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Abstract 

Surface roughness is a key indicator of printed‐part quality in fused‐deposition modeling (FDM) and is strongly 

influenced by geometric and thermal process parameters. This study investigates the predictive behavior of surface 

roughness using a multi-parameter dataset consisting of layer height, wall thickness, infill density, infill pattern, nozzle 

temperature, bed temperature, print speed, material type, and fan speed. Categorical parameters were label-encoded and 

fed into four machine-learning models: Generalized Linear Model (GLM), Gradient Boosting Machine (GBM), Deep 

Learning (MLP), and a Stacked Ensemble combining GBM and MLP with GLM as the metalearner. All models were 

trained directly on raw data without normalization to preserve parameter scale effects. Layer height and nozzle 

temperature emerged as the most influential parameters, contributing over 85% of total predictive importance. Model 

comparison showed that GLM achieved the highest accuracy (R² = 0.789), producing stable predictions with well-

behaved residuals, while nonlinear models underperformed on unscaled features. Diagnostic results confirmed that 

surface roughness is governed mainly by geometric resolution and melt-flow behavior. The findings provide a robust, 

data-driven understanding of roughness formation and offer a reliable prediction framework for optimizing FDM print 

settings. 

Keywords: Surface roughness, FDM, additive manufacturing, machine learning, process parameters, predictive 

modeling 

1. Introduction  

Fused Deposition Modeling (FDM) has emerged as one of the most widely utilized additive manufacturing (AM) 

technologies due to its cost efficiency, material versatility, and capability to fabricate complex geometries with minimal 

waste. It plays a crucial role across industries such as aerospace, biomedical, and consumer products, offering rapid 

prototyping and functional part production flexibility (Borah & Chandrasekaran, 2025). However, despite these 

advantages, FDM is often constrained by poor surface quality caused by its layer-by-layer deposition process. Surface 

roughness is a critical quality metric that directly impacts not only the aesthetic appeal but also the mechanical 

performance, dimensional accuracy, and post-processing requirements of printed parts (Abas et al., 2023). The interplay 

of geometric factors such as layer height, wall thickness, infill density, and infill pattern, along with thermal and dynamic 

parameters including nozzle temperature, bed temperature, print speed, and cooling fan speed, strongly influences the 

final surface texture (Alam et al., 2021). Small variations in these parameters can lead to substantial differences in 

roughness, complicating process optimization. 

Traditional approaches for surface quality enhancement in FDM, such as empirical testing and trial-and-error parameter 

tuning, are time-consuming, material-intensive, and lack generalizability across different machines, materials, and 

geometries (Maidin et al., 2022). As a result, these heuristic methods fail to provide predictive insights necessary for 

process automation or adaptive control. In contrast, the advent of machine learning (ML) has transformed additive 

manufacturing by enabling predictive modeling and quality forecasting. ML algorithms such as decision trees, support 

vector regression, artificial neural networks (ANN), and random forests have been successfully implemented to predict 

warpage, tensile strength, melt flow, and surface roughness trends in AM processes (Boschetto et al., 2013); (Wei & Wu, 

2019). For instance, random forest and ANN models have demonstrated remarkable accuracy in predicting surface 

roughness when trained on multi-sensor or parameter datasets (Wu et al., 2018); (Tura et al., 2021). Yet, despite the 

proliferation of these models, most existing studies focus on single or limited parameters, overlooking the complex 
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multi-factor interactions that govern surface quality in FDM. Moreover, the lack of standardized datasets and real-time 

adaptive prediction frameworks further limits the robustness and scalability of current models (Wei & Wu, 2023); 

(Mishra & Jatti, 2023). Therefore, a comprehensive, data-driven approach integrating both geometric and thermal 

process parameters is essential for the accurate prediction and optimization of surface roughness in FDM. Such a model 

would not only bridge the existing gap in multi-parameter quality prediction but also support intelligent process planning 

and real-time control, significantly enhancing surface finish and production efficiency (Soundararajan et al., 2025). A 

robust machine-learning-based prediction framework can thus serve as a cornerstone for smart manufacturing systems, 

facilitating sustainable and adaptive additive manufacturing practices in the Industry 4.0 era.  

Surface roughness is one of the most important quality metrics in FDM because it directly influences the functionality, 

appearance, friction characteristics, and post-processing requirements of printed parts. Manufacturers often rely on 

empirical parameter tuning, trial-and-error adjustments, or operator experience to achieve acceptable surface finish, 

leading to inconsistent output and increased production time. With the growing adoption of FDM in automotive, 

biomedical, tooling, and consumer-product sectors, there is a strong need for a data-driven approach capable of 

predicting roughness accurately before printing. Machine learning offers a powerful alternative by enabling models that 

learn complex interactions among multiple process parameters and provide actionable insights for parameter 

optimization. Developing such a model not only ensures more predictable print outcomes but also supports automation, 

reduces waste, and enhances process reliability. 

2. Literature Review 

Machine learning (ML) has become a pivotal tool in enhancing the quality control of additive manufacturing (AM), 

particularly in Fused Deposition Modeling (FDM), where surface roughness remains a primary limitation affecting 

mechanical performance, aesthetics, and post-processing needs. Early investigations demonstrated that process 

parameters such as layer height, nozzle temperature, infill pattern, and print speed critically influence the surface finish 

of printed components. For instance, higher layer heights and faster print speeds tend to increase surface roughness, 

whereas optimized nozzle temperatures and infill patterns can reduce irregularities and improve surface smoothness 

(Abas et al., 2023). ML-driven approaches have thus been developed to capture these nonlinear parameter–response 

interactions. Random Forest and decision tree models have demonstrated strong predictive capabilities in quantifying 

roughness in PLA-based FDM parts, with key influencing variables identified as print speed, layer height, and nozzle 

temperature (Soundararajan et al., 2025). Artificial neural networks (ANN) have also been shown to predict surface 

roughness effectively, achieving less than 5% error in average roughness values for ABS specimens (Tura et al., 2021). 

A wide range of ML models have been explored for surface-quality prediction in AM, including linear regression, 

support vector regression (SVR), gradient boosting, and deep neural networks. Among these, ensemble and hybrid 

models have exhibited the best generalization and interpretability. For instance, a coupled Genetic Algorithm–Decision 

Tree model achieved an R² of 0.9378 for FDM surface roughness prediction, indicating robust performance in optimizing 

both feature selection and model parameters (Mishra & Jatti, 2023). Similarly, explainable AI (XAI) frameworks 

incorporating models like XGBoost and CatBoost have reached accuracies above 96%, with XGBoost providing the 

most precise predictions for PLA specimens (Mishra et al., 2023). Deep belief networks and hybrid optimization 

algorithms such as Adaptive Cuckoo Search have further improved the accuracy and stability of surface and tensile 

property predictions, achieving validation accuracies above 95% (Dong et al., 2021). In addition, emerging studies on 

quantum and physics-informed ML approaches have extended predictive modeling to more complex datasets, offering 

high-dimensional insights into surface integrity and process–structure–property relationships (Mishra & Jatti, 2023); 

(Zeng & Pi, 2023). 

Beyond surface roughness, ML has also been instrumental in predicting other quality metrics in AM. Deep and ensemble 

models have been applied to forecast warpage, dimensional accuracy, and mechanical properties such as tensile strength 

and hardness. For instance, ANN and SVR models have accurately predicted tensile strength and surface quality in fiber-

reinforced nylon composites with R² values exceeding 0.99 (Ulkar & Kuncan, 2025). Similarly, ML-assisted frameworks 

in selective laser melting have predicted porosity and surface hardness of AlSi10Mg parts, highlighting scan speed and 

layer thickness as dominant parameters influencing surface texture and density (Alamri & Barsoum, 2025). Hybrid 

sensing and vision-based models have also enabled real-time defect detection in FDM, demonstrating improved accuracy 

when fusing vibration and temperature data with visual feedback (Li et al., 2023). These advancements underscore the 
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growing reliance on ML for predictive quality assurance across multiple AM platforms, from polymer extrusion to metal 

powder bed fusion. 

Despite these promising results, several gaps persist in the literature. Most existing models rely on small, material-

specific datasets that limit generalizability and fail to capture complex interdependencies between geometric and thermal 

parameters (García-Martínez et al., 2023). Furthermore, validation practices vary widely, with many studies using 

limited cross-validation or single-material experiments, which restricts real-world applicability. The modeling of 

multiparametric relationships remains weak, particularly under dynamic process variations. The current research 

addresses these deficiencies by developing a robust multi-parameter ML framework for surface roughness prediction in 

FDM, integrating both geometric and thermal variables into a unified predictive model. By employing ensemble learning 

and data-driven optimization, this work aims to enhance predictive accuracy, improve interpretability, and establish a 

scalable foundation for intelligent print-quality control in modern additive manufacturing systems. 

3. Research gap 

Despite considerable progress in additive manufacturing research, the prediction of surface roughness in fused-

deposition modeling (FDM) remains limited by the lack of robust, multi-parameter machine-learning frameworks. 

Existing studies often analyze the effect of single parameters such as layer height or nozzle temperature, but very few 

incorporate a comprehensive set of geometric, thermal, and process-related variables within a unified predictive model. 

Moreover, most published work relies on small datasets or simplified experimental conditions, resulting in models that 

perform well only under controlled environments and fail to generalize across real-world variations. Several studies 

employ machine learning for defect detection, dimensional accuracy prediction, or mechanical-property estimation, yet 

the literature offers very limited evidence of accurate, raw-data-based modeling for surface roughness. The absence of 

reliable, data-driven models that can capture the combined effects of layer resolution, melt-flow behavior, and thermal 

interaction represents a clear research gap in the field of AM quality prediction. This study provides a systematic, 

machine-learning-driven framework for predicting surface roughness in FDM using a rich set of geometric and thermal 

process variables. By incorporating multiple influential parameters—including layer height, wall thickness, infill 

density, nozzle temperature, bed temperature, material type, and print speed—the model captures a more realistic 

representation of printing conditions compared to traditional single-parameter studies. The use of multiple regression, 

boosting, deep learning, and ensemble approaches allows the identification of the most effective predictive architecture 

under raw, unnormalized conditions. The findings not only validate the dominant role of layer height and thermal 

conditions but also demonstrate how predictive analytics can support consistent quality control in additive 

manufacturing. This contributes to the broader vision of intelligent, automated AM systems aligned with Industry 4.0 

goals, offering manufacturers a reliable pathway for optimizing print parameters and minimizing manual intervention. 

4. Methodology 

This study evaluated the influence of key FDM printing parameters on surface roughness and developed machine-

learning models for predictive analysis. The workflow included dataset preparation, preprocessing, exploratory analysis, 

correlation evaluation, feature selection, and model development using linear, tree-based, and ensemble learning 

methods. 

4.1 Dataset Preparation 

The dataset contained 50 printing trials extracted from the printer. Each entry included major 3D-printing parameters 

such as layer height, wall thickness, infill density, infill pattern, nozzle temperature, bed temperature, print speed, 

material type (ABS/PLA), and fan speed. Surface roughness (µm) was used as the target variable. These parameters 

represent the dominant geometric and thermal factors governing surface texture in FDM. 

4.2 Data Preprocessing 

Categorical fields such as infill pattern and material were converted into numerical form using label encoding. The 

dataset was divided into training (80%) and testing (20%) partitions using a fixed random seed to ensure reproducibility. 
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4.3 Exploratory Data Analysis 

Histograms of key variables showed wide variation across layer height, print speed, and infill density, ensuring a broad 

representation of printing conditions. Roughness values displayed moderate spread with several outliers, indicating 

substantial variability linked to geometric and thermal settings. 

4.4 Correlation Analysis 

A correlation heatmap as shown in figure 1 was generated to understand relationships between process parameters and 

roughness. Layer height exhibited the strongest positive correlation with roughness, while nozzle temperature showed 

moderate influence. Other parameters, such as wall thickness and infill density, had weak associations. 

 

Figure 1. Correlation heatmap for process parameters. 

4.5 Feature Selection 

Gradient Boosting Machine (GBM) feature-importance ranking identified layer height and nozzle temperature as the 

most influential parameters. Feature-subset experiments confirmed that two- and three-parameter combinations yielded 

the highest R² performance for GBM models. Wall thickness, infill density, and fan speed contributed minimally and 

their exclusion did not degrade model accuracy. 

4.6 Model Development 

Four models were developed: GLM (Linear Regression), Gradient Boosting (GBM), Deep Learning (MLP), and a 

Stacked Ensemble combining GBM and MLP with GLM as the metalearner. Models were trained on raw features, and 

their performance was evaluated using R², MSE, RMSE, and MAE. 

5. Results and Discussion 

5.1 Descriptive Statistics and Initial Observations 

Descriptive statistics for all process parameters and roughness are summarized in Table 1. Roughness values ranged 

from 21–368 µm, indicating significant variation across samples. Layer height spanned from 0.02–0.20 mm, covering 

fine to coarse layer deposition. Thermal parameters such as nozzle and bed temperature varied across typical ABS/PLA 
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ranges. Initial inspection showed that roughness increases with layer height and decreases with optimized nozzle 

temperature. 

Table 1. Descriptive statistics of process parameters and surface roughness 

Parameter Count Mean 
Std. 

dev. 
Min 25% 50% 75% Max 

Layer 

height 

(mm) 

50 0.106 0.0644 0.02 0.06 0.10 0.15 0.20 

Wall 

thickness 

(mm) 

50 5.22 2.92 1.00 3.00 5.00 7.00 10.0 

Infill 

density 

(%) 

50 53.40 25.36 10.0 40.0 50.0 80.0 90.0 

Infill 

pattern (–

)* 

50 0.50 0.51 0.00 0.00 0.50 1.00 1.00 

Nozzle 

temp. (°C) 
50 221.50 14.82 200 210 220 230 250 

Bed temp. 

(°C) 
50 70.00 7.14 60 65 70 75 80 

Print speed 

(mm/s) 
50 64.00 29.69 40 40 60 60 120 

Material (–

)** 
50 0.50 0.51 0.00 0.00 0.50 1.00 1.00 

Fan speed 

(%) 
50 50.00 35.71 0 25 50 75 100 

Roughness 

(µm) 
50 170.58 99.03 21 92 165.5 239.25 368 

 

5.2 Distribution Analysis 

Histograms showed that layer height and print speed had wide distributions, while roughness exhibited a slightly right-

skewed pattern due to high-value outliers caused by coarse layers or low thermal flow. These observations align with 

known FDM behavior, where layer resolution and melt fluidity dominate surface characteristics. 

5.3 Pairwise Trends 

Pairwise scatter trends are shown in Figures 2 and 3. A strong increasing trend was observed between layer height and 

roughness, confirming that thicker layers increase the staircase effect. Nozzle temperature showed a mild inverse relation 

with roughness, reflecting improved melt flow and surface smoothing at higher temperatures. 
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Figure 2. Scatter plot of layer height vs roughness. 

 

Figure 3. Scatter plot of nozzle temperature vs roughness. 

5.4 Model Performance Comparison 

Model performance metrics are presented in Table 2. Linear Regression achieved the highest accuracy with R² = 0.789, 

outperforming nonlinear models under raw-data conditions. 

Table 2. Performance comparison of roughness-prediction models 

Model R² MSE RMSE MAE 

GLM (Linear Regression) 0.7891 978.36 31.28 23.07 

Gradient Boosting (GBM) 0.5226 2214.89 47.06 36.98 

Deep Learning (MLP) −0.0484 4864.34 69.74 51.86 

Stacked Ensemble (GBM+MLP, GLM metalearner) 0.4901 2365.98 48.64 39.09 
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GBM and the Stacked Ensemble showed moderate performance, with residual errors suggesting nonlinear variations not 

fully captured without feature scaling. The MLP model performed poorly on raw data due to sensitivity to unnormalized 

input ranges. 

5.5 Best Model Evaluation 

Figures 4–6 present evaluation results from the best model (GLM). The actual vs predicted plot shows points clustering 

near the diagonal, confirming good alignment between predicted and actual roughness. Residual scatter exhibited no 

obvious funneling, and residual distribution showed a near-normal shape, confirming the model’s stability and lack of 

strong bias. 

 

Figure 4. Actual vs predicted roughness. 

 

Figure 5. Residual scatter. 
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Figure 6. Residual distribution. 

5.6 Interpretation of Variable Influence 

Feature-importance analysis as shown in Table 3 shows that layer height contributed 60.4% of predictive influence, 

followed by nozzle temperature with 25.4%. These findings confirm that geometric resolution and melt-flow behavior 

dominate surface roughness in FDM. Fan speed, wall thickness, and infill density contributed minimally. 

Table 3. Top feature combinations for GBM-based roughness prediction 

No. of features R² Selected features 

2 0.7396 layer_height, nozzle_temperature 

3 0.7466 layer_height, nozzle_temperature, print_speed 

4 0.6863 layer_height, nozzle_temperature, print_speed, infill_density 

5 0.5062 
layer_height, nozzle_temperature, print_speed, infill_density, 

fan_speed 

 

These results are consistent with physical printing behavior, where finer layers improve surface finish and thermal 

parameters control flow uniformity during deposition. 

Conclusion 

This study analyzed the effect of key FDM printing parameters on surface roughness and developed machine-learning 

models capable of predicting roughness with high reliability. The dataset covered a wide range of geometric and thermal 

conditions, ensuring realistic representation of FDM process behavior. Correlation analysis showed that layer height has 

the strongest influence on roughness, followed by nozzle temperature, while other parameters contributed only 

marginally. Model evaluation revealed that GLM produced the most accurate predictions under raw-data conditions, 

achieving an R² of 0.789 and well-distributed residuals. Nonlinear models such as GBM, MLP, and the Stacked 

Ensemble performed moderately but did not surpass the linear model due to sensitivity to unnormalized feature ranges. 

Overall, the results confirm that surface roughness is controlled primarily by layer resolution and melt-flow dynamics 

during deposition. The developed predictive framework provides a practical tool for selecting optimal printing 

parameters and can support real-time quality control in FDM production environments. Future work may explore feature 

scaling, larger datasets, and hybrid models to further enhance predictive accuracy. 
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