
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM30244 | Page 1

Malware Detection Using Machine Learning

Abstract— In this work, we present a flexible system that
makes use of various machine learning methods to efficiently
distinguish between malware and clean files while purposefully
reducing false positives. In the field of cybersecurity, our strong
framework is both flexible and strong, working along with
different machine learning algorithms. Our study unfolds with
an exploration of basic principles using the Random Model, K
Nearest Neighbouring Classifier (KNN), and Logistic Regression
as foundational parts, emphasizing the differentiation between
malware and benign files. Extensive experiments on
mediumsized datasets that include malware and clean files verify
the effectiveness of our methodology. The system then goes
through a painstaking scaling-up process that guarantees
smooth operation with big datasets containing both malware and
clean files. Our methodology is validated by analysing three
important algorithms: Random Model, KNN, and Logistic
Regression, each of which adds unique advantages to the
malware detection system. The evaluation, which is carried out
on several datasets, aims to minimize false positives while
striking a compromise between precision and recall. Finally, our
flexible system, implemented and evaluated on many datasets,
demonstrates its efficacy in distinguishing malware from clean
files. The framework's flexibility and scalability make it an
invaluable tool in the everevolving field of cybersecurity,
providing a sophisticated method of malware detection. The
proposed algorithms emphasize the framework's potential as a
supplementary tool to current cybersecurity measures while also
adding to its reliability.

Keywords— ML, KNN, RM, LR

I. INTRODUCTION

 Malware is defined as software designed to infiltrate or

damage a computer system without the owner’s informed

consent. Malware is a broad category that includes a wide

range of malicious programs and applications, from

standalone viruses to file infectors. Among these, the rogues'

gallery consists of characters with distinct digital weaponry,

such as Ramnit, Lollipop, Vundo, Simda, Tracur,

Kelihos_ver1, Obfuscator, Kelihos_ver3, Gatak, and ACY.

The malicious forces behind malware have also changed and

mutated as our digital environment continuous its unstoppable

progress. They have added many polymorphic layers to evade

the conventional, signature-based techniques used by

antivirus solutions.

Security measures face a great challenge from the modern

malware landscape, which updates itself frequently to surpass

antivirus software that uses static signatures in its detection

[1]. The conflict between cyber attackers and defenders takes

place in a dynamic environment with constantly changing

rules of engagement. One can explore the field of dynamical

file analysis to give a visual story of the ever-changing

challenges presented by malware and the related advances in

detection techniques. In this case, the use of virtual

environment emulation acts as a stage for the elaborate dance

that is performed between detection technology and malware

[2]. Furthermore, a thorough comprehension of the terrain

necessitates an investigation of conventional methods

intended to detect metamorphic viruses. These methods

provide as a basis of knowledge, illuminating the subtleties of

identifying malicious code that modifies its form to avoid

detection through traditional means [3]. In reaction to the

growing complexity of malware, researchers are focusing on

the potential of machine learning as a ray of hope in the fight

against this constantly changing and dynamic threat

environment. The literature study that follows provides a

broad overview of various machine learning approaches that

are ready to serve as sentinels in the search for effective

malware detection tools. Of these, boosted decision trees'

ability to use n-gram data makes them a strong competitor,

outperforming more conventional classifiers like Support

Vector Machines and the Naive Bayes classifier in terms of

performance [5]. The extraction of association rules from

Windows API execution sequences adds even more depth to

the toolkit of malware detection techniques and demonstrates

the adaptability of machine learning. By using Hidden

Markov Models (HMMs), one can apply a probabilistic

method to determine if a given program file is a variant of a

known object. In a related effort, Profile Hidden Markov

Models—which are well-known for their efficacy in the field

of bioinformatics—are adapted to accomplish a comparable

objective in the field of malware detection [8][9]. As a result,

the literature presents a varied tapestry of machine learning

approaches, each adding a special thread to the complex web

of malware detection. As Section V develops, the story

reaches a climax and reveals the outcome of this complex trip.

Here, 52 key characteristics taken from the .asm files are

prepared to serve as the cornerstone of a largescale system,

capable of identifying malware in massive training datasets.

The convergence of preprocessing and analysis signals that

the framework is ready to be scaled up to take on the

formidable challenge of very large training datasets.

Siddharth

Chandigarh University

Chandigarh, India

i.sid2302@gmail.com

Dr. Bharti Sahu

Chandigarh University

Chandigarh, India

Bhartisahu8001@gmail.com

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM30244 | Page 2

Essentially, this study sets out on an extensive investigation

of the complex field of malware detection—a voyage that

starts with a threat taxonomy, traverses the shortcomings of

traditional approaches, and reveals the exciting opportunities

presented by a wide range of machine learning strategies.

The prologue of the introduction sets the stage for the story

that follows as it attempts

to create a flexible and robust framework to combat

malware's constant growth in the digital sphere. With every

step we take across this terrain, a new chapter in the history

of cybersecurity is revealed.

 II. LITERATURE REVIEW

The literature review provided in your research paper titled

"Malware Detection Using Machine Learning" offers an

indepth exploration of the existing research and techniques in

the field of malware detection. Malware, a ubiquitous threat

to computer systems, is a broad category of harmful software

intended to compromise or corrupt systems without

authorization from the user. In addressing the ever-evolving

issues of malware detection, this study highlights the

shortcomings of conventional signature-based approaches

because of the malware's ever-increasing sophistication,

which includes behaviours that are polymorphic and self-

updating.

The literature study explores a range of machine learning

methods used to identify malware, illustrating the trend

toward data-driven strategies. An example of the potential of

ensemble methods in classification applications is the higher

performance of boosted decision trees using n-gram data over

Naive Bayes and Support Vector Machines. Other methods

investigate the use of Hidden Markov Models and Profile

Hidden Markov Models, along with association criteria

obtained from Windows API execution sequences, to identify

malware variations. The paper also emphasizes how neural

networks and Self-Organizing Maps can be used to detect

polymorphic malware and detect patterns in the behaviour of

Windows executable files that indicate the presence of

viruses. When taken as a whole, these findings highlight the

necessity for more advanced and complex methods to combat

the complex nature of malware. The literature study also

discusses the difficulties in handling big datasets of ".asm"

and ".bytes" files, as well as data pretreatment and feature

extraction. Although the sheer volume of these files presents

major complications, they do offer a low-level insight on

software activity. The effectiveness of machine learning

models, such as K-Nearest Neighbours (KNN), is improved

by reducing dimensionality and noise through the use of

feature selection procedures, such as correlation-based

filtering and wrapper techniques.

 In addition, logistic regression is presented as a binary

classification technique that models the probability of

malware existence by utilizing the logistic (Sigmoid)

function. Based on pertinent qualities and characteristics, this

approach has the potential to simulate the likelihood of a

system becoming infected with malware. The experimental

results, which show that the Random Model, KNN, and

Logistic Regression are the most dependable of the studied

algorithms for malware detection, are presented at the end of

the literature review. While the approaches do not completely

reach the zero false positive target, they do

show a significant boost in the overall detection rate,

suggesting that they could be a useful addition to existing

antivirus programs.

In summary, the literature study offers insightful

information on the current state of machine learning-based

malware detection. It emphasizes how crucial data-driven

approaches are becoming to combating the dynamic nature of

malware threats and the difficulties posed by large-scale data

analysis.

 III. DATASETS

We used three datasets: a training dataset, a test dataset, and

a “scale-up” dataset up to 200GB. The number of malware

files and respectively clean files in these datasets is shown in

the first two columns of Table I. As stated above, our main

goal is to achieve malware detection with only a few (if

possible 0) false positives, therefore the clean files in this

dataset (and in the scale-up dataset) are much larger than the

number of malware files.

From the whole feature set that we created for malware

detection, 308 binary features were selected for the

experiments to be presented in this paper. Files that generate

similar values for the chosen feature set were counted only

once. The last two columns in Table I show the total number

of unique combinations of the 308 selected binary features in

the training, test, and respectively scale-up datasets. Note that

the number of clean combinations — i.e. combinations of

feature values for the clean files — in the three datasets is

much smaller than the number of malware unique

combinations.

TABLE I

NUMBER OF FILES AND UNIQUE COMBINATIONS OF FEATURE

VALUES IN THE TRAINING, TEST, AND SCALE-UP DATASETS

UPTO 200GB.

 Files Unique combinations

Database malware clean malware clean

Training 6955 695535 6922 315

Test 21740 6521 609 220

Scale-up approx. 2M approx. 80M 8817 12230

TABLE II

MALWARE DISTRIBUTION IN THE TRAINING AND TEST

DATASETS.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM30244 | Page 3

 Training Dataset Test

Dataset

Malware Unique

combinations

Type Files of feature values Files

Ramnit
Lollipop
Kelihos-ver3
Vundo
Simda
Tracur Kelihos-

ver1
Obfuscator.ACY
Gatak

14.2%

22.8%
27.1%

4.4%

0.4%

6.9%
3.7%
11.3%
9.3%

5.19%
30.73% 40.15%

12.15%
0.11%
2.66% 3.17%

4.66%
6.10%

13.84%

22.95%
27.50%

4.50%

0.09%

6.89%
4.41%

11.49%
9.24%

since the majority of features were developed to highlight a

certain component of malware files (either a geometrical form

or behaviour aspect).

 The majority of the clean files in the training database are

system files (from various operating system versions) and

executable and library files from several well-known apps. In

order to better train and test the system, we also employ clean

files that are packed or that have the same form or geometrical

characteristics with malware files (e.g., use the same packer).

The training dataset includes malware files that were obtained

from the Virus Heaven collection. The test dataset includes

clean files from several operating systems and malware files

from the Wild List collection (other files than those used in

the first database). The training and test datasets malware

collections include Ramnit, Lollipop, Kelihos_ver3, Vundo,

Simda, Tracur, and Kelihos_ver1, Obfuscator.ACY, Gatak.

The percentage of those malware kinds in the training and,

respectively, test datasets is shown in the first and third

columns of Table II. The second column in Table II shows the

proportion of malware-specific unique combinations across

all feature value combinations in the training dataset.

 Divide the dataset into train, test, and cv parts, and then

examine the distribution of class in each split to see if it is

consistent across all splits. 6955 data points make up the train

data. 2174 data points make up the test data. 1739 data points

were used for cross validation.

 IV. ALGORITHMS

The main goal of this section is to modify the Random

Model so as to correctly detect malware files, while forcing

detection

Algorithm 1: Random Model

test_data_len = X_test.get_row_count() cv_data_len =

X_cv.get_row_count() cv_predicted_y = zeros(cv_data_len,

9) test_predicted_y = zeros(test_data_len, 9) for i in

range(cv_data_len): rand_probs =

random_values_between_0_and_1(9) cv_predicted_y[i] =

normalize_to_sum_1(rand_probs) log_loss_cv =

calculate_log_loss(y_cv, cv_predicted_y) for i in

range(test_data_len):

 rand_probs = random_values_between_0_and_1(9)

test_predicted_y[i] = normalize_to_sum_1(rand_probs)

log_loss_test = calculate_log_loss(y_test, test_predicted_y)

predicted_y = find_argmax(test_predicted_y)

plot_confusion_matrix(y_test, predicted_y + 1)

rate for one category [12]. In the sequel we will use the

following data structures:

 It is easy to create random probability for classification

tasks using the "Random Model" method. For each class (in

this case, there are nine classes) in this model, we generate

random probability values so that the sum of these

probabilities is 1. To establish a baseline model for

comparison in machine learning tasks, this is done. The

procedures to implement the Random Model for producing

random probabilities and figuring out log loss for cross-

validation and test datasets are described in the accompanying

pseudocode.

 We create a vector of probabilities in a random model, p =

[p1, p2,..., pk], where k is the number of classes. Probabilities

are added together, and the result is 1, hence pi = 1.

Without taking into account any attributes or patterns, a

Random Model in the context of malware detection assigns

random probabilities to various classes (malware or non-

malware). Given that it relies on educated assumptions and is

unable to accurately categorize malware, it is unsuitable for

usage in realworld applications.

 P(class = malware) = p, where 0 = p = 1 and P(class =

nonmalware) = 1 - p are the definitions of the term. The

Random

Model is not a useful method for detecting malware in

computer systems. To evaluate the performance of more

complex models, it serves as a baseline or reference model.

Models should be educated on pertinent traits and behaviours

of dangerous software in order to enable them to discriminate

between malware and benign software in real-world malware

detection.

 Algorithm 2, henceforth called KNN. It performs the training

for one chosen label (in our case either malware or clean), so

Algorithm 2: K Nearest Neighbour Classifier

 import scikit-learn.neighbors knn_classifier =

KNeighborsClassifier(n_neighbors=5, weights='uniform',

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM30244 | Page 4

algorithm='auto', leaf_size=30, p=2, metric='minkowski',

metric_params=None, n_jobs=1,

 **kwargs) knn_classifier.fit(X, y)

knn_classifier.predict(X)

 knn_classifier.predict_proba(X)

for one chosen label (in our case either malware or clean), so

that in the end the files situated on one side of the learned

linear separator have exactly that label (assuming that the two

classes are separable). The files on the other side of the linear

separator can have mixed labels.

 Machine learning algorithms for classification and

regression include K-Nearest Neighbours (KNN). It

categorizes data points in a feature space according to how

close they are to other data points. KNN is typically not a good

option for computer system malware detection. It is unable to

detect intricate patterns and malware-specific traits. To

properly detect malware, more sophisticated techniques that

take a wider variety of traits and behaviours into account are

needed.

Mathematical Representation of KNN: KNN determines the

distance to its k nearest neighbours for a given data item X

and classifies it into the category that is most prevalent among

its neighbours. Distance metrics, such Euclidean distance, are

used as the foundation for the mathematical representation.

The K-Nearest Neighbours (KNN) method for malware

detection entails classifying a particular data point as either

malware or non-malware based on the dominant class among

its k nearest neighbours. This method relies solely on

closeness to neighbours in the feature space, which is not

effective for malware identification because malware has

complex and distinctive properties.

Algorithm 3: Logistic Regression

import scikit-learn.linear_model sgd_classifier =

SGDClassifier(loss='hinge', penalty='l2', alpha=0.0001,

l1_ratio=0.15, fit_intercept=True, max_iter=None,

tol=None, shuffle=True, verbose=0, epsilon=0.1, n_jobs=1,

random_state=None, learning_rate='optimal', eta0=0.0,

power_t=0.5, class_weight=None, warm_start=False,

average=False, n_iter=None) sgd_classifier.fit(X, y,

coef_init=None, intercept_init=None,

sample_weight=None) sgd_classifier.predict(X)

 Binary categorization is handled by the machine learning

algorithm logistic regression. A logistic (Sigmoid) function is

used to model the likelihood that a data point will fall into a

specific class. The Stochastic Gradient Descent (SGD) form

of Logistic Regression in Scikit-Learn is described in the

pseudocode. It offers techniques to fit the model and produce

predictions, as well as initializing the classifier. A popular

approach for binary classification problems, such as malware

detection in computer systems, is logistic regression. It is

useful for spotting dangerous software since it can simulate

the likelihood that a system would become infected by

malware.

The logistic (Sigmoid) function is used in logistic

regression to determine the likelihood that a particular

occurrence would fall into the positive class:

where,

 L = the maximum value of the curve

 e = the natural logarithm base (or Euler’s number)

 x0 = the x-value of the sigmoid midpoint

 k = steepness of the curve or the logistic growth rate

For detecting malware, logistic regression models the

likelihood that a given system or file has malware. Based on

the attributes

and qualities of the system or file, the algorithm determines

this likelihood. The algorithm categorizes the instance as

malware (1) or non-malware (0) by defining a threshold.

 V. RESULTS

 We performed cross-validation tests by running the three

algorithm the Random Model, KNN and Logistic Regression

presented in Section III on the training dataset described in

Section II (6922 malware unique combinations, and 315 clean

unique combinations).

For the Random Model, the following functions were used:

▪ The main function in the Random Model is in charge of

producing random probabilities for each class. To generate

random numbers, you can use Python functions like

np.random.rand().

For the KNN classifier, the following function were used:

▪ Distance Metric Function: KNN relies on a distance metric

function to measure the similarity between data points.

Common distance functions include Euclidean distance,

Manhattan distance, and Minkowski distance.

▪ Voting Function: KNN classifies data points according to the

majority class among their k-nearest neighbours using a

voting procedure.

For the Logistic Regression, the following function were

used:

▪ The logistic function, often known as the sigmoid logistic

function, is used in logistic regression to represent the

likelihood that a given occurrence will fall into the positive

class. The logistic function is defined as:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM30244 | Page 5

P(y = 1∣ X) = 1 + e - (X . w + b)

▪ Cost Function: The error between projected probabilities and

actual labels is measured using the logistic loss, also known

as the log loss, which is employed in logistic regression.

During training, the logistic loss aids in adjusting the model's

parameters.

 For feature selection in conjunction with Random Model,

KNN and Logistic Regression Model. The Random Model

itself does not include feature selection because it assigns

probability at random without taking features into account.

Fig 1.1 – Confusion Matrix of the Random Model.

 Fig 2.2 – Confusion Matrix

of the KNN classifier

Fig 1.3 – Recall Matrix of the Random Model

Fig 2.3 – Precision Matrix of the KNN classifier

Fig 1. 2 – Precision Matrix of the Random Model

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM30244 | Page 6

 Fig 2.1 – Cross Validation, KNN Classifier

 Fig 3.1 – Cross Validation, Logistic Regression

 Feature selection can be used to enhance the performance of

K - Nearest Neighbo u rs (KNN). Reducing dimensionality and

noise in the dataset through the selection of pertinent features

helps improve classification and distance calculations. Filter

approaches (such as correlation - based feature selection),

Wrapper methods (such as forward selection), and Embedded

methods (such as L1 regularization with Lasso) are frequently

used for KNN feature selection.

Fig 2.4 – Recall Matrix of the KNN classifier

 Feature selection is frequently used in conjunction with

logistic regression to improve model interpretability and lessen

overfitting. The choice of features is important because logistic

regression models the connection between features and the

target variable. Recursive Feature Elimination (RFE), L1

regularization (Lasso), and mutual information - based

algorithms are common approaches.

Algorithm: Multivariate Analysis on Final Features

 xtsne = TSNE(perplexity =50)

 results = xtsne.fit_transform(result_x, axis=1)

 vis_x = results[:, 0]

 vis_y = results[:, 1]

 plt.scatter(vis_x, vis_y, c=result_y,

 cmap=plt.cm.get_cmap("jet", 9))

 plt.colorbar(ticks=range(9))

 plt.clim(0.5, 9)

 plt.show()

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM30244 | Page 7

 The sheer amount of data, though, is where the real

intricacy lies. Data preprocessing, feature extraction, and

computational resource requirements are a few of the

difficulties large datasets of these files provide. Additionally,

when examined together, the interactions between ".asm" and

".bytes" files can provide a more thorough knowledge of

software behaviour.

 Algorithm: Train and Test Split

 X_train, X_test_merge, y_train, y_test_merge =

train_test_split(result_x, result_y, stratify=result_y,

test_size=0.20)

 X_train_merge, X_cv_merge, y_train_merge, y_cv_merge

= train_test_split(X_train, y_train, stratify=y_train,

test_size=0.20)

Fig 3.2 – Confusion Matrix of the Logistic Regression

Fig 4 – Multivariate Analysis on Final Features

VI. W ORKING WITH VERY L ARGE D ATASETS

All the results presented in this section are obtained on the

large (“scale - up”) dataset that was described in Section II.

Data analysis and machine learning need the use of big datasets

of ".asm" and ".bytes" files, which is a difficult but essential

task. For many applications, including malware detection,

software classification, and cybersecurity research, these files

freq uently contain extensive data and patterns.

c

Fig 3.3 – Precision Matrix of the Logistic Regression

Fig 3.4 – Recall Matrix of the Logistic Regression

 The ".asm" files, which are often created from disassembled

software, offer a low-level perspective of a program's processes.

They are composed of assembly language code, and

examination of them reveals details on the operation,

composition, and potential security risks of software.

Alternatively, ".bytes" files offer a new perspective on the same

software by encoding binary data. Often, this binary data

contains important details about a program's features, structure,

and even abnormalities.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM30244 | Page 8

 To make sense of the data in this situation, researchers and

data scientists use a variety of approaches like feature

engineering, deep learning, and natural language processing.

The knowledge gained from these big datasets is invaluable

for improving software security, spotting vulnerabilities, and

comprehending the complexities of program development and

execution.

Fig – Distribution of malware in whole data set

 Using the presented algorithm, it is intended to gather data

on the file sizes of ".asm" files located in a directory and

combine it with relevant class labels. (Fig – Boxplot of .asm

files)

Fig – Boxplot of .byte files

 Algorithm: Each .asm file size

 files = list_files_in_directory('asmFiles') filenames =

get_filenames_from_Y('ID') class_y =

get_class_list_from_Y('Class') class_bytes = [] sizebytes

= [] fnames = []

VII. CONCLUSION AND FUTURE WORK

Our primary goal was to develop a machine learning

framework with a zero false positive rate that can detect as

many malware samples as possible in a generic manner. Even

though we still have a non-zero false positive rate, we were

really near to our target. Several deterministic exception

mechanisms need to be developed for this framework to be

included in a fiercely competitive commercial product. We

believe that machine learning-based malware detection will

complement existing anti-virus providers' standard detection

techniques rather than replace them. Since every commercial

anti-virus program has speed and memory constraints, the

Random Model, KNN, and Logistic Regression algorithms are

the most dependable ones among those shown here. Given that

most antivirus programs are able to detect viruses at a rate of

over 90%, an increase of 3%–4% in the overall detection rate,

as achieved by our methods, is noteworthy. (Note that malware

 for file in files:

 statinfo = get_file_statistics('asmFiles/' + file)

 file = extract_file_name(file)

 if exists_in (filenames, file):

 i = find_index_of(filenames, file)

 class_bytes.append(class_y[i])

 sizebytes.append(convert_to_MB(statinfo.st_size))

 fnames.append(file)

 asm_size_byte = create_dataframe({'ID': fnames, 'size':

 sizebytes, 'Class': class_bytes})

 print(asm_size_byte.head())

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM30244 | Page 9

samples that are not picked up by conventional detection

techniques are used for training.)

ACKNOWLEDGMENT

 We would like to express our heartfelt gratitude to Mr. Adil

Husain Rathar for his invaluable guidance and mentorship

throughout this project and research endeavour. We truly

appreciate his persistent support and the clear guidance he

gave us, which allowed us to effectively do our work within

the allotted time. We also want to express our sincere gratitude

to every individual in our group who worked so hard to ensure

the effective completion of this research project by lending

their knowledge and skills. Their commitment, collaboration,

and invaluable insights were crucial in helping us reach our

study objectives and identify workable answers. Finally, we

would like to express our gratitude to our university for giving

us a suitable platform and access to a large library, both of

which tremendously helped with our research. These tools

were essential to our capacity to carry out fruitful research and

support the scholarly community.

REFERENCES

[1] I. Santos, Y. K. Penya, J. Devesa, and P. G. Garcia,

“Ngrams-based file signatures for malware detection,” 2009.

[2] K. Rieck, T. Holz, C. Willems, P. Du¨ssel, and P. Laskov,

“Learning and classification of malware behavior,” in DIMVA

’08: Proceedings of the 5th international conference on

Detection of Intrusions and Malware, and Vulnerability

Assessment. Berlin, Heidelberg: Springer-Verlag, 2008, pp.

108–125.E. Konstantinou, “Metamorphic virus: Analysis and

detection,” 2008, Technical Report RHUL-MA-2008-2,

Search Security Award M.Sc. thesis, 93 pagesJ. Z. Kolter and

M. A. Maloof, “Learning to detect and classify malicious

executables in the wild,” Journal of Machine Learning

Research, vol. 7, pp. 2721–2744, December 2006, special

Issue on Machine Learning in Computer Security.

[3] Y. Ye, D. Wang, T. Li, and D. Ye, “Imds: intelligent

malware detection system,” in KDD, P. Berkhin, R. Caruana,

and X. Wu, Eds. ACM, 2007, pp. 1043–1047.

[4] M. Chandrasekaran, V. Vidyaraman, and S. J.

Upadhyaya, “Spycon: Emulating user activities to detect

evasive spyware,” in IPCCC. IEEE Computer Society, 2007,

pp. 502–509 [5] M. R. Chouchane, A. Walenstein, and A.

Lakhotia, “Using Markov Chains to filter machine-morphed

variants of malicious programs,” in Malicious and Unwanted

Software, 2008. MALWARE 2008. 3rd International

Conference on, 2008, pp. 77–84.

[6] M. Stamp, S. Attaluri, and S. McGhee, “Profile

hidden markov models and metamorphic virus detection,”

Journal in Computer Virology, 2008.

[7] R. Santamarta, “Generic detection and classification

of polymorphic malware using neural pattern recognition,”

2006. [8] I. Yoo, “Visualizing Windows executable viruses

using selforganizing maps,” in VizSEC/DMSEC ’04:

Proceedings of the 2004 ACM workshop on Visualization and

data mining for computer security. New York, NY, USA:

ACM, 2004, pp. 82– 89.

[9] F. Rosenblatt, “The perceptron: a probabilistic model

for information storage and organization in the brain,” pp. 89–

114, 1988.

[10] T. Mitchell, Machine Learning. McGraw-Hill

Education (ISE Editions), October 1997.

http://www.ijsrem.com/

