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Malware Detection Using Machine Learning 

                                                               

 

 

 

 

Abstract— In this work, we present a flexible system that 
makes use of various machine learning methods to efficiently 
distinguish between malware and clean files while purposefully 
reducing false positives. In the field of cybersecurity, our strong 
framework is both flexible and strong, working along with 
different machine learning algorithms. Our study unfolds with 
an exploration of basic principles using the Random Model, K 
Nearest Neighbouring Classifier (KNN), and Logistic Regression 
as foundational parts, emphasizing the differentiation between 
malware and benign files. Extensive experiments on 
mediumsized datasets that include malware and clean files verify 
the effectiveness of our methodology. The system then goes 
through a painstaking scaling-up process that guarantees 
smooth operation with big datasets containing both malware and 
clean files. Our methodology is validated by analysing three 
important algorithms: Random Model, KNN, and Logistic 
Regression, each of which adds unique advantages to the 
malware detection system. The evaluation, which is carried out 
on several datasets, aims to minimize false positives while 
striking a compromise between precision and recall. Finally, our 
flexible system, implemented and evaluated on many datasets, 
demonstrates its efficacy in distinguishing malware from clean 
files. The framework's flexibility and scalability make it an 
invaluable tool in the everevolving field of cybersecurity, 
providing a sophisticated method of malware detection. The 
proposed algorithms emphasize the framework's potential as a 
supplementary tool to current cybersecurity measures while also 
adding to its reliability.   

Keywords— ML, KNN, RM, LR  

I. INTRODUCTION  

   Malware is defined as software designed to infiltrate or 

damage a computer system without the owner’s informed 

consent. Malware is a broad category that includes a wide 

range of malicious programs and applications, from 

standalone viruses to file infectors. Among these, the rogues' 

gallery consists of characters with distinct digital weaponry, 

such as Ramnit, Lollipop, Vundo, Simda, Tracur, 

Kelihos_ver1, Obfuscator, Kelihos_ver3, Gatak, and ACY.   

The malicious forces behind malware have also changed and 

mutated as our digital environment continuous its unstoppable 

progress. They have added many polymorphic layers to evade 

the conventional, signature-based techniques used by 

antivirus solutions.  

Security measures face a great challenge from the modern 

malware landscape, which updates itself frequently to surpass 

antivirus software that uses static signatures in its detection 

[1]. The conflict between cyber attackers and defenders takes  

 

 

place in a dynamic environment with constantly changing 

rules of engagement. One can explore the field of dynamical 

file analysis to give a visual story of the ever-changing 

challenges presented by malware and the related advances in 

detection techniques. In this case, the use of virtual 

environment emulation acts as a stage for the elaborate dance 

that is performed between detection technology and malware 

[2]. Furthermore, a thorough comprehension of the terrain 

necessitates an investigation of conventional methods 

intended to detect metamorphic viruses. These methods 

provide as a basis of knowledge, illuminating the subtleties of 

identifying malicious code that modifies its form to avoid 

detection through traditional means [3]. In reaction to the 

growing complexity of malware, researchers are focusing on 

the potential of machine learning as a ray of hope in the fight 

against this constantly changing and dynamic threat 

environment. The literature study that follows provides a 

broad overview of various machine learning approaches that 

are ready to serve as sentinels in the search for effective 

malware detection tools. Of these, boosted decision trees' 

ability to use n-gram data makes them a strong competitor, 

outperforming more conventional classifiers like Support 

Vector Machines and the Naive Bayes classifier in terms of 

performance [5]. The extraction of association rules from 

Windows API execution sequences adds even more depth to 

the toolkit of malware detection techniques and demonstrates 

the adaptability of machine learning. By using Hidden 

Markov Models (HMMs), one can apply a probabilistic 

method to determine if a given program file is a variant of a 

known object. In a related effort, Profile Hidden Markov 

Models—which are well-known for their efficacy in the field 

of bioinformatics—are adapted to accomplish a comparable 

objective in the field of malware detection [8][9]. As a result, 

the literature presents a varied tapestry of machine learning 

approaches, each adding a special thread to the complex web 

of malware detection. As Section V develops, the story 

reaches a climax and reveals the outcome of this complex trip. 

Here, 52 key characteristics taken from the .asm files are 

prepared to serve as the cornerstone of a largescale system, 

capable of identifying malware in massive training datasets. 

The convergence of preprocessing and analysis signals that 

the framework is ready to be scaled up to take on the 

formidable challenge of very large training datasets.  
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Essentially, this study sets out on an extensive investigation 

of the complex field of malware detection—a voyage that 

starts with a threat taxonomy, traverses the shortcomings of 

traditional approaches, and reveals the exciting opportunities 

presented by a wide range of machine learning strategies. 

The prologue of the introduction sets the stage for the story 

that follows as it attempts  

 

to create a flexible and robust framework to combat 

malware's constant growth in the digital sphere. With every 

step we take across this terrain, a new chapter in the history 

of cybersecurity is revealed.  

  
 II.  LITERATURE REVIEW  

The literature review provided in your research paper titled 

"Malware Detection Using Machine Learning" offers an 

indepth exploration of the existing research and techniques in 

the field of malware detection. Malware, a ubiquitous threat 

to computer systems, is a broad category of harmful software 

intended to compromise or corrupt systems without 

authorization from the user. In addressing the ever-evolving 

issues of malware detection, this study highlights the 

shortcomings of conventional signature-based approaches 

because of the malware's ever-increasing sophistication, 

which includes behaviours that are polymorphic and self-

updating.  

The literature study explores a range of machine learning 

methods used to identify malware, illustrating the trend 

toward data-driven strategies. An example of the potential of 

ensemble methods in classification applications is the higher 

performance of boosted decision trees using n-gram data over 

Naive Bayes and Support Vector Machines. Other methods 

investigate the use of Hidden Markov Models and Profile 

Hidden Markov Models, along with association criteria 

obtained from Windows API execution sequences, to identify 

malware variations. The paper also emphasizes how neural 

networks and Self-Organizing Maps can be used to detect 

polymorphic malware and detect patterns in the behaviour of 

Windows executable files that indicate the presence of 

viruses. When taken as a whole, these findings highlight the 

necessity for more advanced and complex methods to combat 

the complex nature of malware. The literature study also 

discusses the difficulties in handling big datasets of ".asm" 

and ".bytes" files, as well as data pretreatment and feature 

extraction. Although the sheer volume of these files presents 

major complications, they do offer a low-level insight on 

software activity. The effectiveness of machine learning 

models, such as K-Nearest Neighbours (KNN), is improved 

by reducing dimensionality and noise through the use of 

feature selection procedures, such as correlation-based 

filtering and wrapper techniques.  

      In addition, logistic regression is presented as a binary 

classification technique that models the probability of 

malware existence by utilizing the logistic (Sigmoid) 

function. Based on pertinent qualities and characteristics, this 

approach has the potential to simulate the likelihood of a 

system becoming infected with malware. The experimental 

results, which show that the Random Model, KNN, and 

Logistic Regression are the most dependable of the studied 

algorithms for malware detection, are presented at the end of 

the literature review. While the approaches do not completely 

reach the zero false positive target, they do 

 

show a significant boost in the overall detection rate, 

suggesting that they could be a useful addition to existing 

antivirus programs.  

 

In summary, the literature study offers insightful 

information on the current state of machine learning-based 

malware detection. It emphasizes how crucial data-driven 

approaches are becoming to combating the dynamic nature of 

malware threats and the difficulties posed by large-scale data 

analysis.  

  
 III.  DATASETS  

We used three datasets: a training dataset, a test dataset, and 

a “scale-up” dataset up to 200GB. The number of malware 

files and respectively clean files in these datasets is shown in 

the first two columns of Table I. As stated above, our main 

goal  is to achieve malware detection with only a few (if 

possible 0) false positives, therefore the clean files in this 

dataset (and in the scale-up dataset) are much larger than the 

number of malware files.  

From the whole feature set that we created for malware 

detection, 308 binary features were selected for the 

experiments to be presented in this paper. Files that generate 

similar values for the chosen feature set were counted only 

once. The last two columns in Table I show the total number 

of unique combinations of the 308 selected binary features in 

the training, test, and respectively scale-up datasets. Note that 

the number of clean combinations — i.e. combinations of 

feature values for the clean files — in the three datasets is 

much smaller than the number of malware unique 

combinations.  

  
TABLE I  

NUMBER OF FILES AND UNIQUE COMBINATIONS OF FEATURE 

VALUES IN THE TRAINING, TEST, AND SCALE-UP DATASETS 

UPTO 200GB. 

  

  Files  Unique combinations  

Database  malware  clean  malware  clean  

Training    6955  695535  6922  315  

Test  21740  6521  609  220  

Scale-up  approx. 2M    approx. 80M    8817  12230  

  

  
TABLE II  

MALWARE DISTRIBUTION IN THE TRAINING AND TEST 

DATASETS.  

http://www.ijsrem.com/
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  Training Dataset  Test 

Dataset  

Malware    Unique 

combinations  
  

Type  Files  of feature values  Files  

Ramnit  
Lollipop  
Kelihos-ver3  
Vundo  
Simda  
Tracur Kelihos-

ver1  
Obfuscator.ACY  
Gatak  

14.2% 

22.8%  
27.1%  

4.4% 

0.4% 

6.9%  
3.7%  
11.3%  
9.3%  

5.19%  
30.73% 40.15%  

12.15%  
0.11%  
2.66% 3.17% 

4.66%  
6.10%  

13.84% 

22.95%  
27.50%  

4.50% 

0.09% 

6.89%  
4.41%  

11.49%  
9.24%  

  

  

since the majority of features were developed to highlight a 

certain component of malware files (either a geometrical form 

or behaviour aspect).  

    The majority of the clean files in the training database are 

system files (from various operating system versions) and 

executable and library files from several well-known apps. In 

order to better train and test the system, we also employ clean 

files that are packed or that have the same form or geometrical 

characteristics with malware files (e.g., use the same packer). 

The training dataset includes malware files that were obtained 

from the Virus Heaven collection. The test dataset includes 

clean files from several operating systems and malware files 

from the Wild List collection (other files than those used in 

the first database). The training and test datasets malware 

collections include Ramnit, Lollipop, Kelihos_ver3, Vundo, 

Simda, Tracur, and Kelihos_ver1, Obfuscator.ACY, Gatak. 

The percentage of those malware kinds in the training and, 

respectively, test datasets is shown in the first and third 

columns of Table II. The second column in Table II shows the 

proportion of malware-specific unique combinations across 

all feature value combinations in the training dataset.  

    Divide the dataset into train, test, and cv parts, and then 

examine the distribution of class in each split to see if it is 

consistent across all splits. 6955 data points make up the train 

data. 2174 data points make up the test data. 1739 data points  

were used for cross validation.  

  

 IV.  ALGORITHMS  

The main goal of this section is to modify the Random 

Model  so as to correctly detect malware files, while forcing 

detection  

   

Algorithm 1: Random Model   

   
test_data_len = X_test.get_row_count() cv_data_len = 

X_cv.get_row_count() cv_predicted_y = zeros(cv_data_len, 

9) test_predicted_y = zeros(test_data_len, 9) for i in 

range(cv_data_len):     rand_probs = 

random_values_between_0_and_1(9)     cv_predicted_y[i] = 

normalize_to_sum_1(rand_probs) log_loss_cv = 

calculate_log_loss(y_cv, cv_predicted_y) for i in 

range(test_data_len):  

    rand_probs = random_values_between_0_and_1(9)     

test_predicted_y[i] = normalize_to_sum_1(rand_probs) 

log_loss_test = calculate_log_loss(y_test, test_predicted_y) 

predicted_y = find_argmax(test_predicted_y) 

plot_confusion_matrix(y_test, predicted_y + 1)  

   
rate for one category [12]. In the sequel we will use the 

following data structures:  

      It is easy to create random probability for classification 

tasks using the "Random Model" method. For each class (in 

this case, there are nine classes) in this model, we generate 

random probability values so that the sum of these 

probabilities is 1. To establish a baseline model for 

comparison in machine learning  tasks, this is done. The 

procedures to implement the Random Model for producing 

random probabilities and figuring out log loss for cross-

validation and test datasets are described in the accompanying 

pseudocode.  

    We create a vector of probabilities in a random model, p = 

[p1, p2,..., pk], where k is the number of classes. Probabilities 

are added together, and the result is 1, hence pi = 1.  

Without taking into account any attributes or patterns, a 

Random Model in the context of malware detection assigns 

random probabilities to various classes (malware or non-

malware). Given that it relies on educated assumptions and is 

unable to accurately categorize malware, it is unsuitable for 

usage in realworld applications.   

     P(class = malware) = p, where 0 = p = 1 and P(class = 

nonmalware) = 1 - p are the definitions of the term. The 

Random   

Model is not a useful method for detecting malware in 

computer systems. To evaluate the performance of more 

complex models, it serves as a baseline or reference model. 

Models should be educated on pertinent traits and behaviours 

of dangerous software in order to enable them to discriminate 

between malware and benign software in real-world malware 

detection.  

  Algorithm 2, henceforth called KNN. It performs the training 

for one chosen label (in our case either malware or clean), so  

   

Algorithm 2: K Nearest Neighbour Classifier  

   
   

 import scikit-learn.neighbors   knn_classifier = 

KNeighborsClassifier(n_neighbors=5,     weights='uniform', 

http://www.ijsrem.com/
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algorithm='auto', leaf_size=30, p=2,     metric='minkowski', 

metric_params=None, n_jobs=1,     

  **kwargs)   knn_classifier.fit(X, y)   

knn_classifier.predict(X)  

  knn_classifier.predict_proba(X)  

   
  

for one chosen label (in our case either malware or clean), so 

that in the end the files situated on one side of the learned 

linear separator have exactly that label (assuming that the two 

classes are separable). The files on the other side of the linear 

separator can have mixed labels.  

     Machine learning algorithms for classification and 

regression include K-Nearest Neighbours (KNN). It 

categorizes data points in a feature space according to how 

close they are to other data points. KNN is typically not a good 

option for computer system malware detection. It is unable to 

detect intricate patterns and malware-specific traits. To 

properly detect malware, more sophisticated techniques that 

take a wider variety of traits and behaviours into account are 

needed.  

Mathematical Representation of KNN: KNN determines the 

distance to its k nearest neighbours for a given data item X 

and classifies it into the category that is most prevalent among 

its neighbours. Distance metrics, such Euclidean distance, are 

used as the foundation for the mathematical representation. 

The K-Nearest Neighbours (KNN) method for malware 

detection entails classifying a particular data point as either 

malware or non-malware based on the dominant class among 

its k nearest neighbours. This method relies solely on 

closeness to neighbours in the feature space, which is not 

effective for malware identification because malware has 

complex and distinctive properties.  

 
Algorithm 3: Logistic Regression  

 
import scikit-learn.linear_model   sgd_classifier = 

SGDClassifier(loss='hinge', penalty='l2',   alpha=0.0001, 

l1_ratio=0.15, fit_intercept=True,   max_iter=None, 

tol=None, shuffle=True, verbose=0,   epsilon=0.1, n_jobs=1, 

random_state=None,   learning_rate='optimal', eta0=0.0, 

power_t=0.5,   class_weight=None, warm_start=False, 

average=False,   n_iter=None)   sgd_classifier.fit(X, y, 

coef_init=None, intercept_init=None,   

sample_weight=None)   sgd_classifier.predict(X)  

   
   Binary categorization is handled by the machine learning 

algorithm logistic regression. A logistic (Sigmoid) function is 

used to model the likelihood that a data point will fall into a 

specific class. The Stochastic Gradient Descent (SGD) form 

of Logistic Regression in Scikit-Learn is described in the 

pseudocode. It offers techniques to fit the model and produce 

predictions, as well as initializing the classifier. A popular 

approach for binary classification problems, such as malware 

detection in computer systems, is logistic regression. It is 

useful for spotting dangerous software since it can simulate 

the likelihood that a system would become infected by 

malware.  

The logistic (Sigmoid) function is used in logistic 

regression to determine the likelihood that a particular 

occurrence would fall into the positive class:  

where,  

 

           L = the maximum value of the curve              

         e = the natural logarithm base (or Euler’s number)              

         x0 = the x-value of the sigmoid midpoint                 

         k = steepness of the curve or the logistic growth rate  

 

For detecting malware, logistic regression models the 

likelihood  that a given system or file has malware. Based on 

the attributes   

 

and qualities of the system or file, the algorithm determines 

this likelihood. The algorithm categorizes the instance as 

malware (1) or non-malware (0) by defining a threshold.  

   

   

 V.  RESULTS  

   We performed cross-validation tests by running the three 

algorithm the Random Model, KNN and Logistic Regression 

presented in Section III on the training dataset described in 

Section II (6922 malware unique combinations, and 315 clean 

unique combinations).  

For the Random Model, the following functions were used:  

▪ The main function in the Random Model is in charge of 

producing random probabilities for each class. To generate 

random numbers, you can use Python functions like 

np.random.rand().  

For the KNN classifier, the following function were used:  

▪ Distance Metric Function: KNN relies on a distance metric 

function to measure the similarity between data points. 

Common distance functions include Euclidean distance, 

Manhattan distance, and Minkowski distance.  

▪ Voting Function: KNN classifies data points according to the 

majority class among their k-nearest neighbours using a 

voting procedure.  

For the Logistic Regression, the following function were 

used:  

▪ The logistic function, often known as the sigmoid logistic 

function, is used in logistic regression to represent the 

likelihood that a given occurrence will fall into the positive 

class. The logistic function is defined as:  

  

http://www.ijsrem.com/
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P( y  = 1∣ X ) = 1 + e - ( X . w + b)  

  

▪ Cost Function: The error between projected probabilities and 

actual labels is measured using the logistic loss, also known 

as the log loss, which is employed in logistic regression. 

During training, the logistic loss aids in adjusting the model's 

parameters.  

  

   For feature selection in conjunction with Random Model, 

KNN and Logistic Regression Model. The Random Model 

itself does not include feature selection because it assigns 

probability at random without taking features into account.  

  

  
Fig 1.1 – Confusion Matrix of the Random Model.  

  

  
   Fig 2.2 – Confusion Matrix 

of the KNN classifier   

 

Fig 1.3 – Recall Matrix of the Random Model                             

Fig 2.3 – Precision Matrix of the KNN classifier  

  

Fig 1. 2   –   Precision Matrix of the Random Model   

  

http://www.ijsrem.com/
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 Fig 2.1 – Cross Validation, KNN Classifier    

 

 Fig 3.1 – Cross Validation, Logistic Regression    

    Feature selection can be used to enhance the performance of  

K - Nearest Neighbo u rs (KNN). Reducing dimensionality and  

noise in the dataset through the selection of pertinent features  

helps improve classification and distance calculations.   Filter  

approaches (such as correlation - based feature selection),  

Wrapper methods (such as forward selection), and Embedded  

methods (such as L1 regularization with Lasso) are frequently  

used for KNN feature selection.   

  

Fig 2.4  –   Recall Matrix of the KNN classifier   

  

    Feature selection is frequently used in conjunction with  

logistic regression to improve model interpretability and lessen  

overfitting. The choice of features is important because logistic  

regression models the  connection between features and the  

target variable.   Recursive Feature Elimination (RFE), L1  

regularization  ( Lasso),  and  mutual  information - based  

algorithms are common approaches.   

  

  

Algorithm:  Multivariate Analysis on Final Features   

    

      xtsne   =  TSNE(perplexity =50)   

    results = xtsne.fit_transform(result_x, axis=1)   

    vis_x = results[:, 0]   

    vis_y = results[:, 1]   

    plt.scatter(vis_x, vis_y, c=result_y,   

    cmap=plt.cm.get_cmap("jet", 9))   

    plt.colorbar(ticks=range(9))   

    plt.clim(0.5, 9)   

    plt.show()   

http://www.ijsrem.com/
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   The sheer amount of data, though, is where the real 

intricacy lies. Data preprocessing, feature extraction, and 

computational resource requirements are a few of the 

difficulties large datasets of these files provide. Additionally, 

when examined together, the interactions between ".asm" and 

".bytes" files can provide a more thorough knowledge of 

software behaviour.  

   
  Algorithm: Train and Test Split  

   

   X_train, X_test_merge, y_train, y_test_merge =    

train_test_split(result_x, result_y, stratify=result_y,    

test_size=0.20)  

   X_train_merge, X_cv_merge, y_train_merge, y_cv_merge 

=    train_test_split(X_train, y_train, stratify=y_train,    

test_size=0.20)  

   

  

Fig 3.2  –   Confusion Matrix of the Logistic Regression   

  

  

Fig 4  –   Multivariate Analysis on Final Features   

  

  

VI.   W ORKING WITH VERY  L ARGE  D ATASETS   

All the results presented in this section are obtained on the  

large ( “scale - up” )  dataset that was described in Section II.  

Data analysis and machine learning need the use of big datasets  

of ".asm" and ".bytes" files, which is a difficult but essential  

task. For many applications, including malware detection,  

software classification, and cybersecurity research, these files  

freq uently contain extensive data and patterns.  

c

Fig 3.3 – Precision Matrix of the Logistic Regression  

 

Fig 3.4 – Recall Matrix of the Logistic Regression 

   The ".asm" files, which are often created from disassembled 

software, offer a low-level perspective of a program's processes. 

They are composed of assembly language code, and 

examination of them reveals details on the operation, 

composition, and potential security risks of software. 

Alternatively, ".bytes" files offer a new perspective on the same 

software by encoding binary data. Often, this binary data 

contains important details about a program's features, structure,  

and even abnormalities. 

http://www.ijsrem.com/
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   To make sense of the data in this situation, researchers and 

data scientists use a variety of approaches like feature 

engineering, deep learning, and natural language processing. 

The knowledge gained from these big datasets is invaluable 

for improving software security, spotting vulnerabilities, and 

comprehending the complexities of program development and 

execution.   

Fig – Distribution of malware in whole data set  

  

   Using the presented algorithm, it is intended to gather data 

on the file sizes of ".asm" files located in a directory and 

combine it with relevant class labels. (Fig – Boxplot of .asm 

files)  

 

  
Fig – Boxplot of .byte files  

   
  Algorithm: Each .asm file size  

   

   files = list_files_in_directory('asmFiles')    filenames = 

get_filenames_from_Y('ID')    class_y = 

get_class_list_from_Y('Class')    class_bytes = []    sizebytes 

= []    fnames = []  

VII. CONCLUSION AND FUTURE WORK  

Our primary goal was to develop a machine learning 

framework with a zero false positive rate that can detect as 

many malware samples as possible in a generic manner. Even 

though we still have a non-zero false positive rate, we were 

really near to our target. Several deterministic exception 

mechanisms need to be developed for this framework to be 

included in a fiercely competitive commercial product. We 

believe that machine learning-based malware detection will 

complement existing anti-virus providers' standard detection 

techniques rather than replace them. Since every commercial 

anti-virus program has speed and memory constraints, the 

Random Model, KNN, and Logistic Regression algorithms are 

the most dependable ones among those shown here. Given that 

most antivirus programs are able to detect viruses at a rate of 

over 90%, an increase of 3%–4% in the overall detection rate, 

as achieved by our methods, is noteworthy. (Note that malware 

  

  

    for file in files:   

        statinfo = get_file_statistics('asmFiles/' + file)   

        file = extract_file_name(file)   

       

     if exists_in ( filenames, file ):   

         i = find_index_of(filenames, file)   

         class_bytes.append(class_y[i])   

         sizebytes.append(convert_to_MB(statinfo.st_size))   

         fnames.append(file)   

  

    asm_size_byte = create_dataframe({'ID': fnames, 'size':   

    sizebytes, 'Class': class_bytes})   

    print(asm_size_byte.head()) 

http://www.ijsrem.com/
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samples that are not picked up by conventional detection 

techniques are used for training.)  
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