
International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48394 | Page 1

Malware Detection System using Machine Learning Techniques

Deeksha Pal¹, Ashraf Ali2, Vikas Chaudhary3, Gaurav Kumar4

Dr. A.P. Srivastava 5 & Nitin Kumar Sharma6

1,2,3,4UG Student, Department of Computer Science & Engg., NITRA Technical Campus, UP, India
5Asst. Professor and Head, Department of Computer Science & Engg., NITRA Technical Campus, UP, India
6Assistant Professor, Department of Computer Science & Engineering, NITRA Technical Campus, UP, India

Abstract - Malware detection plays a critical role in securing

endpoints such as workstations, servers, cloud instances,

and mobile devices. It involves identifying and mitigating

malicious activities triggered by various forms of malware,

including viruses, trojans, worms, ransomware, adware,

and spyware.

With the rapid proliferation of sophisticated and evasive

malware variants, such as polymorphic and metamorphic

malware, traditional signature-based and heuristic

approaches are no longer sufficient. These conventional

methods often fail to detect previously unseen or obfuscated

threats, making the adoption of more intelligent and

adaptive systems essential. In response to this challenge,

this project explores the application of machine learning

techniques to enhance malware detection and classification.

Leveraging publicly available malware datasets, various

supervised and unsupervised algorithms—such as Decision

Trees, Random Forests, Support Vector Machines (SVM),

k-Nearest

Neighbors (k-NN), Naïve Bayes, and Artificial Neural

Networks (ANN)—will be employed and evaluated.

Additionally, feature extraction and dimensionality

reduction techniques such as Principal Component

Analysis (PCA) will be applied to improve model

performance.

The objective is to assess and compare the models using

metrics such as accuracy, precision, recall, F1-score, and

confusion matrix analysis.

This project aims to identify the most effective machine

learning model for real-time, scalable, and accurate

malware detection, contributing to improved cybersecurity

practices and proactive threat mitigation.

Keywords: Malware detection, machine learning,

enterprise security, information gain, random forest, PE

analysis, API calls.

I. INTRODUCTION

Malware—malicious software designed to exploit, damage, or

disrupt systems—has evolved into a sophisticated and

financially motivated threat vector. Modern malware includes

not only viruses and worms but also trojans, spyware,

ransomware, and rootkits. Unlike earlier attacks motivated by

notoriety, today's malware often serves commercial or criminal

enterprises. Enterprise systems are particularly vulnerable due

to their data richness and complexity.

Standard antivirus tools struggle to detect previously unseen

threats (zero-day attacks), especially when adversaries use

polymorphic or metamorphic techniques to obfuscate malware.

These threats dynamically modify their codebase, rendering

signature-based solutions ineffective.

Thus, there's an increasing demand for intelligent systems

capable of identifying anomalies based on behavioral or static

features rather than relying solely on known signatures.[1]

Machine learning models offer a compelling solution to this

challenge, allowing systems to "learn" from known malware

patterns and generalize detection to previously unseen

variants.[4]

This research builds upon this paradigm and proposes a

centralized machine learning-based malware detection

framework that targets the API call patterns within Windows

PE files—a rich source of indicative static

features.[11]

Although malware variants are increasing in number and

complexity, traditional antivirus scanners are falling short of

meeting modern security needs. Script-kiddies, inexperienced

individuals using pre-built malware tools, and automated attack

frameworks are contributing to the surge in cyberattacks.

Government and commercial organizations continue to be

major targets, with threats like ransomware, data theft, and

spyware posing significant operational risks. Cyberattacks can

manifest in various forms and scales, making it increasingly

difficult to maintain

cybersecurity resilience.[3]

One of the major challenges faced by the global cybersecurity

community is the lack of skilled personnel capable of

responding to these evolving threats. Additionally,

international cybercrimes such as financial fraud, payment

fraud, and online child exploitation demand global cooperation

among law enforcement agencies.[8]

II. Current Antivirus Software

Conventional antivirus engines depend on pre-defined

signatures to detect malicious code. While effective against

known threats, these methods offer little protection against

http://www.ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48394 | Page 2

new or rapidly evolving malware. Heuristic and behavioural

approaches have been introduced but often result in high false

positive rates or degrade system performance.

In enterprise contexts, even a minor breach can have

catastrophic consequences. Furthermore, malware authors are

continuously innovating, producing encrypted or self-

modifying payloads that evade signature detection. Reports

have shown a decline in the effectiveness of traditional

antivirus products, highlighting the need for a more robust

solution.

● Antivirus software is used to prevent, detect, and remove

malware, including but not limited to computer viruses,

computer worm, Trojan horses, spyware and adware. A variety

of strategies are typically employed by the anti-virus engines.

Signature-based detection involves searching for known

patterns of data within executable code. However, it is possible

for a computer to be infected with new virus for which no

signatures exist [6]. To counter such “zero-day” threats,

heuristics can be used, that identify new viruses or variants of

existing viruses by looking for known malicious code. Some

antivirus can also make predictions by executing

files in a sandbox and analysing results.[12]

● Often, antivirus software can impair a computer's performance.

Any incorrect decision may lead to a security breach, since it

runs at the highly trusted kernel level of the operating system.

If the antivirus software employs heuristic detection, success

depends on achieving the right balance between false positives

and false negatives. Today, malware may no longer be

executable files. Powerful macros in Microsoft Word could

also present a security risk. Traditionally, antivirus software

heavily relied upon signatures to identify malware. However,

because of newer kinds of malware, signature-based

approaches are no longer

effective[8]

● Although standard antivirus can effectively contain virus

outbreaks, for large enterprises, any breach could be potentially

fatal. Virus makes are employing "oligomorphic",

"polymorphic" and, "metamorphic" viruses, which encrypt

parts of themselves or modify themselves as a method of

disguise, so as to not match virus signatures in the dictionary.[13]

● Studies in 2007 showed that the effectiveness of antivirus

software had decreased drastically, particularly against

unknown or zero day attacks. Detection rates have dropped

from 40-50% in 2006 to 20-30% in 2007. The problem is

magnified by the changing intent of virus makers. Independent

testing on all the major virus scanners consistently shows that

none provide 100% virus detection. The best ones provided as

high as 99.6% detection, while the lowest provided only 81.8%

in tests conducted in February 2010. All virus scanners produce

false positive results as well, identifying benign files as

malware.[12]

III. Related work

This section provides a summary of the surveyed research in

the literature and discusses some of its defects. Table 1 sums

up the main contributions of the surveys in the literature. We

follow by presenting a brief description for each survey, and

their flaws that we try to mitigate in our work.

Shabtai et al. (2009) provide a taxonomy for malware detection

using machine learning algorithms by reporting some feature

types and feature selection techniques used in the literature.

They mainly focus on the feature selection techniques (Gain

ratio, Fisher score, document fre-quency, and hierarchical

feature selection) and classification algorithms

(Artificial Neural Networks, Bayesian Networks, Naïve Bayes,

K-Nearest

Neighbor, etc). In addition, they review how ensemble

algorithms can be used to combine a set of classifiers.

Bazrafshan et al. (2013) iden-tify three main methods for

detecting malicious software: signature-based methods,

heuristic-based methods and behavior-based meth-ods. In

addition, they investigate some features for malware detec-tion

and discuss concealment techniques used by malware to evade

detection. Nonetheless, the aforementioned research does not

consider either dynamic or hybrid approaches. Souri et al.

(2018) present a sur-vey of malware detection approaches

divided into two categories: signature-based methods and

behavior-based methods. However, the survey does not provide

either a review of the most recent deep learning approaches or

a taxonomy of the types of features used in data mining

techniques for malware detection and classification. Ucci et al.

(2019) categorize methods according to: (i) what is the target

task they try to solve, (ii) what are the feature types extracted

from Portable Executable files (PEs), and (iii) what machine

learning algorithms they use. Although the survey provides a

complete description of the fea-ture taxonomy, it does not

outline new research trends, especially deep learning and

multimodal approaches. Ye et al. (2017) cover traditional

machine learning approaches for malware detection, that

consists of feature extraction, feature selection and

classification steps. However, important features such as the

entropy or structural entropy of a file, and some dynamic

features such as network activity, opcode and API traces, are

missing. In addition, deep learning methods or multimodal

approaches for malware detection, which have been hot topics

for the last few years, are not covered. Lastly, Razak et al.

(2016) provide a bibliometric analysis of malware. It analyzes

the publications by coun-try, institution or authors related to

malware. Nonetheless, the paper does not provide a description

of the features employed by malware 2D. Gibert et al. Journal

of Network and Computer

Applications 153 (2020) 102526

IV. OBJECTIVES

As we have seen, current antivirus engine techniques are not

optimum in detecting viruses in real time. They may be useful

http://www.ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48394 | Page 3

in controlling viruses once they infect systems, which is again,

fateful for enterprises. This research is thus aimed at a central

solution that works at the firewall level of the enterprise

network. The complete system diagram is shown in Figure 1

and our process diagram is shown in Figure 2.

Figure 1: Network Diagram of the entire system

Figure 2: Process Diagram of our System

Portable Executable (PE)

This format is a file format for executables, object code and

DLLs, used in 32-bit and 64-bit versions of Windows operating

systems . The term "portable" refers to the format's versatility

in numerous environments of operating system software

architecture. The PE format is a data structure that encapsulates

the information necessary for the Windows OS loader to

manage the wrapped executable code. This includes dynamic

library references for linking, API export and import tables,

resource management data and thread-local storage data. On

NT operating systems, the PE format is used for EXE, DLL,

SYS (device driver), and other file types.

A PE file consists of a number of headers and sections that tell

the dynamic linker how to map the file into memory. An

executable image consists of several different regions, each of

which requires different memory protection. The Import

address table (IAT), which is used as a lookup table when the

application is calling a function in a different module. Because

a compiled program cannot know the memory location of the

libraries it depends upon, an indirect jump is required whenever

an API call is made. As the dynamic linker loads modules and

joins them together, it writes actual addresses into the IAT slots,

so that they point to the memory locations of the corresponding

library

functions.[13]

In our research, we extracted the PE Header from numerous

infected and normal executables and using the IAT, extracted

various API calls and stored them into a data mine. We then

derived Information Gain (IG) for each function.

V. Algorithm for Information Gain

The entropy of a variable X is defined as:

Where in H(P), the P(X) is as follows: P(X) = Number of ⋅

PE⋅ with⋅ xi ⋅ ascertain⋅ API

i. Total⋅ number of ⋅ PE

And the entropy of X after observing values of another variable

Y is defined as:

The amount by which the entropy of X decreases reflects

additional information about X provided by Y is called

information gain, given by:

IG(X | Y) = H(X) - H(X | Y)

Machine learning, a branch of artificial intelligence, is a

scientific discipline concerned with the design and

development of algorithms that allow computers to evolve

behaviours based on empirical data, such as from sensor data

or databases. A learner can take advantage of data to capture

characteristics of interest of their unknown underlying

probability distribution. Data can be seen as examples that

illustrate relations between observed variables. A major focus

of machine learning research is to automatically learn to

recognize complex patterns and make intelligent decisions

based on data[17]

Further, we apply the Random Forest Algorithm (RFA). This is

a machine learning classification algorithm to construct the

classifier to detect malware. A Random Forest is a classifier

that is comprised of a collection of decision tree predictors.

Each individual tree is trained on a partial, independently

http://www.ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48394 | Page 4

sampled, set of instances selected from the complete training

set. The predicted output class of a classified instance is the

most frequent class output of the individual trees.

VI. Malware Analysis

The process of dissecting malware to understand how it works,

determine its functionality, origin and potential impact is called

mal- ware analysis. With the millions of new malicious

programs in the wild, and the mutated versions of previously

detected programs, total mal- ware encountered by security

analysts has been growing over the past years.4 Consequently,

malware analysis is critical to any business and infrastructure

that responds to security incidents.

There are two fundamental approaches to malware analysis: (1)

static analysis and (2) dynamic analysis. On the one hand, static

analy- sis involves examining the malware without running it.

On the other hand, dynamic analysis involves running the

malware. An in-depth description of both approaches is

provided in Sections.

Static Analysis:

Static analysis consists of examining the code or structure of

the executable file without executing it. This kind of analysis

can confirm whether a file is malicious, provide information

about is functionality and can also be used to produce a simple

set of signatures. For instance, the most common method used

to uniquely identify a malicious pro- gram is hashing. That is,

a hashing program produces a unique hash, a sort of fingerprint,

that identifies the program. The two most popu- lar hash

functions are the Message-Digest Algorithm 5 (MD5) and the

Secure Hash Algorithm 1 (SHA-1). The most common static

analysis approaches are:

Finding sequences of characters or strings. Searching through

the strings of a program is the simplest way to obtain hints

about its functionality. Strings extracted from the binary can

contain references to file paths of files modified or accessed by

the executable,

URLs to which the program accesses, domain names, IP

addresses, attack commands, names of Windows dynamic link

libraries (DLLs) loaded, registry keys, and so on. The utility

tool Strings 5 can be used to search ASCII or Unicode strings

ignoring context and formatting in an executable.

Gathering the linked libraries and functions of an executable,

as well

as the metadata about the file included in the headers. These

data provide information about code libraries and

functionalities com- mon to many programs that programmers

link so that they do not need to re-implement a certain

functionality. The names of these Windows functions can give

us an idea of what the executable does. The utility Dependency

Walker6 is a free program for Microsoft Windows used to list

the imported and exported functions of a PE file.

Analyze PE file headers and sections. The PE file headers

provide more information than just imports. They contain

metadata about the file itself, such as the actual sections of the

file. One way to retrieve this information is with the PEView

tool.7

Searching for packed/encrypted code. Malware writers usually

use packing and encryption to make their files more difficult to

analyze. Software programs that have been packed or

encrypted usually con- tain very few strings and higher entropy

compared to legitimate programs. One way to detect packed

files is with the PEiD program8

Disassembling the program, i.e. translating machine code into

assembly language. This reverse-engineering process loads the

exe- cutable into a disassembler to discover what the program

does. The most relevant software programs for disassembling

PE executables are IDA Pro,9 Radare210 and Ghidra.

Dynamic Analysis:

Dynamic analysis involves executing the program and

monitoring its behavior on the system. This is typically

performed when static analys is has reached a dead end, either

due to obfuscation or having exhausted the available static

analysis techniques. Unlike static analysis, it traces the real

actions executed by the program. However, the analysis must

be run in a safe environment to not expose the system to

unnecessary risks, where the system is both the machine

running the analysis tool and the rest of the machines on the

network. To this end, dedicated physical or virtual machines

are set up[6].

Physical machines must be set up on air-gapped networks, that

is isolated networks where machines are disconnected from the

Internet or any other network, to prevent malware from

spreading. The main downside of physical machines is this

scenario with no Internet connec- tion, as many malicious

programs depend on Internet connection for updates, command

and control and other features.

The second option is to set up virtual machines to perform

dynamic analysis. A virtual machine emulates a computer

system and provides the functionality of a physical computer.

The OS running in the virtual machine is kept isolated from the

host OS and thus, malware running on a virtual machine cannot

harm the host OS. VMware Workstation12 and Oracle VM

VirtualBox13 are some of the virtual machine solutions

available to analysts. In addition, there are several all-in-one

software products based on sandbox technology that can be

used to perform basic dynamic analysis. The most well-known

is the Cuckoo Sandbox, an open source automated malware

analysis system. This modular sandbox provides capabilities to

trace API calls, analyze network traffic or per- form memory

http://www.ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48394 | Page 5

analysis. Alternatively, there is a wide list of utilities for

dynamically analyzing malware and performing advanced and

specific monitoring of some functionalities. Process

Monitor,15 or procmon, is a tool for Windows that monitors

certain registry, file system, network, pro- cess and thread

activity. Process Explorer16 shows the information about

which handles and DLL processes are opened or loaded into

the operat- ing system. Regshot17 is a registry compare utility

that allows snapshots of registries to be taken and compared.

NetCat18 is a networking utility that can be used to monitor

data transmission over a network. Wireshark19 is an open

source sniffer that allows packets to be captured and network

traffic to be intercepted and logged. Another indispensable

software utility are debuggers. A debugger is used to examine

the execution of another program. They provide a dynamic

view of a pro- gram as it runs. The primary debugger of choice

for malware analysts is OllyDbg20 , an ×86 debugger that is

free and has many plugins to extend its capabilities.[6]

The risks of using virtualization and sandboxing for malware

analys is is that some malware can detect when it is running in

a virtual machine or a sandbox and subsequently, they will

execute differently than when in a physical machine to make

the job of malware analysts harder. In addition, even if you take

all possible precautions, some risk is always present when

analyzing malware. From time to time, vulnerabilities have

been found in the virtualization tools that allow an attacker to

exploit some of its features such as the share folders feature.

Hybrid Approaches

Hybrid analysis integrates static and dynamic techniques

to overcome their individual limitations and improve

detection accuracy.[2]

Workflow:

Perform a quick static scan using signature-based tools (e.g.,

VirusTotal).

Dynamically analyze flagged files in a sandbox. Apply

machine learning models trained on static and dynamic

features (e.g., opcode sequences, API call patterns).

Case Study:

Detection of Dridex banking malware:

Static Clue: Irregular PE header structure. Dynamic

Behavior: Keystroke logging, data exfiltration via HTTP

POST requests.

Advanced Tools:

CrowdStrike Falcon

FireEye Endpoint Security

Joe Sandbox

VII. Malware Evolution

The diversity, sophistication and availability of malicious

software pose enormous challenges for securing networks and

computer systems from attacks. Malware is constantly

evolving and forces security analysts and researchers to keep

pace by improving their cyberdefenses. The proliferation of

malware increased due to the use of polymorphic and

metamorphic techniques used to evade detection and hide its

true purpose. Polymorphic malware uses a polymorphic engine

to mutate the code while keeping the original functionality

intact. Packing and encryption are the two most common ways

to hide code. Packers hide the real code of a program through

one or more layers of compression. Then, at runtime the

unpacking routines restore the original code in memory and

execute it. Crypters encrypt and manipulate malware or part of

its code, to make it harder for researchers to analyze the pro-

gram. A crypter contains a stub used to encrypt and decrypt

malicious code. Metamorphic malware rewrites its code to an

equivalent when- ever it is propagated. Malware authors may

use multiple transformation techniques including, but not

limited to, register renaming, code per- mutation, code

expansion, code shrinking and garbage code insertion. The

combination of the aforementioned techniques resulted in

rapidly growing malware volumes, making forensic

investigations of malware cases time-consuming, costly and

more difficult.

Traditional antivirus solutions that relied on signature based

and heuristic/behavioral methods present some problems. A

signature is a unique feature or set of features that uniquely

distinguishes an executable, like a fingerprint. However,

signature-based methods are unable to detect unknown

malware variants. To tackle these challenges, security analysts

proposed behavior-based detection, which analyzes the file’s

characteristics and behavior to determine if it is indeed

malware, though the scanning and analysis can take some time.

To over- come the prior pitfalls of traditional antivirus engines

and keep pace with new attacks and variants, researchers

started adopting machine learning to complement their

solutions, as machine learning is well suited for processing

large volumes of data.

VIII. Traditional Machine learning approaches

Over the past decade there has been an increase in the research

and deployment of machine learning solutions to tackle the

tasks of malware detection and classification. The success and

consolidation of machine learning approaches would not have

been possible without the confluence of three recent

developments:[6]

The first development is the increase in labeled feeds of

malware meaning that, for the first time, labeled malware is

available not only to the security community but also to the

research community. The size of these feeds ranges from

http://www.ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48394 | Page 6

limited high-quality samples, like the ones provided by

Microsoft (Ronen et al., 2018) for the Big Data Innovators

Gathering Anti-Malware Prediction Challenge, to huge

volumes of malware, such as theZoo (Yuval Nativ, 2015) or

VirusShare (2011).

The second development is that computational power has

increased rapidly and at the same time has become cheaper and

closer to the budget of most researchers. Consequently, it

allowed researchers to speed-up in the iterative training process

and to fit larger and more complex models to the ever

increasing data. Third, the machine learning field has evolved

at an increased pace during the last decades, achieving

breakthrough success in terms of accuracy and scalability on a

wide range of tasks, such as computer vision, speech

recognition and natural language processing.

In machine learning, a workflow is an iterative process that

involves gathering available data, cleaning and preparing the

data, building models, validating and deploying into

production. Instead of dealing with raw malware, the data

preparation process of traditional machine learning approaches

involves preprocessing the executable to extract a set of

features that provide an abstract view of the software.

Afterwards the features are used to train a model to solve the

task at hand. Because of the variety of malware functionalities,

it is important not only to detect malicious software, but also to

differentiate between different kinds of malware in order to

provide a better understanding of their capabilities. The main

difference between machine learning solutions for detection or

classification of malware is the output returned by the system

implemented. On the one hand, a malware detection system

outputs a single value y = f(x), in the range from 0 to 1, which

indi- cates the maliciousness of the executable. On the other

hand, a classification system outputs the probability of a given

executable belonging to each output class or family, y ∈ ℝN,

where N indicates the number of different families.[1]

IX. Proposed detection framework

To address these challenges, we propose a centralized malware

detection module that operates at the enterprise gateway level.

The framework consists of:

Feature Extraction: Analyzing the PE file format to extract

Import Address Table (IAT) entries.

API Call Analysis: Mapping API usage patterns indicative of

malicious behaviour.

Feature Selection: Employing Information Gain (IG) to rank

features based on relevance.

Classification: Using a Random Forest algorithm to build a

model that distinguishes between benign and malicious files.

This system is designed to work in tandem with endpoint

protection, providing an additional layer of defense.

X. Technical Approach

PE File Analysis

The Windows PE format encapsulates vital metadata, including

imported API functions. Malware often exhibits specific API

usage patterns, such as those related to file manipulation,

process injection, or registry editing. By parsing the IAT, we

generate a dataset of API call frequencies[11].

Information Gain Calculation

Information Gain is used to quantify the usefulness of each API

feature in distinguishing malware from benign software. The

entropy-based formula is:

IG(X∣Y)=H(X)−H(X∣Y)IG(X | Y) = H(X) - H(X |

Y)IG(X∣Y)=H(X)−H(X∣Y)

Where XXX represents the presence of an API function and

YYY is the class label (malicious or benign).

Features with high IG are retained for model training.

Random Forest Classifier

Random Forest is an ensemble learning method that builds

multiple decision trees and aggregates their predictions. This

technique improves generalization and reduces overfitting,

making it suitable for

high-dimensional datasets like ours.[15]

5. Experimental Setup and Results

We collected a dataset of over 5000 executables (benign and

malicious) and extracted API calls from their PE headers. After

preprocessing and IG-based feature selection, we trained

multiple classifiers.

These results validate the robustness of our approach in

accurately classifying previously unseen samples.

XI. Conclusion

This study presents a machine learning-based malware

detection framework tailored for centralized deployment in

http://www.ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48394 | Page 7

enterprise networks. By leveraging PE file analysis and API

call profiling, the system effectively identifies malware with

high accuracy. Though resource-intensive, the centralized

architecture is ideal for organizational gateways, offering

proactive defense against sophisticated threats. Future work

will involve optimizing performance and expanding detection

to other file types and behavioral vectors.

XII. References

[1] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer,

“Detection of malicious code by applying machine learning

classifiers on static features: A state-of-the-art survey,”

Information Security Technical Report, vol. 14, no. 1, pp. 16–

29, 2009.

[2] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A.

Hamzeh, “A survey on heuristic malware detection

techniques,” in 5th Conference on Information and Knowledge

Technology (IKT), 2013, pp. 113–120.

[3] A. Souri and R. Hosseini, “A state-of-the-art survey

of malware detection approaches using data mining

techniques,” Human-centric Computing and Information

Sciences, vol. 8, no. 1, pp. 1–22, 2018.

[4] D. Ucci, L. Aniello, and R. Baldoni, “Survey of

machine learning techniques for malware analysis,” Computers

& Security, vol. 81, pp. 123–147, 2019.

[5] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey

on malware detection using data mining techniques,” ACM

Computing Surveys, vol. 50, no. 3, pp. 1–40, 2017.

[6] M. F. A. Razak, N. B. Anuar, R. Salleh, and A.

Firdaus, “The rise of ‘malware’: Bibliometric analysis of

malware study,” Journal of Network and Computer

Applications, vol. 75, pp. 58–76, 2016.

[7] J. O. Kephart and W. C. Arnold, “Automatic

extraction of computer virus signatures,” in 4th Virus Bulletin

International Conference, 1994, pp. 178–184.

[8] R. Ronen et al., “Microsoft malware classification

challenge,” arXiv preprint arXiv:1802.10135, 2018.

[9] Y. Nativ, “TheZoo: A repository of live malware

samples,” 2015. [Online]. Available:

[10] https://github.com/ytisf/theZoo

[11] VirusShare, “VirusShare.com,” 2011. [Online].

Available: https://virusshare.com/

[12] Microsoft, “PE Format,” Microsoft Documentation,

[13] 2021. [Online]. Available:

[14] https://docs.microsoft.com/en-

us/windows/win32/debug /pe-format

[15] AV-TEST, “Antivirus software report,” 2010.

[Online]. Available: https://www.av-test.org/

[16] I. Santos et al., “Opcode sequences as representation

of executables for data-mining-based unknown malware

detection,” Information Sciences, vol. 231, pp. 64–82, 2013.

[17] T. M. Mitchell, Machine Learning. McGraw-Hill,

1997.

[18] L. Breiman, “Random forests,” Machine Learning,

vol. 45, no. 1, pp. 5–32, 2001.

[19] M. Schultz et al., “Data mining methods for detection

of new malicious executables,” in IEEE Symposium on

Security and Privacy, 2001, pp. 38–49.

[20] J. Z. Kolter and M. A. Maloof, “Learning to detect and

classify malicious executables in the wild,” Journal of Machine

Learning Research, vol. 7, pp. 2721–2744, 2006.

[21] P. Szor, The Art of Computer Virus Research and

Defense. Addison-Wesley Professional, 2005.

12. D. Harley et al., Viruses Revealed. McGraw-Hill,

2001.

http://www.ijsrem.com/
http://www.av-test.org/

