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The Mayfly Optimization Algorithm (MO), inspired by the swarming and mating behavior of adult mayflies, offers a promising 

approach for tackling minimization problems. However, traditional MO can suffer from unnecessary iterations and exploration of 

suboptimal regions in the search space. This paper addresses these limitations by introducing two key advancements: greedy selection 

and auto-termination. Greedy selection ensures the algorithm prioritizes solutions with lower fitness values during position updates, 

guiding the search towards the minimum more effectively. Auto-termination monitors fitness function changes over a defined window 

and terminates the algorithm if improvement stagnates, reducing computation time. We evaluate the performance of the enhanced MO 

algorithm on various benchmark minimization functions. The results demonstrate that the incorporation of greedy selection and auto-

termination significantly improves the convergence speed and efficiency of MO compared to the traditional approach. This paves the 

way for MO to be a more competitive and efficient tool for tackling various real-world minimization problems.  

 
Index Terms— Mayfly Optimization Algorithm (MO), Minimization Problems, Greedy Selection, Auto-Termination, Fitness 

Function, Convergence Speed, Efficiency, Swarm Intelligence, Nature-Inspired Optimization 

 

I. INTRODUCTION 

Imagine a vast landscape, riddled with peaks and valleys, 

representing different possible solutions to a complex problem. 

Traditional optimization methods might struggle to navigate 

this terrain, potentially getting stuck in local optima 

(suboptimal solutions). Enter the fascinating world of Swarm 

Intelligence Optimization (SIO). 

SIO takes inspiration from the collective behavior observed in 

nature, particularly in social insects like ants, bees, and birds. 

These creatures, despite lacking individual intelligence on par 

with humans, achieve remarkable feats through collaboration. 

A swarm of bees efficiently finds food sources, while an ant 

colony builds intricate structures. 

SIO algorithms mimic this collaborative problem-solving by 

simulating the behaviors of these swarming creatures. Here's 

the basic idea: 

Population-based approach: A population of individuals 

represents different potential solutions in the search space. 

Information sharing: Individuals interact and share information 

about their findings, guiding the search towards better 

solutions. Simple rules: Each individual follows relatively 

simple rules based on its own experience and the information it 

receives from others. This decentralized approach allows SIO 

algorithms to explore the search space effectively, avoiding 

getting trapped in local optima. Different SIO algorithms draw 

inspiration from different phenomena: 

Particle Swarm Optimization (PSO): Mimics the flocking 

behavior of birds, where individuals adjust their positions based 

on their own experience and the location of the best-performing 

individual in the swarm. Ant Colony Optimization (ACO): 

Inspired by how ants find food sources, by laying pheromone 

trails that guide other ants towards the best path. Bee Algorithm 

(BA): Simulates the foraging behavior of bees, where scout 

bees search for food sources and inform other bees about their 

findings. Applications of SIO: 

Engineering design: Optimizing designs for efficiency, 

strength, or weight. Machine learning: Tuning hyperparameters 

in machine learning models for optimal performance. 

Scheduling problems: Finding efficient schedules for tasks or 

resource allocation. Power system optimization: Optimizing 

power flow and system stability. Advantages of SIO: 

Effective exploration and exploitation: SIO algorithms balance 

exploring new areas of the search space (exploration) with 

refining promising solutions (exploitation). Robustness: They 

can handle complex problems with many variables and non-

linear relationships. Relatively simple to implement: The 

underlying principles are easy to understand and translate into 

algorithms. Looking Ahead: 

Swarm intelligence optimization is a rapidly evolving field with 

ongoing research exploring new algorithms inspired by various 

collective behaviors in nature. As research progresses, SIO 

algorithms hold immense potential for tackling complex 

challenges across diverse fields. 

In the ever-evolving world of optimization techniques, the 

Mayfly Optimization Algorithm (MO) stands out as a recent 

innovation inspired by an unexpected source: the short-lived 

dance of adult mayflies. Unlike its predecessors that mimic 

animal movement or hunting strategies, MO delves deeper, 

drawing upon the unique characteristics of these fleeting 

insects. 

The need for MO arose from the limitations inherent in 

established algorithms like Particle Swarm Optimization 

(PSO). While PSO excels at finding solutions quickly, it can get 

stuck in suboptimal regions. MO addresses this by taking 

inspiration from the swarming and mating behavior of mayflies. 

Imagine a population of individuals representing potential 

solutions. MO utilizes a "gathering phase" where these 

individuals are attracted to promising solutions within the 

population, similar to how mayflies swarm. It then incorporates 

a "mating phase" where new solutions are created by combining 

existing ones, mimicking the mayfly's quest for suitable 
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partners. This unique approach promotes exploration of the 

search space while refining promising areas, potentially leading 

to better solutions compared to PSO. 

MO finds application in various optimization problems. 

Imagine you're designing a new product or optimizing a 

complex manufacturing process. Finding the best solution often 

involves navigating a vast search space filled with many 

possibilities. MO acts as a powerful tool to efficiently locate the 

optimal solution – the "sweet spot" that maximizes performance 

or minimizes cost. 

While a relatively new development, MO presents a captivating 

addition to the optimization toolbox. Its unique inspiration and 

potential to overcome limitations of existing methods make it a 

promising tool for tackling complex problems across various 

fields. 

 

II. LITERATURE SURVEY 

Optimization algorithms are a fundamental concept in computer 

science, employed to find the best solution (minimum or 

maximum) for a given problem. Their applications span a wide 

range of fields, including machine learning, engineering, 

finance, and logistics. This literature review explores the key 

aspects of optimization algorithms, delving into their 

classifications, prominent examples, and factors influencing 

their selection. 

Classifications of Optimization Algorithms 

Optimization algorithms can be broadly categorized based on 

their approach to searching for the optimal solution: 

• Deterministic vs. Stochastic: Deterministic 

algorithms rely on a fixed set of rules to reach the 

solution, while stochastic algorithms incorporate 

randomness into their search process. Gradient 

descent, a popular deterministic method, iteratively 

updates parameters in the direction that minimizes the 

objective function [1]. Simulated annealing, a well-

known stochastic algorithm, utilizes randomness to 

escape local optima and explore the search space more 

effectively [2]. 

• Derivative-based vs. Derivative-free: Derivative-

based algorithms leverage the derivatives of the 

objective function to guide their search. Gradient 

descent, as mentioned earlier, is an example. 

Derivative-free methods, on the other hand, do not 

require access to derivatives. These methods are often 

employed when the objective function is complex or 

non-differentiable [2]. 

• Local Search vs. Global Search: Local search 

algorithms explore the neighborhood of a current 

solution, potentially getting trapped in local optima 

(suboptimal solutions). Gradient descent can fall prey 

to this issue. Conversely, global search algorithms aim 

to find the optimal solution across the entire search 

space. Techniques like genetic algorithms and 

simulated annealing incorporate stochasticity to 

achieve this goal [3]. 

Prominent Optimization Algorithms 

Several optimization algorithms have gained prominence due to 

their effectiveness in various domains. Here are a few 

noteworthy examples: 

• Gradient Descent: As mentioned previously, gradient 

descent is a widely used iterative method that 

minimizes an objective function by following the 

direction of steepest descent. Its variants, such as 

stochastic gradient descent and Adam, address issues 

like slow convergence and improve efficiency [4]. 

• Evolutionary Algorithms: Inspired by natural 

selection, these algorithms maintain a population of 

candidate solutions and evolve them through 

processes like mutation and crossover. Genetic 

algorithms are a well-known example, finding 

applications in optimization problems with complex 

search spaces [2]. 

• Particle Swarm Optimization (PSO): PSO draws 

inspiration from the collective behavior of swarms in 

nature, such as bird flocks or fish schools. Particles 

representing potential solutions move through the 

search space, influenced by their own best position and 

the best position encountered by the swarm [1]. 

Choosing the Right Optimization Algorithm 

The selection of an appropriate optimization algorithm hinges 

on several factors, including: 

• Problem characteristics: The nature of the objective 

function (convex, non-convex, continuous, discrete) 

and the presence of constraints significantly influence 

algorithm choice [2]. 

• Computational cost: The time and resources required 

by the algorithm to reach a solution are crucial 

considerations, especially for large-scale problems. 

Accuracy requirements: The desired level of accuracy in 

the solution dictates the trade-off between exploration (finding 

the global optimum) and exploitation (refining a promising 

solution).  

 

Mayfly Optimization Algorithm (MOA) is a relatively recent 

addition to the suite of nature-inspired optimization techniques. 

Drawing inspiration from the short lifespan and reproductive 

strategies of mayflies, this algorithm aims to efficiently explore 

solution spaces in optimization problems. Here, we review the 

foundational concepts, applications, and advancements of the 

Mayfly Optimization Algorithm. 
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1. Introduction to Mayfly Optimization: MOA was 

introduced by Mirjalili et al. in 2019, inspired by the 

life cycle of mayflies, which have a short adult lifespan 

but exhibit efficient mating and reproductive 

behaviors. The algorithm simulates the behaviors of 

male and female mayflies in search of optimal mating 

locations, where male mayflies converge to female 

swarms through scent and environmental cues.[5] 

2. Key Components and Operation: MOA operates by 

initializing a population of male mayflies representing 

potential solutions to an optimization problem. These 

mayflies iteratively move towards optimal regions 

guided by the scent left by female mayflies, which 

symbolize promising solution areas. The algorithm 

employs strategies such as scent intensity, mating 

behaviors, and environmental cues to iteratively 

update the positions of male mayflies towards optimal 

solutions.[6] 

3. Applications of Mayfly Optimization: Although 

relatively new, Mayfly Optimization has shown 

promise in various optimization tasks. Mirjalili et al. 

(2019) demonstrated its effectiveness in solving 

standard benchmark functions and compared its 

performance with other metaheuristic algorithms such 

as Genetic Algorithm and Particle Swarm 

Optimization. Furthermore, MOA has been applied to 

real-world problems in engineering, finance, and data 

science, showcasing its adaptability and robustness.[7] 

4. Advancements and Hybridizations: Since its 

introduction, researchers have been exploring 

enhancements and hybridizations of MOA to improve 

its performance and applicability. Hybrid approaches 

combining MOA with other metaheuristics or local 

search methods have been proposed to leverage the 

strengths of different algorithms and enhance solution 

quality. Additionally, studies have focused on 

parameter tuning, population initialization strategies, 

and adaptive mechanisms to make MOA more 

efficient and scalable for complex optimization 

problems.[8] 

5. Challenges and Future Directions: Despite its 

potential, Mayfly Optimization faces challenges such 

as premature convergence, scalability to high-

dimensional problems, and sensitivity to parameter 

settings. Future research directions may include 

addressing these challenges through novel adaptation 

mechanisms, exploration-exploitation balancing 

strategies, and parallelization techniques to enhance 

the scalability and robustness of MOA for large-scale 

optimization tasks.[8] 

Mayfly Optimization Algorithm offers a promising approach 

to optimization inspired by the efficient mating behaviors of 

mayflies. With ongoing research and development, MOA has 

the potential to become a valuable tool for solving a wide range 

of optimization problems in diverse domains. 

III. PROPOSED METHODOLOGY 

The quest for optimal solutions across diverse fields, from 

engineering design to machine learning, fuels the development 

of powerful optimization algorithms. The Mayfly Optimization 

Algorithm (MO), inspired by the short but crucial mating 

behaviour of adult mayflies, offers a unique approach to 

navigating complex search spaces. This text delves into the core 

concepts of MO, explores its application to various 

minimization problems through the lens of different fitness 

functions, and introduces advanced termination strategies for 

improved efficiency. 

Inspiration from Ephemeral Lives 

Unlike algorithms that mimic animal movement or hunting 

strategies, MO finds inspiration in the short but crucial mating 

behaviour of adult mayflies. These insects emerge in massive 

swarms for a brief period, primarily focused on reproduction 

before succumbing to natural mortality. MO mimics this 

swarming and mating process to guide its search for minimal 

values of fitness functions used in various optimization 

problems. 

Fitness Functions: The Compass for Minimization (with 

Equations) 

The choice of fitness function is crucial and depends on the 

specific optimization problem being addressed. Here's a 

glimpse into some commonly used fitness functions with their 

equations, all aiming to find the minimum value: 

• Sphere Function (Quadratic Function): A simple 

yet effective function often used as a benchmark. 

                  𝑓(𝑥) =  ∑ 𝑥𝑖
2                             

 

For i = 1 to d 

where: 

• f(X) represents the fitness value of a solution X. 

• X = (x1, x2, ..., xd) is a vector representing a solution in 

the search space with d dimensions. 

• X i represents the ith variable of the solution vector X. 

The goal of optimization for the sphere function is to find the 

solution X that minimizes the fitness value f(X). 

• Rastrigin Function: This multimodal function 

introduces complexity by incorporating multiple local 

minima, challenging the optimization algorithm's 

ability to escape from suboptimal solutions. 

                                   𝑓(𝑥) = 10𝑑 + ∑(𝑥𝑖
2 −

10 cos(2𝜋𝑥𝑖) 

 

 

where X represents the solution vector, d is the number of 

variables, and π is the mathematical constant pi. 
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• Schwefel Function: Another multimodal function 

with a deceptive structure, where solutions on the 

edges of the search space might appear more 

promising initially. 

                                  𝑓(𝑥) = 418.9829𝑑 − ∑(𝑥𝑖 ∗

 sin(√|𝑥𝑖|)) 

 

where X represents the solution vector and d is the number of 

variables. 

• Rosenbrock Function: A highly non-linear function 

with a narrow valley leading to the minimum value, 

testing the algorithm's ability to handle complex 

relationships between variables. 

                                 𝑓(𝑥) =  ∑(100(𝑥{𝑖+1} − 𝑥𝑖
2)2 + (𝑥𝑖 −

1)2) 

 

where X represents the solution vector and the summation 

iterates from the first element (i = 1) to the second-last element 

(i = d-1) due to the squared term referencing the next element. 

• Griewank Function: A composite function 

combining a sphere-like function with cosine terms, 

introducing challenges in balancing exploration and 

exploitation during the search process. 

                                   𝑓(𝑥) = 1 + ∑
𝑥𝑖

2

4000
−  𝜋 ∗ cos(

𝑥𝑖

√𝑖
) 

 

where X represents the solution vector, d is the number of 

variables, π is the mathematical constant pi, and prod represents 

the product of the cosine terms for each variable. 

Core Principles and Mathematical Formulation of MO with 

Greedy Selection: 

MO utilizes a population-based approach, where a set of N 

individuals represents potential solutions to the minimization 

problem defined by the chosen fitness function. The core 

concepts remain similar to the previous explanation, with the 

key change being the introduction of greedy selection during 

position updates. 

1. Swarming and Gathering: 

This phase remains the same as before, attracting individuals 

towards promising solutions within the population. 

2. Velocity Update and Movement: 

The velocity update utilizes a similar equation as before: 

 

            𝑉𝑖
{𝑡+1}

=  𝜔 ∗ 𝑉𝑖
𝑡 +  𝑐1 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑃𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡) +  𝑐2 ∗

𝑟𝑎𝑛𝑑 ∗ (𝐺𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡) 
 

 

3. Mating and Offspring Generation: 

The differential mutation operator also remains unchanged. 

4. Selection with Greedy Selection: 

Here, the concept of greedy selection is incorporated to ensure 

the algorithm prioritizes continuous improvement towards the 

minimum value of the fitness function. 

• The newly generated offspring compete with their 

parents using the chosen fitness function. 

• However, unlike the basic MO approach, the position 

update for each individual considers only the fitness 

value of the offspring (f(𝑦𝑖
𝑡)) compared to its current 

position (f(𝑥𝑖
𝑡)). 

 

 

This 

approach ensures the algorithm rejects movements that lead to 

higher fitness values (worse solutions), guiding the search 

towards the minimum effectively. 

5. Advanced Termination Strategies: 

• Auto-Termination: In addition to greedy selection, 

MO can benefit from incorporating auto-termination 

strategies. This involves monitoring the fitness values 

over a predefined window of iterations. If the 

improvement in fitness falls below a certain threshold 

(ε), the algorithm terminates, assuming it has 

converged to a near-optimal solution. This approach 

can significantly reduce unnecessary iterations, 

especially for problems where the minimum is 

approached gradually. 

 

Applications and Advantages: 

While the example focused on various fitness functions, MO 

finds applications in diverse minimization problems across 

fields like: 

if (f(Yi
t) < f(Xi

t)) { 

  Xi
(t+1) = Yi

t // Update position only if offspring has 

lower fitness value (better solution) 

} else { 

  Xi
(t+1) = Xi

t // Maintain current position if offspring 

is not better 

} 

 

Fitnesschanges = [] 

for _ in range(windowsize): 

  # Perform one iteration of MO 

  fitnesschanges.append(previousfitness - currentfitness) 

  previousfitness = currentfitness 

 

if all(change < ε for change in fitnesschanges): 

  Terminate algorithm  # Fitness improvement 

stagnates within the window 

fitness_changes = [] 

for _ in range(window_size): 

  # Perform one iteration of MO 

  fitness_changes.append(previous_fitness - 

current_fitness) 

  previous_fitness = current_fitness 

 

if all(change < ε for change in fitness_changes): 

  Terminate algorithm  # Fitness improvement stagnates 

within the window 
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• Engineering design optimization (minimizing weight, 

maximizing strength) 

• Power system optimization (minimizing energy loss) 

• Machine learning hyperparameter tuning (minimizing 

training error) 

Potential advantages of MO with greedy selection and auto-

termination include: 

• Effective Minimization: Greedy selection ensures the 

algorithm prioritizes solutions with lower fitness 

values, converging towards the minimum efficiently. 

• Improved Efficiency: Auto-termination reduces 

unnecessary iterations, especially for problems with 

gradual convergence. 

Flexibility: MO can be applied to various minimization 

problems by adapting the fitness function.  

 

IV. RESULTS 

Mayfly Optimization Algorithm (MOA) is a powerful tool 

for finding optimal solutions in complex problems. Here, we 

explore some commonly used benchmark functions to 

showcase MOA's capabilities: 

1. Sphere Function: 

• Plot: The Sphere function resembles a smooth, bowl-

shaped valley in both 2D and 3D plots. 

• Utility: It's a simple, unimodal function (having a 

single minimum point) used as a baseline for testing 

optimization algorithms. MOA should efficiently find 

the minimum point (origin) with a function value of 

zero. 

 
Figure 1: Sphere function curve 

2. Rastrigin Function: 

• Plot: This function has a rough, egg-carton-like 

landscape in 2D and 3D, filled with many local 

minima (valleys) besides the global minimum. 

• Utility: The Rastrigin function tests MOA's ability to 

escape local traps and converge towards the single 

global minimum point. 

 
Figure 2: Rastrigin Function Curve 

 

3. Schwefel Function: 

• Plot: The 2D and 3D plots appear bumpy and uneven, 

with the global minimum lying far from the initial 

search space. 

• Utility: The Schwefel function challenges MOA's 

exploration capabilities. It tests the algorithm's ability 

to effectively search a wider region and avoid getting 

stuck in nearby local minima. 

 
Figure 3: Schwefel Function Curve 

4. Rosenbrock Function: 

• Plot: This function resembles a long, narrow valley in 

2D and 3D, with a steep slope on one side. 

• Utility: The Rosenbrock function tests MOA's ability 

to handle elongated search spaces and fine-tune the 

search process to navigate the narrow valley towards 

the minimum point. 

 
Figure 4: Rastrigin Function Curve 

 

These benchmark functions, along with others, help evaluate 

the effectiveness of MOA in various optimization scenarios. By 

successfully minimizing these functions, MOA demonstrates 

its potential for solving real-world problems with complex 
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landscapes. 

The implemented Mayfly Optimization (MO) algorithm 

successfully tackled the minimization problem, achieving 

significant efficiency gains through two key enhancements: 

auto-termination and greedy selection. 

Auto-Termination: Stopping When We've Reached the 

Peak 

Traditional optimization algorithms often rely on a pre-set 

number of iterations, which can lead to unnecessary 

computation if the solution converges to a minimum value 

earlier. Auto-termination addresses this by continuously 

monitoring the fitness function values over a defined window 

of iterations. Here's how it works: 

1. Fitness Change Tracking: The algorithm keeps track 

of the improvement in fitness values (f(X)) over the 

past window_size iterations. 

2. Convergence Detection: If all the fitness changes 

within the window fall below a predefined threshold 

(ε), it signifies minimal improvement. This suggests 

the algorithm has likely converged to a near-optimal 

solution. 

3. Early Termination: Once convergence is detected, 

the algorithm terminates, saving valuable computation 

time. 

In our case, auto-termination successfully identified when 

the fitness function stopped improving significantly within the 

window. This indicates that the algorithm had likely found a 

solution close to the minimum value, and further iterations 

wouldn't yield substantial benefits. 

Greedy Selection: A Step Forward, Never Back 

The second key improvement lies in the implementation of 

greedy selection during position updates. This ensures the 

algorithm prioritizes continuous improvement towards the 

minimum. Here's how it functions: 

1. Offspring Evaluation: Newly generated offspring 

solutions compete with their parents using the fitness 

function. 

2. Maintaining Progress: Unlike the basic MO 

approach, the position update for each individual 

considers only the offspring's fitness (f(Y_i^t)) 

compared to its current position (f(X_i^t)). 

3. Improvement or Maintain: The position update 

happens only if the offspring has a lower fitness value 

(better solution) than the current position. If not, the 

current position is maintained, preventing exploration 

of areas that might lead to worse solutions. 

By incorporating greedy selection, the algorithm avoids 

potentially detrimental movements that could increase the 

fitness value (move away from the minimum). This ensures a 

more focused search towards the optimal solution. 

 
Figure 5: Convergence Curve 

Combined Impact: Efficiency and Effectiveness 

The combined effect of auto-termination and greedy 

selection significantly improves the overall efficiency of the 

MO algorithm. Auto-termination eliminates unnecessary 

iterations, while greedy selection directs the search towards 

better solutions, accelerating convergence. This allows the 

algorithm to find optimal or near-optimal solutions in a shorter 

time frame compared to the traditional MO approach. 

These results showcase the potential of these enhancements 

in tackling various minimization problems. As research 

progresses, further exploration of advanced termination 

strategies and hybridization with other algorithms can unlock 

even greater efficiency and effectiveness for the Mayfly 

Optimization Algorithm. 

 

V. CONCLUSION 

The Mayfly Optimization Algorithm (MO), inspired by the 

fleeting yet crucial mating behavior of adult mayflies, offers a 

compelling approach for tackling minimization problems. MO's 

core principles leverage a population-based search guided by 

swarming, mating, and selection processes. Recent 

advancements like greedy selection and auto-termination have 

bolstered its effectiveness. Greedy selection ensures the 

algorithm prioritizes continuous improvement, while auto-

termination eliminates unnecessary iterations. As research 

progresses, exploring advanced termination strategies and 

hybridization with other algorithms holds promise for 

unlocking MO's even greater potential as a powerful 

optimization technique. 
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