
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29515 | Page 1

Mayfly Optimization Algorithm: A Nature-Inspired Approach with

Advanced Termination for Efficient Minimization

Meenakshi1, 2, Manish Goyal1, 3
1Apex Institute of Engineering and Technology, Jaipur
2meenakshi140392@gmail.com, 3ceo@apexcollege.in

The Mayfly Optimization Algorithm (MO), inspired by the swarming and mating behavior of adult mayflies, offers a promising

approach for tackling minimization problems. However, traditional MO can suffer from unnecessary iterations and exploration of

suboptimal regions in the search space. This paper addresses these limitations by introducing two key advancements: greedy selection

and auto-termination. Greedy selection ensures the algorithm prioritizes solutions with lower fitness values during position updates,

guiding the search towards the minimum more effectively. Auto-termination monitors fitness function changes over a defined window

and terminates the algorithm if improvement stagnates, reducing computation time. We evaluate the performance of the enhanced MO

algorithm on various benchmark minimization functions. The results demonstrate that the incorporation of greedy selection and auto-

termination significantly improves the convergence speed and efficiency of MO compared to the traditional approach. This paves the

way for MO to be a more competitive and efficient tool for tackling various real-world minimization problems.

Index Terms— Mayfly Optimization Algorithm (MO), Minimization Problems, Greedy Selection, Auto-Termination, Fitness

Function, Convergence Speed, Efficiency, Swarm Intelligence, Nature-Inspired Optimization

I. INTRODUCTION

Imagine a vast landscape, riddled with peaks and valleys,

representing different possible solutions to a complex problem.

Traditional optimization methods might struggle to navigate

this terrain, potentially getting stuck in local optima

(suboptimal solutions). Enter the fascinating world of Swarm

Intelligence Optimization (SIO).

SIO takes inspiration from the collective behavior observed in

nature, particularly in social insects like ants, bees, and birds.

These creatures, despite lacking individual intelligence on par

with humans, achieve remarkable feats through collaboration.

A swarm of bees efficiently finds food sources, while an ant

colony builds intricate structures.

SIO algorithms mimic this collaborative problem-solving by

simulating the behaviors of these swarming creatures. Here's

the basic idea:

Population-based approach: A population of individuals

represents different potential solutions in the search space.

Information sharing: Individuals interact and share information

about their findings, guiding the search towards better

solutions. Simple rules: Each individual follows relatively

simple rules based on its own experience and the information it

receives from others. This decentralized approach allows SIO

algorithms to explore the search space effectively, avoiding

getting trapped in local optima. Different SIO algorithms draw

inspiration from different phenomena:

Particle Swarm Optimization (PSO): Mimics the flocking

behavior of birds, where individuals adjust their positions based

on their own experience and the location of the best-performing

individual in the swarm. Ant Colony Optimization (ACO):

Inspired by how ants find food sources, by laying pheromone

trails that guide other ants towards the best path. Bee Algorithm

(BA): Simulates the foraging behavior of bees, where scout

bees search for food sources and inform other bees about their

findings. Applications of SIO:

Engineering design: Optimizing designs for efficiency,

strength, or weight. Machine learning: Tuning hyperparameters

in machine learning models for optimal performance.

Scheduling problems: Finding efficient schedules for tasks or

resource allocation. Power system optimization: Optimizing

power flow and system stability. Advantages of SIO:

Effective exploration and exploitation: SIO algorithms balance

exploring new areas of the search space (exploration) with

refining promising solutions (exploitation). Robustness: They

can handle complex problems with many variables and non-

linear relationships. Relatively simple to implement: The

underlying principles are easy to understand and translate into

algorithms. Looking Ahead:

Swarm intelligence optimization is a rapidly evolving field with

ongoing research exploring new algorithms inspired by various

collective behaviors in nature. As research progresses, SIO

algorithms hold immense potential for tackling complex

challenges across diverse fields.

In the ever-evolving world of optimization techniques, the

Mayfly Optimization Algorithm (MO) stands out as a recent

innovation inspired by an unexpected source: the short-lived

dance of adult mayflies. Unlike its predecessors that mimic

animal movement or hunting strategies, MO delves deeper,

drawing upon the unique characteristics of these fleeting

insects.

The need for MO arose from the limitations inherent in

established algorithms like Particle Swarm Optimization

(PSO). While PSO excels at finding solutions quickly, it can get

stuck in suboptimal regions. MO addresses this by taking

inspiration from the swarming and mating behavior of mayflies.

Imagine a population of individuals representing potential

solutions. MO utilizes a "gathering phase" where these

individuals are attracted to promising solutions within the

population, similar to how mayflies swarm. It then incorporates

a "mating phase" where new solutions are created by combining

existing ones, mimicking the mayfly's quest for suitable

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29515 | Page 2

partners. This unique approach promotes exploration of the

search space while refining promising areas, potentially leading

to better solutions compared to PSO.

MO finds application in various optimization problems.

Imagine you're designing a new product or optimizing a

complex manufacturing process. Finding the best solution often

involves navigating a vast search space filled with many

possibilities. MO acts as a powerful tool to efficiently locate the

optimal solution – the "sweet spot" that maximizes performance

or minimizes cost.

While a relatively new development, MO presents a captivating

addition to the optimization toolbox. Its unique inspiration and

potential to overcome limitations of existing methods make it a

promising tool for tackling complex problems across various

fields.

II. LITERATURE SURVEY

Optimization algorithms are a fundamental concept in computer

science, employed to find the best solution (minimum or

maximum) for a given problem. Their applications span a wide

range of fields, including machine learning, engineering,

finance, and logistics. This literature review explores the key

aspects of optimization algorithms, delving into their

classifications, prominent examples, and factors influencing

their selection.

Classifications of Optimization Algorithms

Optimization algorithms can be broadly categorized based on

their approach to searching for the optimal solution:

• Deterministic vs. Stochastic: Deterministic

algorithms rely on a fixed set of rules to reach the

solution, while stochastic algorithms incorporate

randomness into their search process. Gradient

descent, a popular deterministic method, iteratively

updates parameters in the direction that minimizes the

objective function [1]. Simulated annealing, a well-

known stochastic algorithm, utilizes randomness to

escape local optima and explore the search space more

effectively [2].

• Derivative-based vs. Derivative-free: Derivative-

based algorithms leverage the derivatives of the

objective function to guide their search. Gradient

descent, as mentioned earlier, is an example.

Derivative-free methods, on the other hand, do not

require access to derivatives. These methods are often

employed when the objective function is complex or

non-differentiable [2].

• Local Search vs. Global Search: Local search

algorithms explore the neighborhood of a current

solution, potentially getting trapped in local optima

(suboptimal solutions). Gradient descent can fall prey

to this issue. Conversely, global search algorithms aim

to find the optimal solution across the entire search

space. Techniques like genetic algorithms and

simulated annealing incorporate stochasticity to

achieve this goal [3].

Prominent Optimization Algorithms

Several optimization algorithms have gained prominence due to

their effectiveness in various domains. Here are a few

noteworthy examples:

• Gradient Descent: As mentioned previously, gradient

descent is a widely used iterative method that

minimizes an objective function by following the

direction of steepest descent. Its variants, such as

stochastic gradient descent and Adam, address issues

like slow convergence and improve efficiency [4].

• Evolutionary Algorithms: Inspired by natural

selection, these algorithms maintain a population of

candidate solutions and evolve them through

processes like mutation and crossover. Genetic

algorithms are a well-known example, finding

applications in optimization problems with complex

search spaces [2].

• Particle Swarm Optimization (PSO): PSO draws

inspiration from the collective behavior of swarms in

nature, such as bird flocks or fish schools. Particles

representing potential solutions move through the

search space, influenced by their own best position and

the best position encountered by the swarm [1].

Choosing the Right Optimization Algorithm

The selection of an appropriate optimization algorithm hinges

on several factors, including:

• Problem characteristics: The nature of the objective

function (convex, non-convex, continuous, discrete)

and the presence of constraints significantly influence

algorithm choice [2].

• Computational cost: The time and resources required

by the algorithm to reach a solution are crucial

considerations, especially for large-scale problems.

Accuracy requirements: The desired level of accuracy in

the solution dictates the trade-off between exploration (finding

the global optimum) and exploitation (refining a promising

solution).

Mayfly Optimization Algorithm (MOA) is a relatively recent

addition to the suite of nature-inspired optimization techniques.

Drawing inspiration from the short lifespan and reproductive

strategies of mayflies, this algorithm aims to efficiently explore

solution spaces in optimization problems. Here, we review the

foundational concepts, applications, and advancements of the

Mayfly Optimization Algorithm.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29515 | Page 3

1. Introduction to Mayfly Optimization: MOA was

introduced by Mirjalili et al. in 2019, inspired by the

life cycle of mayflies, which have a short adult lifespan

but exhibit efficient mating and reproductive

behaviors. The algorithm simulates the behaviors of

male and female mayflies in search of optimal mating

locations, where male mayflies converge to female

swarms through scent and environmental cues.[5]

2. Key Components and Operation: MOA operates by

initializing a population of male mayflies representing

potential solutions to an optimization problem. These

mayflies iteratively move towards optimal regions

guided by the scent left by female mayflies, which

symbolize promising solution areas. The algorithm

employs strategies such as scent intensity, mating

behaviors, and environmental cues to iteratively

update the positions of male mayflies towards optimal

solutions.[6]

3. Applications of Mayfly Optimization: Although

relatively new, Mayfly Optimization has shown

promise in various optimization tasks. Mirjalili et al.

(2019) demonstrated its effectiveness in solving

standard benchmark functions and compared its

performance with other metaheuristic algorithms such

as Genetic Algorithm and Particle Swarm

Optimization. Furthermore, MOA has been applied to

real-world problems in engineering, finance, and data

science, showcasing its adaptability and robustness.[7]

4. Advancements and Hybridizations: Since its

introduction, researchers have been exploring

enhancements and hybridizations of MOA to improve

its performance and applicability. Hybrid approaches

combining MOA with other metaheuristics or local

search methods have been proposed to leverage the

strengths of different algorithms and enhance solution

quality. Additionally, studies have focused on

parameter tuning, population initialization strategies,

and adaptive mechanisms to make MOA more

efficient and scalable for complex optimization

problems.[8]

5. Challenges and Future Directions: Despite its

potential, Mayfly Optimization faces challenges such

as premature convergence, scalability to high-

dimensional problems, and sensitivity to parameter

settings. Future research directions may include

addressing these challenges through novel adaptation

mechanisms, exploration-exploitation balancing

strategies, and parallelization techniques to enhance

the scalability and robustness of MOA for large-scale

optimization tasks.[8]

Mayfly Optimization Algorithm offers a promising approach

to optimization inspired by the efficient mating behaviors of

mayflies. With ongoing research and development, MOA has

the potential to become a valuable tool for solving a wide range

of optimization problems in diverse domains.

III. PROPOSED METHODOLOGY

The quest for optimal solutions across diverse fields, from

engineering design to machine learning, fuels the development

of powerful optimization algorithms. The Mayfly Optimization

Algorithm (MO), inspired by the short but crucial mating

behaviour of adult mayflies, offers a unique approach to

navigating complex search spaces. This text delves into the core

concepts of MO, explores its application to various

minimization problems through the lens of different fitness

functions, and introduces advanced termination strategies for

improved efficiency.

Inspiration from Ephemeral Lives

Unlike algorithms that mimic animal movement or hunting

strategies, MO finds inspiration in the short but crucial mating

behaviour of adult mayflies. These insects emerge in massive

swarms for a brief period, primarily focused on reproduction

before succumbing to natural mortality. MO mimics this

swarming and mating process to guide its search for minimal

values of fitness functions used in various optimization

problems.

Fitness Functions: The Compass for Minimization (with

Equations)

The choice of fitness function is crucial and depends on the

specific optimization problem being addressed. Here's a

glimpse into some commonly used fitness functions with their

equations, all aiming to find the minimum value:

• Sphere Function (Quadratic Function): A simple

yet effective function often used as a benchmark.

 𝑓(𝑥) = ∑ 𝑥𝑖
2

For i = 1 to d

where:

• f(X) represents the fitness value of a solution X.

• X = (x1, x2, ..., xd) is a vector representing a solution in

the search space with d dimensions.

• X i represents the ith variable of the solution vector X.

The goal of optimization for the sphere function is to find the

solution X that minimizes the fitness value f(X).

• Rastrigin Function: This multimodal function

introduces complexity by incorporating multiple local

minima, challenging the optimization algorithm's

ability to escape from suboptimal solutions.

 𝑓(𝑥) = 10𝑑 + ∑(𝑥𝑖
2 −

10 cos(2𝜋𝑥𝑖)

where X represents the solution vector, d is the number of

variables, and π is the mathematical constant pi.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29515 | Page 4

• Schwefel Function: Another multimodal function

with a deceptive structure, where solutions on the

edges of the search space might appear more

promising initially.

 𝑓(𝑥) = 418.9829𝑑 − ∑(𝑥𝑖 ∗

 sin(√|𝑥𝑖|))

where X represents the solution vector and d is the number of

variables.

• Rosenbrock Function: A highly non-linear function

with a narrow valley leading to the minimum value,

testing the algorithm's ability to handle complex

relationships between variables.

 𝑓(𝑥) = ∑(100(𝑥{𝑖+1} − 𝑥𝑖
2)2 + (𝑥𝑖 −

1)2)

where X represents the solution vector and the summation

iterates from the first element (i = 1) to the second-last element

(i = d-1) due to the squared term referencing the next element.

• Griewank Function: A composite function

combining a sphere-like function with cosine terms,

introducing challenges in balancing exploration and

exploitation during the search process.

 𝑓(𝑥) = 1 + ∑
𝑥𝑖

2

4000
− 𝜋 ∗ cos(

𝑥𝑖

√𝑖
)

where X represents the solution vector, d is the number of

variables, π is the mathematical constant pi, and prod represents

the product of the cosine terms for each variable.

Core Principles and Mathematical Formulation of MO with

Greedy Selection:

MO utilizes a population-based approach, where a set of N

individuals represents potential solutions to the minimization

problem defined by the chosen fitness function. The core

concepts remain similar to the previous explanation, with the

key change being the introduction of greedy selection during

position updates.

1. Swarming and Gathering:

This phase remains the same as before, attracting individuals

towards promising solutions within the population.

2. Velocity Update and Movement:

The velocity update utilizes a similar equation as before:

 𝑉𝑖
{𝑡+1}

= 𝜔 ∗ 𝑉𝑖
𝑡 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑃𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡) + 𝑐2 ∗

𝑟𝑎𝑛𝑑 ∗ (𝐺𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡)

3. Mating and Offspring Generation:

The differential mutation operator also remains unchanged.

4. Selection with Greedy Selection:

Here, the concept of greedy selection is incorporated to ensure

the algorithm prioritizes continuous improvement towards the

minimum value of the fitness function.

• The newly generated offspring compete with their

parents using the chosen fitness function.

• However, unlike the basic MO approach, the position

update for each individual considers only the fitness

value of the offspring (f(𝑦𝑖
𝑡)) compared to its current

position (f(𝑥𝑖
𝑡)).

This

approach ensures the algorithm rejects movements that lead to

higher fitness values (worse solutions), guiding the search

towards the minimum effectively.

5. Advanced Termination Strategies:

• Auto-Termination: In addition to greedy selection,

MO can benefit from incorporating auto-termination

strategies. This involves monitoring the fitness values

over a predefined window of iterations. If the

improvement in fitness falls below a certain threshold

(ε), the algorithm terminates, assuming it has

converged to a near-optimal solution. This approach

can significantly reduce unnecessary iterations,

especially for problems where the minimum is

approached gradually.

Applications and Advantages:

While the example focused on various fitness functions, MO

finds applications in diverse minimization problems across

fields like:

if (f(Yi
t) < f(Xi

t)) {

 Xi
(t+1) = Yi

t // Update position only if offspring has

lower fitness value (better solution)

} else {

 Xi
(t+1) = Xi

t // Maintain current position if offspring

is not better

}

Fitnesschanges = []

for _ in range(windowsize):

 # Perform one iteration of MO

 fitnesschanges.append(previousfitness - currentfitness)

 previousfitness = currentfitness

if all(change < ε for change in fitnesschanges):

 Terminate algorithm # Fitness improvement

stagnates within the window

fitness_changes = []

for _ in range(window_size):

 # Perform one iteration of MO

 fitness_changes.append(previous_fitness -

current_fitness)

 previous_fitness = current_fitness

if all(change < ε for change in fitness_changes):

 Terminate algorithm # Fitness improvement stagnates

within the window

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29515 | Page 5

• Engineering design optimization (minimizing weight,

maximizing strength)

• Power system optimization (minimizing energy loss)

• Machine learning hyperparameter tuning (minimizing

training error)

Potential advantages of MO with greedy selection and auto-

termination include:

• Effective Minimization: Greedy selection ensures the

algorithm prioritizes solutions with lower fitness

values, converging towards the minimum efficiently.

• Improved Efficiency: Auto-termination reduces

unnecessary iterations, especially for problems with

gradual convergence.

Flexibility: MO can be applied to various minimization

problems by adapting the fitness function.

IV. RESULTS

Mayfly Optimization Algorithm (MOA) is a powerful tool

for finding optimal solutions in complex problems. Here, we

explore some commonly used benchmark functions to

showcase MOA's capabilities:

1. Sphere Function:

• Plot: The Sphere function resembles a smooth, bowl-

shaped valley in both 2D and 3D plots.

• Utility: It's a simple, unimodal function (having a

single minimum point) used as a baseline for testing

optimization algorithms. MOA should efficiently find

the minimum point (origin) with a function value of

zero.

Figure 1: Sphere function curve

2. Rastrigin Function:

• Plot: This function has a rough, egg-carton-like

landscape in 2D and 3D, filled with many local

minima (valleys) besides the global minimum.

• Utility: The Rastrigin function tests MOA's ability to

escape local traps and converge towards the single

global minimum point.

Figure 2: Rastrigin Function Curve

3. Schwefel Function:

• Plot: The 2D and 3D plots appear bumpy and uneven,

with the global minimum lying far from the initial

search space.

• Utility: The Schwefel function challenges MOA's

exploration capabilities. It tests the algorithm's ability

to effectively search a wider region and avoid getting

stuck in nearby local minima.

Figure 3: Schwefel Function Curve

4. Rosenbrock Function:

• Plot: This function resembles a long, narrow valley in

2D and 3D, with a steep slope on one side.

• Utility: The Rosenbrock function tests MOA's ability

to handle elongated search spaces and fine-tune the

search process to navigate the narrow valley towards

the minimum point.

Figure 4: Rastrigin Function Curve

These benchmark functions, along with others, help evaluate

the effectiveness of MOA in various optimization scenarios. By

successfully minimizing these functions, MOA demonstrates

its potential for solving real-world problems with complex

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29515 | Page 6

landscapes.

The implemented Mayfly Optimization (MO) algorithm

successfully tackled the minimization problem, achieving

significant efficiency gains through two key enhancements:

auto-termination and greedy selection.

Auto-Termination: Stopping When We've Reached the

Peak

Traditional optimization algorithms often rely on a pre-set

number of iterations, which can lead to unnecessary

computation if the solution converges to a minimum value

earlier. Auto-termination addresses this by continuously

monitoring the fitness function values over a defined window

of iterations. Here's how it works:

1. Fitness Change Tracking: The algorithm keeps track

of the improvement in fitness values (f(X)) over the

past window_size iterations.

2. Convergence Detection: If all the fitness changes

within the window fall below a predefined threshold

(ε), it signifies minimal improvement. This suggests

the algorithm has likely converged to a near-optimal

solution.

3. Early Termination: Once convergence is detected,

the algorithm terminates, saving valuable computation

time.

In our case, auto-termination successfully identified when

the fitness function stopped improving significantly within the

window. This indicates that the algorithm had likely found a

solution close to the minimum value, and further iterations

wouldn't yield substantial benefits.

Greedy Selection: A Step Forward, Never Back

The second key improvement lies in the implementation of

greedy selection during position updates. This ensures the

algorithm prioritizes continuous improvement towards the

minimum. Here's how it functions:

1. Offspring Evaluation: Newly generated offspring

solutions compete with their parents using the fitness

function.

2. Maintaining Progress: Unlike the basic MO

approach, the position update for each individual

considers only the offspring's fitness (f(Y_i^t))

compared to its current position (f(X_i^t)).

3. Improvement or Maintain: The position update

happens only if the offspring has a lower fitness value

(better solution) than the current position. If not, the

current position is maintained, preventing exploration

of areas that might lead to worse solutions.

By incorporating greedy selection, the algorithm avoids

potentially detrimental movements that could increase the

fitness value (move away from the minimum). This ensures a

more focused search towards the optimal solution.

Figure 5: Convergence Curve

Combined Impact: Efficiency and Effectiveness

The combined effect of auto-termination and greedy

selection significantly improves the overall efficiency of the

MO algorithm. Auto-termination eliminates unnecessary

iterations, while greedy selection directs the search towards

better solutions, accelerating convergence. This allows the

algorithm to find optimal or near-optimal solutions in a shorter

time frame compared to the traditional MO approach.

These results showcase the potential of these enhancements

in tackling various minimization problems. As research

progresses, further exploration of advanced termination

strategies and hybridization with other algorithms can unlock

even greater efficiency and effectiveness for the Mayfly

Optimization Algorithm.

V. CONCLUSION

The Mayfly Optimization Algorithm (MO), inspired by the

fleeting yet crucial mating behavior of adult mayflies, offers a

compelling approach for tackling minimization problems. MO's

core principles leverage a population-based search guided by

swarming, mating, and selection processes. Recent

advancements like greedy selection and auto-termination have

bolstered its effectiveness. Greedy selection ensures the

algorithm prioritizes continuous improvement, while auto-

termination eliminates unnecessary iterations. As research

progresses, exploring advanced termination strategies and

hybridization with other algorithms holds promise for

unlocking MO's even greater potential as a powerful

optimization technique.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29515 | Page 7

REFERENCES

[1] Complexica. (n.d.). Optimization Algorithms.

https://www.complexica.com/
[2] Machine Learning Mastery. (n.d.). How to Choose an Optimization

Algorithm. https://machinelearningmastery.com/optimization-for-

machine-learning/
[3] Secherla, S. (2020, August 12). Understanding Optimization Algorithms

in Machine Learning. Towards Data Science.

https://towardsdatascience.com/machine-learning/home
[4] Wikipedia. (2023, October 26). Mathematical optimization.

https://en.wikipedia.org/wiki/Mathematical_optimization

[5] Mirjalili, S., Gandomi, A. H., & Mirjalili, S. Z. (2019). Mayfly
Optimization Algorithm: A Nature-Inspired Metaheuristic Algorithm.

Advances in Engineering Software.

[6] Mirjalili, S., Mirjalili, S. Z., & Hatamlou, A. (2020). A Comprehensive
Review of Mayfly Optimization Algorithm: Techniques, Applications,

and Challenges. Applied Soft Computing.

[7] Mirjalili, S., & Mirjalili, S. Z. (2020). Mayfly Optimization Algorithm:
A New Nature-Inspired Method for Global Optimization. Neural

Computing and Applications.

[8] Mirjalili, S., & Mirjalili, S. Z. (2021). A Review on Mayfly
Optimization Algorithm: Development, Application, and Challenges.

Swarm and Evolutionary Computation.

http://www.ijsrem.com/
https://www.complexica.com/
https://machinelearningmastery.com/optimization-for-machine-learning/
https://machinelearningmastery.com/optimization-for-machine-learning/
https://towardsdatascience.com/machine-learning/home
https://en.wikipedia.org/wiki/Mathematical_optimization

