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Abstract - Malware detection plays a critical role in securing 

endpoints such as workstations, servers, cloud instances, 

and mobile devices. It involves identifying and mitigating 

malicious activities triggered by various forms of malware, 

including viruses, trojans, worms, ransomware, adware, 

and spyware. 

With the rapid proliferation of sophisticated and evasive 

malware variants, such as polymorphic and metamorphic 

malware, traditional signature-based and heuristic 

approaches are no longer sufficient. These conventional 

methods often fail to detect previously unseen or obfuscated 

threats, making the adoption of more intelligent and 

adaptive systems essential. In response to this challenge, 

this project explores the application of machine learning 

techniques to enhance malware detection and classification. 

Leveraging publicly available malware datasets, various 

supervised and unsupervised algorithms—such as Decision 

Trees, Random Forests, Support Vector Machines (SVM), 

k-Nearest 

Neighbors (k-NN), Naïve Bayes, and Artificial Neural 

Networks (ANN)—will be employed and evaluated. 

Additionally, feature extraction and dimensionality 

reduction techniques such as Principal Component 

Analysis (PCA) will be applied to improve model 

performance. 

The objective is to assess and compare the models using 

metrics such as accuracy, precision, recall, F1-score, and 

confusion matrix analysis. 

This project aims to identify the most effective machine 

learning model for real-time, scalable, and accurate 

malware detection, contributing to improved cybersecurity 

practices and proactive threat mitigation. 
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I. INTRODUCTION 

 
Malware—malicious software designed to exploit, damage, or 

disrupt systems—has evolved into a sophisticated and 

financially motivated threat vector. Modern malware includes 

not only viruses and worms but also trojans, spyware, 

ransomware, and rootkits. Unlike earlier attacks motivated by 

notoriety, today's malware often serves commercial or criminal 

enterprises. Enterprise systems are particularly vulnerable due 

to their data richness and complexity. 

Standard antivirus tools struggle to detect previously unseen 

threats (zero-day attacks), especially when adversaries use 

polymorphic or metamorphic techniques to obfuscate malware. 

These threats dynamically modify their codebase, rendering 

signature-based solutions ineffective. 

Thus, there's an increasing demand for intelligent systems 

capable of identifying anomalies based on behavioral or static 

features rather than relying solely on known signatures.[1] 

Machine learning models offer a compelling solution to this 

challenge, allowing systems to "learn" from known malware 

patterns and generalize detection to previously unseen 

variants.[4] 

This research builds upon this paradigm and proposes a 

centralized machine learning-based malware detection 

framework that targets the API call patterns within Windows 

PE files—a rich source of indicative static 

features.[11] 

 

Although malware variants are increasing in number and 

complexity, traditional antivirus scanners are falling short of 

meeting modern security needs. Script-kiddies, inexperienced 

individuals using pre-built malware tools, and automated attack 

frameworks are contributing to the surge in cyberattacks. 

Government and commercial organizations continue to be 

major targets, with threats like ransomware, data theft, and 

spyware posing significant operational risks. Cyberattacks can 

manifest in various forms and scales, making it increasingly 

difficult to maintain 

cybersecurity resilience.[3] 

One of the major challenges faced by the global cybersecurity 

community is the lack of skilled personnel capable of 

responding to these evolving threats. Additionally, 

international cybercrimes such as financial fraud, payment 

fraud, and online child exploitation demand global cooperation 

among law enforcement agencies.[8] 

II. Current Antivirus Software 

 

Conventional antivirus engines depend on pre-defined 

signatures to detect malicious code. While effective against 

known threats, these methods offer little protection against 
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new or rapidly evolving malware. Heuristic and behavioural 

approaches have been introduced but often result in high false 

positive rates or degrade system performance. 

In enterprise contexts, even a minor breach can have 

catastrophic consequences. Furthermore, malware authors are 

continuously innovating, producing encrypted or self- 

modifying payloads that evade signature detection. Reports 

have shown a decline in the effectiveness of traditional 

antivirus products, highlighting the need for a more robust 

solution. 

 

● Antivirus software is used to prevent, detect, and remove 

malware, including but not limited to computer viruses, 

computer worm, Trojan horses, spyware and adware. A variety 

of strategies are typically employed by the anti-virus engines. 

Signature-based detection involves searching for known 

patterns of data within executable code. However, it is possible 

for a computer to be infected with new virus for which no 

signatures exist [6]. To counter such “zero-day” threats, 

heuristics can be used, that identify new viruses or variants of 

existing viruses by looking for known malicious code. Some 

antivirus can also make predictions by executing 

 

files in a sandbox and analysing results.[12] 

 

● Often, antivirus software can impair a computer's performance. 

Any incorrect decision may lead to a security breach, since it 

runs at the highly trusted kernel level of the operating system. 

If the antivirus software employs heuristic detection, success 

depends on achieving the right balance between false positives 

and false negatives. Today, malware may no longer be 

executable files. Powerful macros in Microsoft Word could 

also present a security risk. Traditionally, antivirus software 

heavily relied upon signatures to identify malware. However, 

because of newer kinds of malware, signature-based 

approaches are no longer 

effective[8] 

 

● Although standard antivirus can effectively contain virus 

outbreaks, for large enterprises, any breach could be potentially 

fatal. Virus makes are employing "oligomorphic", 

"polymorphic" and, "metamorphic" viruses, which encrypt 

parts of themselves or modify themselves as a method of 

disguise, so as to not match virus signatures in the dictionary.[13] 

 

● Studies in 2007 showed that the effectiveness of antivirus 

software had decreased drastically, particularly against 

unknown or zero day attacks. Detection rates have dropped 

from 40-50% in 2006 to 20-30% in 2007. The problem is 

magnified by the changing intent of virus makers. Independent 

testing on all the major virus scanners consistently shows that 

none provide 100% virus detection. The best ones provided as 

high as 99.6% detection, while the lowest provided only 81.8% 

in tests conducted in February 2010. All virus scanners produce 

false positive results as well, identifying benign files as 

malware.[12] 

III. Related work 

 
This section provides a summary of the surveyed research in 

the literature and discusses some of its defects. Table 1 sums 

up the main contributions of the surveys in the literature. We 

follow by presenting a brief description for each survey, and 

their flaws that we try to mitigate in our work. 

Shabtai et al. (2009) provide a taxonomy for malware detection 

using machine learning algorithms by reporting some feature 

types and feature selection techniques used in the literature. 

They mainly focus on the feature selection techniques (Gain 

ratio, Fisher score, document fre-quency, and hierarchical 

feature selection) and classification algorithms 

(Artificial Neural Networks, Bayesian Networks, Naïve Bayes, 

K-Nearest 

Neighbor, etc). In addition, they review how ensemble 

algorithms can be used to combine a set of classifiers. 

Bazrafshan et al. (2013) iden-tify three main methods for 

detecting malicious software: signature-based methods, 

heuristic-based methods and behavior-based meth-ods. In 

addition, they investigate some features for malware detec-tion 

and discuss concealment techniques used by malware to evade 

detection. Nonetheless, the aforementioned research does not 

consider either dynamic or hybrid approaches. Souri et al. 

(2018) present a sur-vey of malware detection approaches 

divided into two categories: signature-based methods and 

behavior-based methods. However, the survey does not provide 

either a review of the most recent deep learning approaches or 

a taxonomy of the types of features used in data mining 

techniques for malware detection and classification. Ucci et al. 

(2019) categorize methods according to: (i) what is the target 

task they try to solve, (ii) what are the feature types extracted 

from Portable Executable files (PEs), and (iii) what machine 

learning algorithms they use. Although the survey provides a 

complete description of the fea-ture taxonomy, it does not 

outline new research trends, especially deep learning and 

multimodal approaches. Ye et al. (2017) cover traditional 

machine learning approaches for malware detection, that 

consists of feature extraction, feature selection and 

classification steps. However, important features such as the 

entropy or structural entropy of a file, and some dynamic 

features such as network activity, opcode and API traces, are 

missing. In addition, deep learning methods or multimodal 

approaches for malware detection, which have been hot topics 

for the last few years, are not covered. Lastly, Razak et al. 

(2016) provide a bibliometric analysis of malware. It analyzes 

the publications by coun-try, institution or authors related to 

malware. Nonetheless, the paper does not provide a description 

of the features employed by malware 2D. Gibert et al. Journal 

of Network and Computer 

Applications 153 (2020) 102526 

 

IV. OBJECTIVES 

 

As we have seen, current antivirus engine techniques are not 

optimum in detecting viruses in real time. They may be useful 
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in controlling viruses once they infect systems, which is again, 

fateful for enterprises. This research is thus aimed at a central 

solution that works at the firewall level of the enterprise 

network. The complete system diagram is shown in Figure 1 

and our process diagram is shown in Figure 2. 
 

 

 

Figure 1: Network Diagram of the entire system 

 

 

 

 

Figure 2: Process Diagram of our System 

 

Portable Executable (PE) 

This format is a file format for executables, object code and 

DLLs, used in 32-bit and 64-bit versions of Windows operating 

systems . The term "portable" refers to the format's versatility 

in numerous environments of operating system software 

architecture. The PE format is a data structure that encapsulates 

the information necessary for the Windows OS loader to 

manage the wrapped executable code. This includes dynamic 

library references for linking, API export and import tables, 

resource management data and thread-local storage data. On 

NT operating systems, the PE format is used for EXE, DLL, 

SYS (device driver), and other file types. 

A PE file consists of a number of headers and sections that tell 

the dynamic linker how to map the file into memory. An 

executable image consists of several different regions, each of 

which requires different memory protection. The Import 

address table (IAT), which is used as a lookup table when the 

application is calling a function in a different module. Because 

a compiled program cannot know the memory location of the 

libraries it depends upon, an indirect jump is required whenever 

an API call is made. As the dynamic linker loads modules and 

joins them together, it writes actual addresses into the IAT slots, 

so that they point to the memory locations of the corresponding 

library 

functions.[13] 

 

In our research, we extracted the PE Header from numerous 

infected and normal executables and using the IAT, extracted 

various API calls and stored them into a data mine. We then 

derived Information Gain (IG) for each function. 

 

V. Algorithm for Information Gain 
 

The entropy of a variable X is defined as: 

 

Where in H(P), the P(X) is as follows: P(X ) = Number of ⋅ 

 
PE⋅ with⋅ xi ⋅ ascertain⋅ API 

 

i. Total⋅ number of ⋅ PE 

 

And the entropy of X after observing values of another variable 

Y is defined as: 

 

The amount by which the entropy of X decreases reflects 

additional information about X provided by Y is called 

information gain, given by: 

 

IG(X | Y) = H(X) - H(X | Y) 

 

Machine learning, a branch of artificial intelligence, is a 

scientific discipline concerned with the design and 

development of algorithms that allow computers to evolve 

behaviours based on empirical data, such as from sensor data 

or databases. A learner can take advantage of data to capture 

characteristics of interest of their unknown underlying 

probability distribution. Data can be seen as examples that 

illustrate relations between observed variables. A major focus 

of machine learning research is to automatically learn to 

recognize complex patterns and make intelligent decisions 

based on data[17] 

 

Further, we apply the Random Forest Algorithm (RFA). This is 

a machine learning classification algorithm to construct the 

classifier to detect malware. A Random Forest is a classifier 

that is comprised of a collection of decision tree predictors. 

Each individual tree is trained on a partial, independently 
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sampled, set of instances selected from the complete training 

set. The predicted output class of a classified instance is the 

most frequent class output of the individual trees. 

 

VI. Malware Analysis 

The process of dissecting malware to understand how it works, 

determine its functionality, origin and potential impact is called 

mal- ware analysis. With the millions of new malicious 

programs in the wild, and the mutated versions of previously 

detected programs, total mal- ware encountered by security 

analysts has been growing over the past years.4 Consequently, 

malware analysis is critical to any business and infrastructure 

that responds to security incidents. 

 

There are two fundamental approaches to malware analysis: (1) 

static analysis and (2) dynamic analysis. On the one hand, static 

analy- sis involves examining the malware without running it. 

On the other hand, dynamic analysis involves running the 

malware. An in-depth description of both approaches is 

provided in Sections. 

 

Static Analysis: 

Static analysis consists of examining the code or structure of 

the executable file without executing it. This kind of analysis 

can confirm whether a file is malicious, provide information 

about is functionality and can also be used to produce a simple 

set of signatures. For instance, the most common method used 

to uniquely identify a malicious pro- gram is hashing. That is, 

a hashing program produces a unique hash, a sort of fingerprint, 

that identifies the program. The two most popu- lar hash 

functions are the Message-Digest Algorithm 5 (MD5) and the 

Secure Hash Algorithm 1 (SHA-1). The most common static 

analysis approaches are: 

Finding sequences of characters or strings. Searching through 

the strings of a program is the simplest way to obtain hints 

about its functionality. Strings extracted from the binary can 

contain references to file paths of files modified or accessed by 

the executable, 

 

URLs to which the program accesses, domain names, IP 

addresses, attack commands, names of Windows dynamic link 

libraries (DLLs) loaded, registry keys, and so on. The utility 

tool Strings 5 can be used to search ASCII or Unicode strings 

ignoring context and formatting in an executable. 

 

Gathering the linked libraries and functions of an executable, 

as well 

 

as the metadata about the file included in the headers. These 

data provide information about code libraries and 

functionalities com- mon to many programs that programmers 

link so that they do not need to re-implement a certain 

functionality. The names of these Windows functions can give 

us an idea of what the executable does. The utility Dependency 

Walker6 is a free program for Microsoft Windows used to list 

the imported and exported functions of a PE file. 

 

Analyze PE file headers and sections. The PE file headers 

provide more information than just imports. They contain 

metadata about the file itself, such as the actual sections of the 

file. One way to retrieve this information is with the PEView 

tool.7 

 

Searching for packed/encrypted code. Malware writers usually 

use packing and encryption to make their files more difficult to 

analyze. Software programs that have been packed or 

encrypted usually con- tain very few strings and higher entropy 

compared to legitimate programs. One way to detect packed 

files is with the PEiD program8 

 

Disassembling the program, i.e. translating machine code into 

assembly language. This reverse-engineering process loads the 

exe- cutable into a disassembler to discover what the program 

does. The most relevant software programs for disassembling 

PE executables are IDA Pro,9 Radare210 and Ghidra. 

 

Dynamic Analysis: 

Dynamic analysis involves executing the program and 

monitoring its behavior on the system. This is typically 

performed when static analys is has reached a dead end, either 

due to obfuscation or having exhausted the available static 

analysis techniques. Unlike static analysis, it traces the real 

actions executed by the program. However, the analysis must 

be run in a safe environment to not expose the system to 

unnecessary risks, where the system is both the machine 

running the analysis tool and the rest of the machines on the 

network. To this end, dedicated physical or virtual machines 

are set up[6]. 

 

Physical machines must be set up on air-gapped networks, that 

is isolated networks where machines are disconnected from the 

Internet or any other network, to prevent malware from 

spreading. The main downside of physical machines is this 

scenario with no Internet connec- tion, as many malicious 

programs depend on Internet connection for updates, command 

and control and other features. 

 

The second option is to set up virtual machines to perform 

dynamic analysis. A virtual machine emulates a computer 

system and provides the functionality of a physical computer. 

The OS running in the virtual machine is kept isolated from the 

host OS and thus, malware running on a virtual machine cannot 

harm the host OS. VMware Workstation12 and Oracle VM 

VirtualBox13 are some of the virtual machine solutions 

available to analysts. In addition, there are several all-in-one 

software products based on sandbox technology that can be 

used to perform basic dynamic analysis. The most well-known 

is the Cuckoo Sandbox, an open source automated malware 

analysis system. This modular sandbox provides capabilities to 

trace API calls, analyze network traffic or per- form memory 

http://www.ijsrem.com/


International Journal of Scientific Research in Engineering and Management (IJSREM) 
Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930 

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48394 | Page 5 

 

 

 

analysis. Alternatively, there is a wide list of utilities for 

dynamically analyzing malware and performing advanced and 

specific monitoring of some functionalities. Process 

Monitor,15 or procmon, is a tool for Windows that monitors 

certain registry, file system, network, pro- cess and thread 

activity. Process Explorer16 shows the information about 

which handles and DLL processes are opened or loaded into 

the operat- ing system. Regshot17 is a registry compare utility 

that allows snapshots of registries to be taken and compared. 

NetCat18 is a networking utility that can be used to monitor 

data transmission over a network. Wireshark19 is an open 

source sniffer that allows packets to be captured and network 

traffic to be intercepted and logged. Another indispensable 

software utility are debuggers. A debugger is used to examine 

the execution of another program. They provide a dynamic 

view of a pro- gram as it runs. The primary debugger of choice 

for malware analysts is OllyDbg20 , an ×86 debugger that is 

free and has many plugins to extend its capabilities.[6] 

 

The risks of using virtualization and sandboxing for malware 

analys is is that some malware can detect when it is running in 

a virtual machine or a sandbox and subsequently, they will 

execute differently than when in a physical machine to make 

the job of malware analysts harder. In addition, even if you take 

all possible precautions, some risk is always present when 

analyzing malware. From time to time, vulnerabilities have 

been found in the virtualization tools that allow an attacker to 

exploit some of its features such as the share folders feature. 

 

Hybrid Approaches 

Hybrid analysis integrates static and dynamic techniques 

to overcome their individual limitations and improve 

detection accuracy.[2] 

 

Workflow: 

Perform a quick static scan using signature-based tools (e.g., 

VirusTotal). 

Dynamically analyze flagged files in a sandbox. Apply 

machine learning models trained on static and dynamic 

features (e.g., opcode sequences, API call patterns). 

 

Case Study: 

Detection of Dridex banking malware: 

Static Clue: Irregular PE header structure. Dynamic 

Behavior: Keystroke logging, data exfiltration via HTTP 

POST requests. 

 

Advanced Tools: 

CrowdStrike Falcon 

FireEye Endpoint Security 

Joe Sandbox 

VII. Malware Evolution 

The diversity, sophistication and availability of malicious 

software pose enormous challenges for securing networks and 

computer systems from attacks. Malware is constantly 

evolving and forces security analysts and researchers to keep 

pace by improving their cyberdefenses. The proliferation of 

malware increased due to the use of polymorphic and 

metamorphic techniques used to evade detection and hide its 

true purpose. Polymorphic malware uses a polymorphic engine 

to mutate the code while keeping the original functionality 

intact. Packing and encryption are the two most common ways 

to hide code. Packers hide the real code of a program through 

one or more layers of compression. Then, at runtime the 

unpacking routines restore the original code in memory and 

execute it. Crypters encrypt and manipulate malware or part of 

its code, to make it harder for researchers to analyze the pro- 

gram. A crypter contains a stub used to encrypt and decrypt 

malicious code. Metamorphic malware rewrites its code to an 

equivalent when- ever it is propagated. Malware authors may 

use multiple transformation techniques including, but not 

limited to, register renaming, code per- mutation, code 

expansion, code shrinking and garbage code insertion. The 

combination of the aforementioned techniques resulted in 

rapidly growing malware volumes, making forensic 

investigations of malware cases time-consuming, costly and 

more difficult. 

 

Traditional antivirus solutions that relied on signature based 

and heuristic/behavioral methods present some problems. A 

signature is a unique feature or set of features that uniquely 

distinguishes an executable, like a fingerprint. However, 

signature-based methods are unable to detect unknown 

malware variants. To tackle these challenges, security analysts 

proposed behavior-based detection, which analyzes the file’s 

characteristics and behavior to determine if it is indeed 

malware, though the scanning and analysis can take some time. 

To over- come the prior pitfalls of traditional antivirus engines 

and keep pace with new attacks and variants, researchers 

started adopting machine learning to complement their 

solutions, as machine learning is well suited for processing 

large volumes of data. 

 

VIII. Traditional Machine learning approaches 

Over the past decade there has been an increase in the research 

and deployment of machine learning solutions to tackle the 

tasks of malware detection and classification. The success and 

consolidation of machine learning approaches would not have 

been possible without the confluence of three recent 

developments:[6] 

 

The first development is the increase in labeled feeds of 

malware meaning that, for the first time, labeled malware is 

available not only to the security community but also to the 

research community. The size of these feeds ranges from 
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limited high-quality samples, like the ones provided by 

Microsoft (Ronen et al., 2018) for the Big Data Innovators 

Gathering Anti-Malware Prediction Challenge, to huge 

volumes of malware, such as theZoo (Yuval Nativ, 2015) or 

VirusShare (2011). 

 

The second development is that computational power has 

increased rapidly and at the same time has become cheaper and 

closer to the budget of most researchers. Consequently, it 

allowed researchers to speed-up in the iterative training process 

and to fit larger and more complex models to the ever 

increasing data. Third, the machine learning field has evolved 

at an increased pace during the last decades, achieving 

breakthrough success in terms of accuracy and scalability on a 

wide range of tasks, such as computer vision, speech 

recognition and natural language processing. 

 

In machine learning, a workflow is an iterative process that 

involves gathering available data, cleaning and preparing the 

data, building models, validating and deploying into 

production. Instead of dealing with raw malware, the data 

preparation process of traditional machine learning approaches 

involves preprocessing the executable to extract a set of 

features that provide an abstract view of the software. 

Afterwards the features are used to train a model to solve the 

task at hand. Because of the variety of malware functionalities, 

it is important not only to detect malicious software, but also to 

differentiate between different kinds of malware in order to 

provide a better understanding of their capabilities. The main 

difference between machine learning solutions for detection or 

classification of malware is the output returned by the system 

implemented. On the one hand, a malware detection system 

outputs a single value y = f(x), in the range from 0 to 1, which 

indi- cates the maliciousness of the executable. On the other 

hand, a classification system outputs the probability of a given 

executable belonging to each output class or family, y ∈ ℝN, 

where N indicates the number of different families.[1] 

 

IX. Proposed detection framework 

To address these challenges, we propose a centralized malware 

detection module that operates at the enterprise gateway level. 

 

The framework consists of: 

Feature Extraction: Analyzing the PE file format to extract 

Import Address Table (IAT) entries. 

 

API Call Analysis: Mapping API usage patterns indicative of 

malicious behaviour. 

 

Feature Selection: Employing Information Gain (IG) to rank 

features based on relevance. 

 

Classification: Using a Random Forest algorithm to build a 

model that distinguishes between benign and malicious files. 

This system is designed to work in tandem with endpoint 

protection, providing an additional layer of defense. 

 

X. Technical Approach 

 
PE File Analysis 

The Windows PE format encapsulates vital metadata, including 

imported API functions. Malware often exhibits specific API 

usage patterns, such as those related to file manipulation, 

process injection, or registry editing. By parsing the IAT, we 

generate a dataset of API call frequencies[11]. 

 

Information Gain Calculation 

 

Information Gain is used to quantify the usefulness of each API 

feature in distinguishing malware from benign software. The 

entropy-based formula is: 

 

IG(X∣Y)=H(X)−H(X∣Y)IG(X | Y) = H(X) - H(X | 

Y)IG(X∣Y)=H(X)−H(X∣Y) 

 

Where XXX represents the presence of an API function and 

YYY is the class label (malicious or benign). 

Features with high IG are retained for model training. 

 

Random Forest Classifier 

 

Random Forest is an ensemble learning method that builds 

multiple decision trees and aggregates their predictions. This 

technique improves generalization and reduces overfitting, 

making it suitable for 

high-dimensional datasets like ours.[15] 

 

5. Experimental Setup and Results 

We collected a dataset of over 5000 executables (benign and 

malicious) and extracted API calls from their PE headers. After 

preprocessing and IG-based feature selection, we trained 

multiple classifiers. 
 

 

 

These results validate the robustness of our approach in 

accurately classifying previously unseen samples. 

 

XI. Conclusion 

This study presents a machine learning-based malware 

detection framework tailored for centralized deployment in 
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enterprise networks. By leveraging PE file analysis and API 

call profiling, the system effectively identifies malware with 

high accuracy. Though resource-intensive, the centralized 

architecture is ideal for organizational gateways, offering 

proactive defense against sophisticated threats. Future work 

will involve optimizing performance and expanding detection 

to other file types and behavioral vectors. 
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