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Abstract

Surface roughness is a key indicator of printed-part quality in fused-deposition modeling (FDM) and is strongly
influenced by geometric and thermal process parameters. This study investigates the predictive behavior of surface
roughness using a multi-parameter dataset consisting of layer height, wall thickness, infill density, infill pattern, nozzle
temperature, bed temperature, print speed, material type, and fan speed. Categorical parameters were label-encoded and
fed into four machine-learning models: Generalized Linear Model (GLM), Gradient Boosting Machine (GBM), Deep
Learning (MLP), and a Stacked Ensemble combining GBM and MLP with GLM as the metalearner. All models were
trained directly on raw data without normalization to preserve parameter scale effects. Layer height and nozzle
temperature emerged as the most influential parameters, contributing over 85% of total predictive importance. Model
comparison showed that GLM achieved the highest accuracy (R? = 0.789), producing stable predictions with well-
behaved residuals, while nonlinear models underperformed on unscaled features. Diagnostic results confirmed that
surface roughness is governed mainly by geometric resolution and melt-flow behavior. The findings provide a robust,
data-driven understanding of roughness formation and offer a reliable prediction framework for optimizing FDM print
settings.

Keywords: Surface roughness, FDM, additive manufacturing, machine learning, process parameters, predictive
modeling

1. Introduction

Fused Deposition Modeling (FDM) has emerged as one of the most widely utilized additive manufacturing (AM)
technologies due to its cost efficiency, material versatility, and capability to fabricate complex geometries with minimal
waste. It plays a crucial role across industries such as aerospace, biomedical, and consumer products, offering rapid
prototyping and functional part production flexibility (Borah & Chandrasekaran, 2025). However, despite these
advantages, FDM is often constrained by poor surface quality caused by its layer-by-layer deposition process. Surface
roughness is a critical quality metric that directly impacts not only the aesthetic appeal but also the mechanical
performance, dimensional accuracy, and post-processing requirements of printed parts (Abas et al., 2023). The interplay
of geometric factors such as layer height, wall thickness, infill density, and infill pattern, along with thermal and dynamic
parameters including nozzle temperature, bed temperature, print speed, and cooling fan speed, strongly influences the
final surface texture (Alam et al., 2021). Small variations in these parameters can lead to substantial differences in
roughness, complicating process optimization.

Traditional approaches for surface quality enhancement in FDM, such as empirical testing and trial-and-error parameter
tuning, are time-consuming, material-intensive, and lack generalizability across different machines, materials, and
geometries (Maidin et al., 2022). As a result, these heuristic methods fail to provide predictive insights necessary for
process automation or adaptive control. In contrast, the advent of machine learning (ML) has transformed additive
manufacturing by enabling predictive modeling and quality forecasting. ML algorithms such as decision trees, support
vector regression, artificial neural networks (ANN), and random forests have been successfully implemented to predict
warpage, tensile strength, melt flow, and surface roughness trends in AM processes (Boschetto et al., 2013); (Wei & Wu,
2019). For instance, random forest and ANN models have demonstrated remarkable accuracy in predicting surface
roughness when trained on multi-sensor or parameter datasets (Wu et al., 2018); (Tura et al., 2021). Yet, despite the
proliferation of these models, most existing studies focus on single or limited parameters, overlooking the complex
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multi-factor interactions that govern surface quality in FDM. Moreover, the lack of standardized datasets and real-time
adaptive prediction frameworks further limits the robustness and scalability of current models (Wei & Wu, 2023);
(Mishra & Jatti, 2023). Therefore, a comprehensive, data-driven approach integrating both geometric and thermal
process parameters is essential for the accurate prediction and optimization of surface roughness in FDM. Such a model
would not only bridge the existing gap in multi-parameter quality prediction but also support intelligent process planning
and real-time control, significantly enhancing surface finish and production efficiency (Soundararajan et al., 2025). A
robust machine-learning-based prediction framework can thus serve as a cornerstone for smart manufacturing systems,
facilitating sustainable and adaptive additive manufacturing practices in the Industry 4.0 era.

Surface roughness is one of the most important quality metrics in FDM because it directly influences the functionality,
appearance, friction characteristics, and post-processing requirements of printed parts. Manufacturers often rely on
empirical parameter tuning, trial-and-error adjustments, or operator experience to achieve acceptable surface finish,
leading to inconsistent output and increased production time. With the growing adoption of FDM in automotive,
biomedical, tooling, and consumer-product sectors, there is a strong need for a data-driven approach capable of
predicting roughness accurately before printing. Machine learning offers a powerful alternative by enabling models that
learn complex interactions among multiple process parameters and provide actionable insights for parameter
optimization. Developing such a model not only ensures more predictable print outcomes but also supports automation,
reduces waste, and enhances process reliability.

2. Literature Review

Machine learning (ML) has become a pivotal tool in enhancing the quality control of additive manufacturing (AM),
particularly in Fused Deposition Modeling (FDM), where surface roughness remains a primary limitation affecting
mechanical performance, aesthetics, and post-processing needs. Early investigations demonstrated that process
parameters such as layer height, nozzle temperature, infill pattern, and print speed critically influence the surface finish
of printed components. For instance, higher layer heights and faster print speeds tend to increase surface roughness,
whereas optimized nozzle temperatures and infill patterns can reduce irregularities and improve surface smoothness
(Abas et al., 2023). ML-driven approaches have thus been developed to capture these nonlinear parameter—response
interactions. Random Forest and decision tree models have demonstrated strong predictive capabilities in quantifying
roughness in PLA-based FDM parts, with key influencing variables identified as print speed, layer height, and nozzle
temperature (Soundararajan et al., 2025). Artificial neural networks (ANN) have also been shown to predict surface
roughness effectively, achieving less than 5% error in average roughness values for ABS specimens (Tura et al., 2021).

A wide range of ML models have been explored for surface-quality prediction in AM, including linear regression,
support vector regression (SVR), gradient boosting, and deep neural networks. Among these, ensemble and hybrid
models have exhibited the best generalization and interpretability. For instance, a coupled Genetic Algorithm—Decision
Tree model achieved an R? 0f 0.9378 for FDM surface roughness prediction, indicating robust performance in optimizing
both feature selection and model parameters (Mishra & Jatti, 2023). Similarly, explainable Al (XAI) frameworks
incorporating models like XGBoost and CatBoost have reached accuracies above 96%, with XGBoost providing the
most precise predictions for PLA specimens (Mishra et al., 2023). Deep belief networks and hybrid optimization
algorithms such as Adaptive Cuckoo Search have further improved the accuracy and stability of surface and tensile
property predictions, achieving validation accuracies above 95% (Dong et al., 2021). In addition, emerging studies on
quantum and physics-informed ML approaches have extended predictive modeling to more complex datasets, offering
high-dimensional insights into surface integrity and process—structure—property relationships (Mishra & Jatti, 2023);
(Zeng & Pi, 2023).

Beyond surface roughness, ML has also been instrumental in predicting other quality metrics in AM. Deep and ensemble
models have been applied to forecast warpage, dimensional accuracy, and mechanical properties such as tensile strength
and hardness. For instance, ANN and SVR models have accurately predicted tensile strength and surface quality in fiber-
reinforced nylon composites with R? values exceeding 0.99 (Ulkar & Kuncan, 2025). Similarly, ML-assisted frameworks
in selective laser melting have predicted porosity and surface hardness of AlSi10Mg parts, highlighting scan speed and
layer thickness as dominant parameters influencing surface texture and density (Alamri & Barsoum, 2025). Hybrid
sensing and vision-based models have also enabled real-time defect detection in FDM, demonstrating improved accuracy
when fusing vibration and temperature data with visual feedback (Li et al., 2023). These advancements underscore the
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growing reliance on ML for predictive quality assurance across multiple AM platforms, from polymer extrusion to metal
powder bed fusion.

Despite these promising results, several gaps persist in the literature. Most existing models rely on small, material-
specific datasets that limit generalizability and fail to capture complex interdependencies between geometric and thermal
parameters (Garcia-Martinez et al., 2023). Furthermore, validation practices vary widely, with many studies using
limited cross-validation or single-material experiments, which restricts real-world applicability. The modeling of
multiparametric relationships remains weak, particularly under dynamic process variations. The current research
addresses these deficiencies by developing a robust multi-parameter ML framework for surface roughness prediction in
FDM, integrating both geometric and thermal variables into a unified predictive model. By employing ensemble learning
and data-driven optimization, this work aims to enhance predictive accuracy, improve interpretability, and establish a
scalable foundation for intelligent print-quality control in modern additive manufacturing systems.

3. Research gap

Despite considerable progress in additive manufacturing research, the prediction of surface roughness in fused-
deposition modeling (FDM) remains limited by the lack of robust, multi-parameter machine-learning frameworks.
Existing studies often analyze the effect of single parameters such as layer height or nozzle temperature, but very few
incorporate a comprehensive set of geometric, thermal, and process-related variables within a unified predictive model.
Moreover, most published work relies on small datasets or simplified experimental conditions, resulting in models that
perform well only under controlled environments and fail to generalize across real-world variations. Several studies
employ machine learning for defect detection, dimensional accuracy prediction, or mechanical-property estimation, yet
the literature offers very limited evidence of accurate, raw-data-based modeling for surface roughness. The absence of
reliable, data-driven models that can capture the combined effects of layer resolution, melt-flow behavior, and thermal
interaction represents a clear research gap in the field of AM quality prediction. This study provides a systematic,
machine-learning-driven framework for predicting surface roughness in FDM using a rich set of geometric and thermal
process variables. By incorporating multiple influential parameters—including layer height, wall thickness, infill
density, nozzle temperature, bed temperature, material type, and print speed—the model captures a more realistic
representation of printing conditions compared to traditional single-parameter studies. The use of multiple regression,
boosting, deep learning, and ensemble approaches allows the identification of the most effective predictive architecture
under raw, unnormalized conditions. The findings not only validate the dominant role of layer height and thermal
conditions but also demonstrate how predictive analytics can support consistent quality control in additive
manufacturing. This contributes to the broader vision of intelligent, automated AM systems aligned with Industry 4.0
goals, offering manufacturers a reliable pathway for optimizing print parameters and minimizing manual intervention.

4. Methodology

This study evaluated the influence of key FDM printing parameters on surface roughness and developed machine-
learning models for predictive analysis. The workflow included dataset preparation, preprocessing, exploratory analysis,
correlation evaluation, feature selection, and model development using linear, tree-based, and ensemble learning
methods.

4.1 Dataset Preparation

The dataset contained 50 printing trials extracted from the printer. Each entry included major 3D-printing parameters
such as layer height, wall thickness, infill density, infill pattern, nozzle temperature, bed temperature, print speed,
material type (ABS/PLA), and fan speed. Surface roughness (um) was used as the target variable. These parameters
represent the dominant geometric and thermal factors governing surface texture in FDM.

4.2 Data Preprocessing

Categorical fields such as infill pattern and material were converted into numerical form using label encoding. The
dataset was divided into training (80%) and testing (20%) partitions using a fixed random seed to ensure reproducibility.
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4.3 Exploratory Data Analysis

Histograms of key variables showed wide variation across layer height, print speed, and infill density, ensuring a broad
representation of printing conditions. Roughness values displayed moderate spread with several outliers, indicating
substantial variability linked to geometric and thermal settings.

4.4 Correlation Analysis

A correlation heatmap as shown in figure 1 was generated to understand relationships between process parameters and
roughness. Layer height exhibited the strongest positive correlation with roughness, while nozzle temperature showed
moderate influence. Other parameters, such as wall thickness and infill density, had weak associations.
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Figure 1. Correlation heatmap for process parameters.
4.5 Feature Selection

Gradient Boosting Machine (GBM) feature-importance ranking identified layer height and nozzle temperature as the
most influential parameters. Feature-subset experiments confirmed that two- and three-parameter combinations yielded
the highest R? performance for GBM models. Wall thickness, infill density, and fan speed contributed minimally and
their exclusion did not degrade model accuracy.

4.6 Model Development

Four models were developed: GLM (Linear Regression), Gradient Boosting (GBM), Deep Learning (MLP), and a
Stacked Ensemble combining GBM and MLP with GLM as the metalearner. Models were trained on raw features, and
their performance was evaluated using R?, MSE, RMSE, and MAE.

5. Results and Discussion
5.1 Descriptive Statistics and Initial Observations

Descriptive statistics for all process parameters and roughness are summarized in Table 1. Roughness values ranged
from 21-368 um, indicating significant variation across samples. Layer height spanned from 0.02—-0.20 mm, covering
fine to coarse layer deposition. Thermal parameters such as nozzle and bed temperature varied across typical ABS/PLA
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ranges. Initial inspection showed that roughness increases with layer height and decreases with optimized nozzle
temperature.

Table 1. Descriptive statistics of process parameters and surface roughness

Parameter | Count Mean (Sig‘l, Min 25% 50% 75% Max
Layer
height 50 0.106 | 0.0644 |0.02 0.06 0.10 0.15 0.20
(mm)
Wall
thickness | 50 5.2 2.92 1.00 3.00 5.00 7.00 10.0
(mm)
Infill
density | 50 5340 2536 | 10.0 40.0 50.0 80.0 90.0
(%)
Infill
pattern  (— | 50 0.50 0.51 0.00 0.00 0.50 1.00 1.00
)*
Nozzle

50 22150 | 14.82 | 200 210 220 230 250
temp. (°C)
Bed temp. | 5, 70.00 | 7.14 60 65 70 75 80
(°O)
Print speed | 5 64.00 | 29.69 |40 40 60 60 120
(mm/s)
Material (—
)*:ena( 50 050 051|000 000 |050 | 1.00 |1.00
Fan speed

50 5000 3571 |0 25 50 75 100
(%)
Roughness
() 50 170.58 | 99.03 |21 92 1655 |23925 | 368

5.2 Distribution Analysis

Histograms showed that layer height and print speed had wide distributions, while roughness exhibited a slightly right-
skewed pattern due to high-value outliers caused by coarse layers or low thermal flow. These observations align with
known FDM behavior, where layer resolution and melt fluidity dominate surface characteristics.

5.3 Pairwise Trends

Pairwise scatter trends are shown in Figures 2 and 3. A strong increasing trend was observed between layer height and
roughness, confirming that thicker layers increase the staircase effect. Nozzle temperature showed a mild inverse relation
with roughness, reflecting improved melt flow and surface smoothing at higher temperatures.
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Figure 2. Scatter plot of layer height vs roughness.
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Figure 3. Scatter plot of nozzle temperature vs roughness.
5.4 Model Performance Comparison

Model performance metrics are presented in Table 2. Linear Regression achieved the highest accuracy with R? = 0.789,
outperforming nonlinear models under raw-data conditions.

Table 2. Performance comparison of roughness-prediction models

Model R? MSE RMSE | MAE
GLM (Linear Regression) 0.7891 | 978.36 31.28 23.07
Gradient Boosting (GBM) 0.5226 | 2214.89 | 47.06 36.98
Deep Learning (MLP) —0.0484 | 4864.34 | 69.74 51.86
Stacked Ensemble (GBM+MLP, GLM metalearner) 0.4901 | 236598 | 48.64 39.09
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GBM and the Stacked Ensemble showed moderate performance, with residual errors suggesting nonlinear variations not

fully captured without feature scaling. The MLP model performed poorly on raw data due to sensitivity to unnormalized

input ranges.

5.5 Best Model Evaluation

Figures 46 present evaluation results from the best model (GLM). The actual vs predicted plot shows points clustering

near the diagonal, confirming good alignment between predicted and actual roughness. Residual scatter exhibited no

obvious funneling, and residual distribution showed a near-normal shape, confirming the model’s stability and lack of

strong bias.
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Figure 4. Actual vs predicted roughness.
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Figure 5. Residual scatter.
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5.6 Interpretation of Variable Influence

Feature-importance analysis as shown in Table 3 shows that layer height contributed 60.4% of predictive influence,
followed by nozzle temperature with 25.4%. These findings confirm that geometric resolution and melt-flow behavior
dominate surface roughness in FDM. Fan speed, wall thickness, and infill density contributed minimally.

Table 3. Top feature combinations for GBM-based roughness prediction

No. of features R? Selected features
2 0.7396 | layer_height, nozzle temperature
3 0.7466 | layer_height, nozzle temperature, print_speed
4 0.6863 | layer_height, nozzle temperature, print_speed, infill _density
layer height, nozzle temperature, print speed, infill density,
5 0.5062 - - - -
fan_speed

These results are consistent with physical printing behavior, where finer layers improve surface finish and thermal
parameters control flow uniformity during deposition.

Conclusion

This study analyzed the effect of key FDM printing parameters on surface roughness and developed machine-learning
models capable of predicting roughness with high reliability. The dataset covered a wide range of geometric and thermal
conditions, ensuring realistic representation of FDM process behavior. Correlation analysis showed that layer height has
the strongest influence on roughness, followed by nozzle temperature, while other parameters contributed only
marginally. Model evaluation revealed that GLM produced the most accurate predictions under raw-data conditions,
achieving an R? of 0.789 and well-distributed residuals. Nonlinear models such as GBM, MLP, and the Stacked
Ensemble performed moderately but did not surpass the linear model due to sensitivity to unnormalized feature ranges.
Overall, the results confirm that surface roughness is controlled primarily by layer resolution and melt-flow dynamics
during deposition. The developed predictive framework provides a practical tool for selecting optimal printing
parameters and can support real-time quality control in FDM production environments. Future work may explore feature
scaling, larger datasets, and hybrid models to further enhance predictive accuracy.
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