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Abstract 

Mathematical epidemiology provides a robust framework for modelling disease dynamics, analysing the 

progression of outbreaks, and informing public health policy. This review examines the evolution of these 

techniques, from foundational, knowledge-driven models to modern, data-intensive approaches. The field's 

roots lie in the pioneering work of Daniel Bernoulli in 1760 and the seminal compartmental models of Kermack 

and McKendrick, which use ordinary differential equations to describe the flow of a population between health-

based groups. While these models are computationally efficient, they assume homogeneous mixing, a limitation 

that has driven the development of more advanced paradigms. 

To address these limitations, modern approaches include network models, which account for heterogeneous 

contact structures, and agent-based models, which simulate disease spread at the individual level. These 

methods offer greater realism but come with significant computational demands. The paper highlights the 

importance of nuanced interpretation of key metrics like the Basic Reproduction Number (R0) and the Effective 

Reproduction Number (Re), which are often misunderstood. Finally, it addresses the burgeoning role of modern 

computational techniques, including machine learning and artificial intelligence, which are increasingly used to 

process high-dimensional data and enhance predictive accuracy, often in combination with traditional models 

to create more robust and adaptable hybrid systems. 
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1. Introduction 

1.1. Historical Overview 

The application of mathematics to the study of epidemics has a rich history that predates modern computing. 

The earliest known example dates back to 1760 with the work of Daniel Bernoulli, a physician and 

mathematician who developed a mathematical model to defend the practice of smallpox inoculation. Bernoulli's 

work established a precedent for using mathematical models as tools for comparing different health strategies 

and predicting disease outcomes. 

The early 20th century saw the emergence of the foundational theories that define mathematical epidemiology 

today. In the 1920s, the field of compartmental models was born with the work of William Hamer, Ronald Ross, 

and, most notably, William Kermack and A.G. McKendrick. Their 1927 Kermack–McKendrick epidemic 

model was a landmark achievement, successfully predicting the behaviour of outbreaks and establishing the 

principles that govern the relationship between susceptible, infected, and immune individuals in a population. 

Over time, the utility of these models has been repeatedly demonstrated in real-world scenarios. The 2001 foot-

and-mouth disease outbreak in Great Britain and the 2002–2003 Severe Acute Respiratory Syndrome (SARS) 

epidemic served as key catalysts, reviving interest in mathematical models as indispensable tools for forecasting 

disease progression and evaluating the effectiveness of control strategies. More recently, the COVID-19 

pandemic underscored the vital role of these models, as they were widely used by researchers and decision-

makers to estimate outbreak parameters, inform public health policies, and predict future trends. 
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1.2. Foundational Concepts and Terminology 

At its core, mathematical epidemiology is the science of modelling diseases, a process that is often underpinned 

by a set of well-defined concepts and terminology. A central paradigm is the compartmental model, which 

simplifies a complex population by dividing it into distinct subgroups or "compartments" based on their 

infection status. The dynamics of an epidemic are then represented by the flow of individuals between these 

compartments over time. For example, the classic SIR model uses three such compartments: Susceptible (S), 

Infectious (I), and Recovered (R). The change in the size of each compartment is expressed as a derivative, 

forming a system of differential equations. 

Another critical distinction in modelling is between deterministic and stochastic approaches. Deterministic 

models, often used for large populations, assume that the epidemic process is predictable and that changes in a 

compartment's population can be calculated using only the history that was used to develop the model. In 

contrast, stochastic models incorporate random variables and chance variations in inputs, allowing for a 

probability distribution of potential outcomes. They are particularly valuable for modelling small populations 

or the early stages of an outbreak. 

A vital concept derived from these models is the Basic Reproduction Number (R0), the average number of 

new infections caused by a single infectious person in an entirely susceptible population. This number serves 

as a critical threshold: if R0>1, the disease will spread and die out otherwise. The related Effective 

Reproduction Number (Re or Rt) provides a more dynamic, real-time measure, representing the number of 

new infections caused by one person at any given time, accounting for evolving factors like population immunity 

from prior infection or vaccination. 

The foundation of compartmental models is built on a simplifying assumption that populations mix 

homogeneously. This implies that any individual is equally likely to contact any other individual. This approach 

provides a mathematically elegant and powerful framework for capturing the essential dynamics of disease 

spread. However, its simplicity is also its most significant limitation. The real world is not a well-mixed system; 

individuals form clusters, and their contacts are not uniform. 

 

Parameter Symbol Definition 

Basic Reproduction Number R0 The average number of new 

infections caused by a single 

infectious person in a fully 

susceptible population. 

Effective Reproduction 

Number 

Re or Rt 
The average number of new 

infections caused by a single 

infectious person at any 

specific time. 

Transmission Rate β The rate at which an infected 

individual spreads the 

disease. 
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Recovery Rate γ The rate at which infected 

individuals recover. 

 

2. Classical Compartmental Models 

2.1. The SIR Model: Formulation and Key Equations 

The SIR model is the cornerstone of compartmental epidemiology, providing a foundational framework for 

understanding the spread of infectious diseases. Developed by Kermack and McKendrick, it divides a fixed 

population (N) into three mutually exclusive compartments: Susceptible (S), Infectious (I), and Recovered (R). 

This model is particularly suited for diseases that confer lifelong immunity upon recovery, such as measles, 

mumps, and rubella. 

The dynamics of the SIR model are described by a system of three coupled ordinary differential equations 

(ODEs), which represent the rate of change of the population within each compartment over time (t). 

The System of Ordinary Differential Equations (ODEs) 

𝑑𝑆

𝑑𝑡
=

−𝛽𝑆𝐼

𝑁
 

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− 𝛾𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 

A fundamental quantity derived from these equations is the Basic Reproduction Number, R0.   It is defined by 

the ratio of the transmission rate to the recovery rate: 𝑅0 =
𝛾

𝛽⁄ . This value is paramount because it encapsulates 

the potential for an epidemic to spread. If R0>1, the disease will spread, whereas if R00<1, it will die out. 

2.2. Extensions of the SIR Model 

The simplicity of the SIR model makes it a powerful starting point, but its assumptions do not apply to all 

diseases. Over time, the core compartmental framework has been adapted to accommodate more complex 

biological realities, leading to a family of models that build upon the SIR foundation. 

2.2.1. The SIRS Model 

The SIR model assumes that once an individual recovers, they have lifelong immunity. However, for a class of 

diseases like seasonal influenza, immunity wanes over time, allowing for reinfection. The SIRS (Susceptible-

Infectious-Recovered-Susceptible) model addresses this by adding a new transition from the recovered 

compartment back to the susceptible compartment. This transition is governed by a new parameter, ξ, which 

represents the rate at which recovered individuals lose immunity and return to a susceptible state. 

2.2.2. The SEIR Model 

Many infectious diseases, such as mumps and COVID-19, have a non-trivial incubation period—a time lag 

between infection and the onset of infectiousness. The SIR model cannot account for this latent period. The 

SEIR (Susceptible-Exposed-Infectious-Recovered) model was developed as an extension to address this 

limitation. It introduces a new compartment, "Exposed" (E), for individuals who have been infected but are not 

yet infectious. In this model, susceptible individuals transition to the exposed compartment upon infection, and 
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after a period determined by the incubation rate σ, they move on to the infectious compartment. 

2.2.3. Other Complex Variants 

The compartmental modelling approach is highly flexible and can be expanded to capture an increasing number 

of real-world details. The SIDARTHE model, proposed for the COVID-19 pandemic, is a prime example of 

this. It expands the SIR model by introducing multiple compartments to differentiate infected individuals based 

on their diagnosis status and the severity of their symptoms. The model's name, SIDARTHE, stands for 

Susceptible, Infected, Diagnosed, Ailing, Recognized, Threatened, Healed, and Extinct (deaths), which allowed 

it to model the importance of combining public health interventions like social distancing with contact tracing 

and testing. 

2.2.4. The SEIQR Model and Quarantine 

The compartmental modelling framework can be further expanded to explicitly account for public health 

interventions such as quarantine and isolation. An extension of the SEIR model, theSEIQR (Susceptible-

Exposed-Infectious-Quarantined-Recovered) model, introduces a new compartment, Q, for individuals who 

have been quarantined. Quarantine is a key public health strategy used to detach seemingly healthy but 

potentially infected individuals from the general population to prevent further transmission. Similarly, isolation 

is used for confirmed infected individuals. 

The model includes a new flow from the Exposed (E) or Infectious (I) compartments into the Quarantined (Q) 

compartment. Specific parameters, such as the quarantine rate ε or the fraction of quarantined individuals q, are 

introduced to represent this transition. The quarantined individuals may then recover (R) or, in some cases, die 

(D). SEIQR and similar quarantine models are crucial tools for evaluating the impact of interventions on disease 

dynamics. For example, they can be used to quantify how measures like quarantine and contact tracing reduce 

R0. 

The progression from simple models like SIR to more complex variants like SIRS, SEIR, and SIDARTHE 

illustrates a core developmental trend in the field. The evolution is a direct response to the biological realities 

of diseases that do not conform to the simple assumptions of the SIR model. For example, the recognition of 

waning immunity for influenza required the addition of the R→S transition in the SIRS model, while the long 

incubation period of mumps necessitated the creation of the E compartment in the SEIR model. 

3. Advanced Modelling Paradigms 

The classical compartmental models, while foundational, are built on the significant simplifying assumption of 

homogeneous mixing, where every individual in a population is considered equally likely to contact every other. 

To overcome this limitation and better reflect the complexity of real-world interactions, more advanced 

modelling paradigms have emerged. 

3.1. Network and Graph-Based Models 

Network models represent a shift from a top-down, population-level approach to a more granular, interaction-

based framework.  In this representation, individuals are conceptualized as "nodes" or "vertices," and the 

contacts that can transmit a disease are the "links" or "edges" between them. This approach allows modelers to 

move beyond the unrealistic assumption of a uniformly mixed population. By explicitly modelling the contact 

network, these models can capture heterogeneous social features that profoundly influence disease propagation, 

such as an individual's sociality, location, or wealth. These models can describe complex network topologies, 

including "small-world" and "scale-free" networks, which are common in real-world social structures. Crucially, 

scale-free networks feature "hubs"—a small number of highly connected nodes—that can act as "super-
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spreaders," rapidly transmitting a disease to a large number of contacts and significantly altering the course of 

an epidemic. 

3.2. Agent-Based Models (ABMs) 

Agent-based models (ABMs) adopt a bottom-up approach by simulating disease spread at the individual level, 

where each agent has unique traits, behaviors, and disease status. Their main strength lies in flexibility, enabling 

detailed representation of factors like age, mobility, and social interactions. This allows ABMs to model 

complex scenarios such as contact tracing, targeted interventions, and household or school networks—beyond 

the scope of compartmental models. However, this granularity makes ABMs highly complex, computationally 

demanding, slower to implement, and heavily reliant on detailed data for parameterization and validation. 

3.3. A Comparison of Paradigms 

 

Paradigm Fundamental 

Approach 

Assumptions Computational 

Needs 

Data 

Requirements 

Compartment

al 

Top-down, 

population-

based 

Homogeneous 

mixing; fixed 

population-

level rates. 6 

Low Minimal, 

aggregated 

data. 6 

Agent-Based Bottom-up, 

individual-

based 

Unique agent 

characteristics; 

explicit 

interactions; 

non-uniform 

mixing. 6 

High Detailed, 

granular data 

for each agent. 
6 

Network Interaction-

based 

Models 

connections 

between 

individuals; 

allows for 

heterogeneous 

contact 

structures. 

Moderate to 

High 

Network 

topology data; 

contact 

patterns. 3 

 

4. Interpretation, Limitations, and Challenges 

4.1. The Nuances of the Reproduction Number (Ro) 

The Basic Reproduction Number (R0) is a widely referenced term, but its interpretation is often misunderstood.  

Formally, R0 is a theoretical, population-averaged value that describes the expected number of infections 

generated by a single case in a population that is entirely susceptible. It is a critical metric for understanding a 

disease's potential for spread but should not be mistaken for a fixed, biological constant. Its estimated value can 

vary depending on the model used and the data that informs it. 
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It is essential to distinguish R0 from the Effective Reproduction Number (Re or Rt). While R0 is a static, 

theoretical value, Re is a dynamic, real-time metric. It represents the number of new infections caused by a 

single person at any specific time, taking into account the proportion of the population that is already immune 

due to prior infection or vaccination. The relationship between the two is expressed as 

𝑅𝑒 = 𝑅0(1 − 𝑃𝑖),  𝑃𝑖 

 is the proportion of the immune population. A high level of immunization can bring a high R0 value down to a 

sub-threshold Re <1, which is necessary to prevent the sustained spread of an infection. 

4.2. Challenges in Integrating Human Behavior 

A major limitation of traditional epidemiological models, such as the SIR model, is their inability to capture the 

complexities of human behavior. These models assume fixed parameters, yet real epidemics involve dynamic 

feedback loops where disease spread influences behavior and behavior alters transmission. For example, rising 

cases heighten perceived risk, prompting protective actions, while declining cases reduce caution and accelerate 

spread. Ignoring such adaptive responses creates omitted variables bias: changes in dynamics are wrongly 

attributed to biological parameters like transmission (β) or recovery (γ). This misrepresentation produces biased 

estimates and reduces the predictive accuracy of epidemic models. 

4.3. The Role of Uncertainty 

Epidemiological modelling is inherently approximate, with uncertainty arising from human and pathogen 

behaviour, data quality, and random transmission. Stochastic models can capture this uncertainty by projecting 

outcome ranges, but effectively communicating such probabilistic results to policymakers and the public is 

challenging. Policymakers often prioritize worst-case scenarios, and oversimplifying complex forecasts risks 

eroding public trust and weakening the implementation of public health measures. 

5. Conclusion and Future Directions 

The mathematical formulation of epidemics has evolved from simple, ODE-based compartmental models to 

complex, data-driven agent-based and machine learning systems.3 This progression is a direct response to the 

limitations of simpler models, particularly their inability to capture the profound impact of behavioral, social, 

and spatial heterogeneity on disease spread. 

The analysis in this paper confirms that no single modelling technique is universally superior. The choice of a 

method depends on the specific public health question at hand, the availability of data, and the computational 

resources accessible to the modeler.6 Compartmental models remain valuable for quickly evaluating disease 

dynamics with limited data, while agent-based and network models are essential for capturing individual-level 

variability and complex social structures.6 The integration of machine learning offers a powerful complement, 

capable of handling high-dimensional data and adapting to dynamic changes in pathogens.18 

The future of mathematical epidemiology lies in the continued development of hybrid approaches that combine 

the theoretical underpinnings of mechanistic models with the predictive capabilities of machine learning, all 

while placing a renewed emphasis on critical real-world factors. The primary challenges to be addressed include: 

● Data and Collaboration: There is a persistent need for more diverse and high-quality data, especially 

concerning human behavior and social dynamics. Overcoming this requires enhanced interdisciplinary 

collaboration, bridging the gaps between behavioral, biological, and data sciences to create a shared language 

and standardized methods. 

● Interpretability and Trust: The "black box" nature of many modern models must be addressed. 

http://www.ijsrem.com/
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Developing methods that make these models more transparent will be crucial for building trust with 

policymakers and the public and ensuring that these powerful tools are used effectively to inform evidence-

based policies and interventions. 
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