Mathematical Modeling for Financial Markets: Comparative Study of Volatility Models and Future Directions

Nidhee Soni #1 Dr.Laba Sa#2

MATS University, Raipur

Abstract: Forecasting is a typical and crucial part for financial markets. Accurately forecasting volatility continues to be a significant and multifaceted task in financial markets, as it directly impacts option pricing, risk management strategies, and portfolio optimization decisions. Established frameworks such as the Black-Scholes model, the ARCH and GARCH families, and the Heston stochastic volatility model each provide distinct approaches to representing market variability. Their effectiveness depends on underlying assumptions regarding constant versus time-dependent volatility, computational feasibility, and their capacity to capture empirically observed phenomena such as volatility clustering, heavy-tailed distributions, and leverage effects.

This paper offers a comprehensive conceptual comparison of these methodologies, delving into their mathematical structures, assessing their practical strengths and limitations, and discussing avenues for innovation. In particular, the integration of hybrid modeling techniques and machine learning—enhanced approaches is explored as a promising direction for improving the predictive accuracy and adaptability of volatility models in dynamic financial environments.

Keywords— Black-Scholes model, ARCH, GARCH, Heston stochastic volatility, Volatility assumptions, Financial market

I. INTRODUCTION

Volatility refers to the degree of variation of financial asset prices over time. In simple terms, volatility is a measure of risk: more volatile an asset, greater the risk and potential reward [4]. Financial practitioners need good volatility models to price derivatives (especially options), to estimate risk (Value at Risk, etc.), and to make portfolio allocation decisions (e.g., hedging strategies)[5].

Mathematical finance provides frameworks for modeling volatility via stochastic processes, time-series models, and probabilistic methods [2]. Classical models like Black–Scholes assume constant volatility; later models (ARCH/GARCH) introduced time-varying volatility; stochastic volatility models like Heston allow volatility itself to follow a stochastic process [1]. Understanding the assumptions, implications, and comparative performance of these models is essential as markets evolve and data availability improves [3].

This paper aims to conceptually compare several volatility modeling approaches, focusing on:

- 1. Their mathematical formulation and assumptions,
- 2. Their practical uses in finance (pricing, risk management, etc.),
- 3. Their comparative strengths and weaknesses,
- 4. And the possible directions for future models that address shortcomings of classical models.

II. MATHEMATICAL MODELS OF VOLATILITY

In financial markets, mathematical modeling involves using mathematical tools and equations to represent market dynamics, asset prices, and risk behavior. It helps quantify uncertainty, forecast price movements, and evaluate

investment strategies. Models such as Black-Scholes, GARCH, and stochastic volatility frameworks translate complex market phenomena into analyzable forms. By doing so, they support decision-making in portfolio management, risk assessment, and derivative pricing. Below are descriptions of several classical and widely used models.

2.1 BLACK-SCHOLES MODEL

The Black–Scholes model assumes that the underlying asset price follows a geometric Brownian motion [3], i.e.:

$$dS t = \mu S t dt + \sigma S t dW t$$

where S_t is the asset price at time t, μ is the drift rate, σ is the volatility, and W_t represents a standard Brownian motion. Volatility is assumed constant, which simplifies the pricing of European-style options. The model's simplicity makes it a benchmark in finance, but its constant volatility assumption limits its accuracy during turbulent market periods.

- Volatility assumption: σ is constant over time and does not vary with the level of price or time.
- **Usage:** Primarily used for pricing European-style options for which the underlying pays no dividends. It gives closed-form formulas for call and put options.
- **Strengths:** Simplicity, analytical tractability, widely used as a benchmark.
- **Limitations:** Assumes constant volatility (which is unrealistic), does not capture volatility clustering, jumps, skewness in returns, or leverage effects. Does not handle American options well, dividends, or early exercise.

2.2 ARCH / GARCH Models

The GARCH model, introduced by Bollerslev (1986), extends the ARCH model proposed by Engle (1982). It models volatility as a function of past squared returns and past variances. A GARCH(1,1) process is given by:

$$\sigma t^2 = \alpha_0 + \alpha_1 \epsilon \{t-1\}^2 + \beta_1 \sigma \{t-1\}^2$$

where $\sigma_t^2 = \text{conditional variance}$ at time t, $\varepsilon_{t-1}^2 = \text{squared residual/shock}$ from previous period, and $\alpha 0, \alpha 1, \beta 1$ are parameters with $\alpha 0 > 0, \alpha 1 \ge 0, \beta 1 \ge 0$ [4].

This approach captures volatility clustering, a common phenomenon where periods of high volatility are followed by high volatility. However, GARCH models treat volatility as deterministic given past information and do not accommodate randomness in volatility evolution.

- **Volatility assumption:** Volatility changes over time depending on past information; it is deterministic given past shocks and past variances (no inner stochastic process for variance unless extended).
- Usage: Widely used for modeling financial time series volatility (stock returns, forex, etc.), risk management (VaR), forecasting future volatility.
- **Strengths:** Captures volatility clustering (high volatility tends to follow high volatility, low follows low), relatively simpler to estimate, computationally inexpensive.
- **Limitations:** Does not allow volatility itself to be stochastic (i.e., does not model randomness in volatility apart from through past values), may not capture "leverage effects" (effect of negative returns more than positive), may produce symmetric effects (positive or negative shocks treated similarly), sometimes poor fit for options pricing (implied volatilities surfaces).

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

2.3 Heston Stochastic Volatility Model

The Heston model (1993) assumes that volatility itself follows a stochastic process, allowing for a more realistic depiction of financial markets. It can be represented as:

$$\begin{split} dS_t &= \mu \ S_t \ dt + \sqrt{v}_t \ S_t \ dW_1t \\ dv \ t &= \kappa(\theta - v \ t)dt + \sigma \ v\sqrt{v} \ t \ dW \ 2t \end{split}$$

where $v_{-}t$ is the variance, κ the rate of mean reversion, θ the long-run variance, and $W_{-}1t$ and $W_{-}2t$ are correlated Brownian motions[1]. The model captures the volatility smile and skew observed in option markets but is computationally intensive.

- Volatility assumption: Volatility is random and evolves over time according to a mean-reverting diffusion.
- **Usage:** Used for options pricing, especially when constant volatility assumption fails. Captures volatility smile/skew, stochastic behavior of volatility.
- **Strengths:** More realistic modeling of volatility; it captures behavior of markets under empirical phenomena like implied volatility surfaces, skew and smile.
- **Limitations:** More complex mathematically and computationally; calibration and estimation of parameters can be difficult; closed-form solutions exist only under certain assumptions; risk of overfitting; needs richer data.

III. USES OF VOLATILITY MODELS IN FINANCE

Volatility models are used in several key financial applications:

- 1. **Option Pricing:** Volatility is a fundamental input in option pricing models because it directly affects the value of derivative contracts. While the Black–Scholes model assumes constant volatility, real markets often exhibit fluctuating volatility. Stochastic volatility models, such as the Heston model, account for these variations and provide more realistic pricing, especially during periods of market stress or turbulence [1]. Accurately capturing volatility dynamics helps traders avoid mispricing and better hedge risk in derivative portfolios. [8].
- 2. **Risk Management:** Forecasting volatility is critical for risk management practices, including estimating Value at Risk (VaR), conducting stress tests, and determining necessary capital reserves. Higher market volatility implies higher potential losses, requiring firms to adjust risk exposure and capital allocation accordingly. GARCH models, which capture time-varying volatility and clustering, are widely applied to assess short-term and long-term market risk[2]. By anticipating volatility spikes, financial institutions can implement proactive measures to mitigate potential losses. [9][11].
- 3. **Portfolio Management:** Volatility influences how risk-averse investors construct and optimize their portfolios. The covariance between asset returns, which is derived from their respective volatilities, affects the benefits of diversification and risk-adjusted performance. By understanding and modeling volatility, portfolio managers can better balance expected returns against potential risk, adjusting asset weights dynamically to reduce exposure during volatile periods. Models capturing stochastic or time-varying volatility allow more precise estimation of portfolio risk under real market conditions [8].
- 4. **Forecasting Financial Market Behavior:** Analysts forecast volatility for predictions of market turbulence, for evaluating investor sentiment, and for policy or regulatory decisions [6].
- 5. **Implied Volatility Surface Analysis:** In options markets, implied volatility—extracted from observed option prices—often exhibits structured patterns such as smiles or skews rather than being flat. These patterns reflect market expectations of future asset fluctuations and the risk premium demanded by investors. Models

incorporating time-varying or stochastic volatility, like Heston or hybrid approaches, are able to explain and replicate these empirical phenomena more accurately than constant-volatility models [3]. Understanding the implied volatility surface helps traders design strategies, price exotic options, and detect market mispricings.

IV. COMPARATIVE ANALYSIS OF MODELS

Here is a conceptual comparison of the three models (Black–Scholes, GARCH, Heston) in terms of assumptions, mathematical complexity, strengths, weaknesses, and best-use cases.[7][10].

Model	Volatility Assumption	Complexity	Strengths	Weaknesses	Best Use Cases
Black- Scholes	Constant volatility	Low	Simple and fast	Fails to capture clustering and skew	European options
GARCH	Time-varying deterministic volatility	Moderate	Captures clustering	Symmetric shocks, no randomness in volatility	Risk forecasting
Heston	Stochastic mean- reverting volatility	High	Captures smile/skew	Complex calibration	Derivative pricing

Table.1: Comparison of volatility models

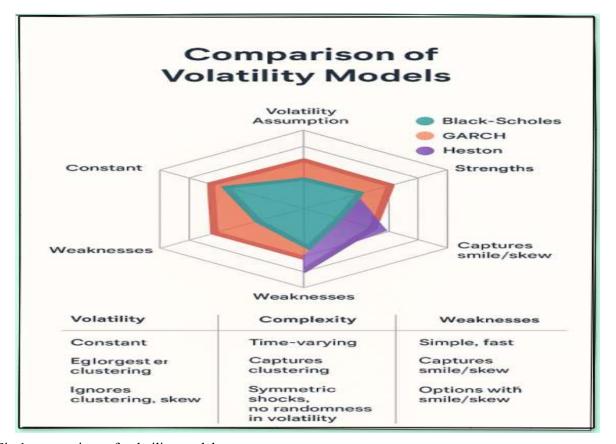


Fig.1: comparison of volatility models

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

V. FUTURE DIRECTIONS

Future models are likely to integrate stochastic processes with artificial intelligence to capture nonlinear market behaviors [2]. The fusion of stochastic volatility dynamics with AI-driven learning frameworks offers a promising avenue for modeling the complex and adaptive nature of financial systems. Hybrid approaches that combine GARCH dynamics with machine learning techniques can enhance predictive accuracy by enabling models to learn evolving volatility patterns directly from historical and high-frequency data. At the same time, emerging areas such as quantum finance and rough volatility models introduce novel perspectives for understanding uncertainty at microstructural levels, where traditional models often fail. Furthermore, incorporating robust Bayesian estimation and uncertainty quantification will contribute to more stable and interpretable parameter estimation, thereby improving both the reliability and transparency of financial forecasts in an increasingly data-rich environment [1].

VI. CONCLUSION

Volatility modeling remains a cornerstone of mathematical finance. The comparative analysis reveals that while Black—Scholes offers simplicity, GARCH improves temporal flexibility, and Heston achieves realism. However, future research should focus on hybrid stochastic-AI models to address nonlinearity and adapt to rapidly changing markets. Integrating artificial intelligence with traditional stochastic approaches can enhance predictive accuracy and allow dynamic learning from real-time data patterns. Moreover, such fusion models could bridge the gap between theoretical precision and practical market adaptability, paving the way for more resilient and data-driven financial forecasting systems. However, future research should focus on hybrid stochastic-AI models to address nonlinearity and adapt to rapidly changing markets [3].

VII. REFERENCES

- 1. Alziary, B., & Takáč, P. (2017). On the Heston Model with Stochastic Volatility: Analytic Solutions and Complete Markets. arXiv preprint arXiv:1711.04536
- 2. Cunchala, A. (2024). A Basic Overview of Various Stochastic Approaches to Financial Modeling With Examples. arXiv preprint arXiv:2405.01397
- 3. Hellmuth, K., & Klingenberg, C. (2022). Computing Black Scholes with Uncertain Volatility—A Machine Learning Approach. arXiv preprint arXiv:2202.07378.
- 4. Investopedia. (n.d.). Autoregressive Conditional Heteroskedasticity (ARCH) Explained.
- 5. Investopedia. (n.d.). Black-Scholes Model: What It Is, How It Works, and Options Formula.
- 6. So, M. K. P. (2022). Volatility and dynamic dependence modeling: A review. *Wiley Interdisciplinary Reviews: Computational Statistics*, 14(5), e1567.
- 7. Aït-Sahalia, Y., Li, C., & Li, C. X. (2021). Implied stochastic volatility models. *Review of Financial Studies*, 34(1), 394–439.
- 8. Engle, R. F. (2001). What good is a volatility model? *Quantitative Finance*, *I*(2), 112–117.
- 9. Bhowmik, R. (2020). Stock market volatility and return analysis: A systematic review. *PMC National Center for Biotechnology Information*.
- 10. Baum, C. F. (2021). Stochastic volatility, jumps, and leverage in energy futures markets. *Energy Economics*, 94, 105-116.
- 11. Kumar, S., Rao, A., & Dhochak, M. (2025). Hybrid ML models for volatility prediction in financial risk management. *International Review of Economics & Finance*, 98, 103915.