight improvement with an AP of 
0.59, supported by its ensemble structure, yet still struggles with 
consistent precision across varying recall thresholds. XGBoost 
achieves an AP of 0.61, providing a stable trade-off between precision 
and recall, supported by gradient boosting and inherent feature 
importance mechanisms. The Support Vector Machine (SVM), with an 
AP of 0.63, demonstrates stronger recall and precision consistency 
across mid-range thresholds, aided by its margin-maximization 
approach in high-dimensional data. K-Nearest Neighbors (KNN) 
reaches an AP of 0.56, indicating limited precision and heightened 
sensitivity to local data noise and dimensionality. The 1D 
Convolutional Neural Network (CNN) leads with an AP of 0.74, 
capturing subtle genomic patterns and yielding superior results, 
especially in high-recall regions. Although CNN achieves the highest 
overall performance, XGBoost remains the most interpretable and 
deployment-friendly option, balancing accuracy, efficiency, and 
transparency in practical applications. 
 

Figure  9  Combined  ROC  Curve  of  all  Models 

Figure 9 shows combined ROC curve presents a performance 
comparison of six classification models applied to breast cancer 
prediction using genomic data. Decision Tree yields the lowest 
performance with an AUC of 0.50, suggesting results no better than 
random chance and revealing vulnerability to overfitting in high- 
dimensional datasets. Random Forest performs slightly better with an 
AUC of 0.55, leveraging ensemble techniques yet struggling to capture 
complex gene-level interactions. XGBoost attains an AUC of 0.57, 
offering a well-balanced solution marked by fast execution, solid 
accuracy, and built-in interpretability through feature importance 
scores. Support Vector Machine (SVM) surpasses XGBoost with an 
AUC of 0.58, displaying effectiveness in high-dimensional spaces, 
though its computational complexity and limited transparency pose 
constraints. K-Nearest Neighbors (KNN) achieves an AUC of 0.56, 
reflecting moderate predictive power and sensitivity to noise in dense 
feature spaces. The 1D Convolutional Neural Network (CNN) ranks 
highest with an AUC of 0.71, excelling at identifying intricate genomic 
relationships and achieving superior classification outcomes. Despite 
its accuracy, CNN demands substantial training resources and lacks 
straightforward interpretability, limiting its clinical practicality. 
Among the evaluated models, CNN demonstrates the strongest 
predictive capability, while XGBoost provides a more efficient and 
explainable alternative for real-world deployment. 

Overall, the superior performance of the 1D CNN indicates that 
deep learning models are well-suited for capturing complex gene 
interactions [6][7]. However, this advantage comes at the cost of longer 
training times and reduced interpretability. In contrast, XGBoost 
demonstrated significantly faster training—completing a full grid 
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search in under one minute on a standard CPU—and delivered near- 
instantaneous predictions, requiring only milliseconds per sample. 
Considering these trade-offs, XGBoost was selected as the final 
deployed model due to its strong predictive accuracy, low latency, and 
inherent interpretability through built-in feature importance scores. 
 

 

VI. DISCUSSION 

 
The 1D Convolutional Neural Network (CNN) achieved the highest 

accuracy (72%) and recall (0.74), effectively capturing complex, non- 

linear genomic patterns, though its high computational demand and 

limited interpretability hinder practical clinical use. Tree-based 

ensemble models, particularly XGBoost, offered strong performance 

with greater efficiency and transparency, balancing precision (0.67) 

and recall (0.68) while maintaining low latency and minimal resource 

needs. Decision Trees and K-Nearest Neighbors performed poorly due 

to sensitivity to high-dimensional data, while Support Vector 

Machines showed moderate results but required significant feature 

reduction. XGBoost’s feature importance analysis identified 

biologically relevant genes, such as those linked to cell proliferation 

and DNA repair. 

The deployed web application provided real-time predictions, handled 

errors robustly, scaled effectively, and displayed key predictive genes 

to support transparent decision-making. While the CNN delivered 

slightly higher predictive accuracy, XGBoost was selected for 

deployment due to its speed, integration ease, and suitability for 

resource-constrained settings. The METABRIC dataset offered a 

realistic performance benchmark by representing a diverse population, 

in contrast to smaller, homogeneous datasets used in some prior 

studies. Future enhancements will focus on integrating multi-modal 

data, supporting multi-class classification for breast cancer subtypes, 

incorporating SHAP-based explanations for personalized insights, 

implementing secure data handling, and validating performance across 

independent datasets 

VII. CONCLUSION 

 

 
Breast cancer is a major global health concern and one of the 

leading causes of cancer-related deaths, highlighting the critical need 
for early and accurate diagnosis. Advances in computational methods 
have enabled the use of genomic data to uncover patterns and 
biomarkers associated with the disease. By analyzing high-dimensional 
genetic profiles alongside clinical records, predictive models can be 
developed to distinguish between cancerous and non-cancerous cases, 
improving diagnostic precision and supporting personalized treatment 
strategies. 

This study presents a machine learning framework that integrates 
genomic features with clinical parameters to achieve accurate breast 
cancer classification. The approach leverages feature selection 
techniques to handle the complexity of large-scale genomic datasets, 
combined with robust algorithms for classification. The integration of 
genomic insights with clinical data enhances predictive performance, 
paving the way for data-driven decision-making in oncology and 
contributing to the advancement of precision medicine. 
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