
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42962 | Page 1

MERN Stack-Based Job Portal: Design and Development

Rishita Chaubey

Guided By: Assi. Prof. Arunesh Pratap Singh

Dept. of Computer Science and Engineering

Parul University

Vadodara, Gujarat - 391760

Abstract— Full-stack development is crucial for building
dynamic and scalable web applications, ensuring seamless
user interaction and efficient data management. This project
focuses on developing a full-stack job portal using the MERN
(MongoDB, Express.js, React, Node.js) stack. The application
facilitates job seekers in searching for opportunities and apply-
ing for jobs, while employers can post job listings and manage
applications efficiently.

The backend is developed using Express.js and MongoDB,
ensuring secure API endpoints and seamless data handling. The
frontend is built with React.js, providing an interactive and
user-friendly interface for job listings, applications, and user
authentication. The platform integrates JWT-based authenti-
cation for secure access, role-based access control (RBAC) for
different user types (job seekers and employers), and real-time
job application tracking.

Key features include job search with filtering options, an
interactive dashboard for applicants and recruiters, and profile
management. Future enhancements aim to improve system
scalability, incorporate AI-based job recommendations, and
integrate third-party authentication and payment systems for
premium job postings.

Index Terms: Full-Stack Development, MERN Stack, Job Portal,
React.js, Node.js, MongoDB, Express.js, JWT Authentication,
Role-Based Access Control (RBAC)

I. INTRODUCTION

In modern web development, full-stack applications are es-

sential for delivering seamless user experiences and efficient

data management. With the increasing demand for online

job search platforms, building a scalable and feature-rich job

portal is crucial for bridging the gap between job seekers and

employers. This project focuses on development of a full-

stack job portal using The MERN (MongoDB, Express.js,

React.js, Node.js) stack, ensuring smooth interactions be-

tween users and the system.

The application enables job seekers to search and ap-

ply for jobs, while employers can post job listings and

manage applications. Key functionalities include secure au-

thentication, role-based access control (RBAC), real-time

application tracking, and profile management for both job

seekers and employers. The backend is powered by Node.js

and Express.js, providing a robust API layer for handling

user authentication, job postings, and application processing.

MongoDB is used as the database for efficient storage and

retrieval of job listings, user profiles, and applications. The

frontend, developed with React.js, ensures a responsive and

intuitive interface for users.To enhance security, JWT-based

authentication is implemented for user verification, along

with role-based permissions to control access levels. The

application also includes error handling, real-time notifica-

tions, and structured logging to maintain system reliability.

Through this project, I aim to gain hands-on experience in

full-stack development, API integration, database manage-

ment, and user interface design, contributing to the creation

of a scalable and efficient job portal.

This project outlines clear objectives for developing the Job

Portal.

1) Improved Efficiency: Automating job posting, appli-

cant tracking, and user authentication reduces manual

effort, streamlining the recruitment process for both

employers and job seekers.

2) Enhanced User Experience: A responsive and in-

tuitive UI built with React.js ensures seamless navi-

gation for job searching, application submission, and

employer interactions.

3) Scalability:The MERN stack provides a scalable ar-

chitecture, allowing the system to handle an increasing

number of job listings, applications, and user interac-

tions efficiently.

4) Security and Data Integrity: JWT-based authentica-

tion, role-based access control (RBAC), and database

validation enhance data security, user privacy, and

system integrity.

5) Future Adaptability: The modular design enables

easy integration of new features like AI-powered job

recommendations, real-time chat between recruiters

and candidates, and advanced analytics for job market

insights.

II. LITERATURE REVIEW

With the increasing demand for online job recruitment

platforms, full-stack job portal applications have become

essential in streamlining the hiring process for both employ-

ers and job seekers. Various technologies and frameworks

have been explored to optimize their development, ensuring

efficiency, scalability, and security.

Several studies have examined full-stack web development

approaches. According to Grinberg [1], MERN stack appli-

cations provide a unified JavaScript-based ecosystem that

enhances development flexibility and performance. Similarly,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42962 | Page 2

Vohra [2] highlights how React.js improves the frontend ex-

perience by enabling dynamic content rendering and efficient

state management, making it ideal for interactive applications

like job portals.

Authentication and security are critical for job recruitment

platforms. Research by Kim et al. [3] emphasizes the

significance of JWT (JSON Web Token) authentication in

modern web applications, ensuring secure user sessions and

preventing unauthorized access. Additionally, OWASP [4]

highlights best practices for securing API endpoints, pre-

venting common vulnerabilities such as cross-site scripting

(XSS) and SQL injection.

Database management plays a crucial role in handling large

volumes of job listings, employer profiles, and candidate

applications. Chodorow [5] explores the advantages of Mon-

goDB, which provides scalability and flexibility for man-

aging unstructured data, making it suitable for dynamic

applications like job portals. Other studies [6] further analyze

the benefits of NoSQL databases in efficiently storing and

retrieving job-related information.

Performance optimization in job portals is another key area

of research. Studies by Patel et al. [7] discuss how server-side

rendering (SSR) with React.js enhances page load speed and

SEO, leading to better visibility for job listings. Research

by Lee et al. [8] also highlights caching mechanisms and

database indexing to improve search performance and filter-

ing speed for job seekers.

AI-driven recommendations and personalization have gained

importance in modern job portals. Li et al. [9] propose

collaborative filtering algorithms to enhance job recommen-

dations based on user behavior, improving engagement and

job matching accuracy. Similarly, research by Smith et al.

[10] explores the integration of natural language processing

(NLP) for resume parsing and keyword-based job matching,

streamlining the recruitment process.

In conclusion, existing research supports the MERN stack

as a robust solution for building scalable and feature-rich

job portals. However, challenges such as enhanced security

measures, performance optimization, and AI-powered job

matching algorithms remain key areas for future exploration.

III. METHODOLOGY

In this section, we describe the approach used to build

and automate the functionalities of the Full Stack Job Portal

App. The methodology consists of multiple phases, including

backend development, frontend implementation, database

integration, API creation, and testing.

A. Input Data

The primary input to the Full-Stack Job Portal consists of

the following key data types:

1) Job Data: Includes details such as job title, de-

scription, required skills, salary range, location, and

company information.

2) User Data: Contains user credentials (for authentica-

tion), resumes, skill sets, job preferences, and applica-

tion history.

3) Application Data: Stores job applications submitted

by candidates, along with their status (pending, short-

listed, rejected, hired).

4) Employer Data: Includes company profiles, job post-

ings, and hiring preferences.

5) API Endpoints Defined using the OpenAPI schema,

structuring API interactions in JSON format for seam-

less data exchange between the frontend and backend.

B. Development Approach

The development process follows a structured workflow

as described below:

1) Database Design:

• MongoDB is used for flexible and scalable data

storage.

• Collections include users, jobs, applications, em-

ployers, and job categories

• Relationships are structured using references be-

tween collections, ensuring efficient data retrieval.

2) Backend Development:

• Node.js with Express.js is used to handle API

requests.

• RESTful APIs are developed to support CRUD op-

erations on jobs, users, applications, and employer

profiles.

• Middleware is implemented for authentication, au-

thorization, and request validation.

3) Frontend Implementation:

• React.js is used to create a dynamic and responsive

user interface.

• State management is handled using Redux for

efficient data flow and user interactions.

• UI components are designed using Tailwind CSS

to enhance the user experience.

4) API Testing and Validation:

• GET, POST, PUT, and DELETE requests tested

using Postman and Jest.

• Response validation includes checking for correct

status codes (2XX, 4XX, 5XX).

• Edge cases tested with invalid inputs and boundary

values.

5) Logging and Error handling:

• API logs are stored in a CSV file or MongoDB

logs with details such as endpoint, request data,

status code, and response.

• Error-handling mechanisms are implemented to

catch, log, and handle exceptions gracefully.

6) Iterative Improvements:

• AI-based analysis is planned for refining job rec-

ommendations based on user profiles and interac-

tions.

• Continuous updates are made based on user feed-

back, bug reports, and system performance moni-

toring.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42962 | Page 3

C. Technologies and Tools Used

The following technologies were used for the development

of the job portal:

1) MongoDB: NoSQL database for storing book, user,

and order information.

2) Express.js and Node.js: Backend framework for API

handling.

3) React.js: Frontend framework for creating an interac-

tive UI.

4) JWT Authentication: Secures user login and API

access.

5) Postman and Jest: API testing and validation tools.

6) Tailwind CSS: Used for styling and enhancing the

UI experience..

D. Workflow

The flowchart illustrates the job portal’s user journey,

starting from accessing the portal and selecting the login

option. Users enter their credentials, which are verified for

validity. If the login is successful, users can browse available

jobs, view detailed job descriptions, and proceed to submit

applications. In case of an invalid login, an error message is

displayed, and users are prompted to retry. Upon successful

application submission, users receive notifications regarding

their application status. The flowchart clearly represents the

streamlined process for job seekers to explore and apply for

job opportunities on the portal.

Fig. 1. Job Portal: Flowchart

E. UML Diagrams

1) Use Case Diagram: The use case diagram outlines

the key interactions between different users and the job

portal system. It features three main user roles: Job Seeker,

Employer, and Admin. Job Seekers can register, create

profiles, log in, search for jobs, and submit applications.

Employers are responsible for registering, creating job list-

ings, and reviewing applications. The system verifies the

validity of profiles and listings, displaying error messages

when necessary. Admins oversee the platform by managing

users, viewing reports, and resolving issues. This diagram

clearly represents the system’s functional requirements and

user interactions, ensuring streamlined operations for all

stakeholders.

Fig. 2. Job Portal: Use Case Diagram

2) Sequence Diagram: The sequence diagram illustrates

the step-by-step interaction of a user with the job portal

system. The process begins when the user opens the app

and selects the login option. After entering their credentials,

the system verifies whether the login is valid. If invalid,

an error message is displayed, and the user is prompted to

retry. Upon successful login, the system fetches user data and

grants access to the dashboard. The user can then choose

a job, fill out an application, and submit it. The system

performs data validation. If the data is invalid, an error is

shown, and the user can retry. If valid, the application data is

updated in the database, and a success message is displayed,

concluding the process. This diagram effectively represents

the sequential flow of actions, including error handling and

system responses.

Fig. 3. Job Portal: Sequence Diagram

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42962 | Page 4

IV. RESULTS AND DISCUSSION

The implementation of the Job Portal using MERN Stack

successfully demonstrated its ability to manage job postings,

user authentication, and application processing. The testing

process involved executing various API methods, analyzing

responses, and refining functionalities based on identified

errors.

1) Execution Summary: During testing, multiple API

endpoints related to job management, user authentication,

and application processing were executed successfully. The

framework validated REST API methods such as GET,

POST, PUT, and DELETE.

A majority of test cases returned successful responses with

2XX status codes, indicating proper functionality. However,

some test cases encountered errors due to issues such as

missing input parameters, authentication failures, or invalid

data submissions.

To address these errors:

• If a request failed with a 4XX status code, the system

refined the test case by adjusting input parameters.

• If a 5XX status code occurred, the issue was flagged

for manual review, as server-side errors required further

debugging.

2) Analysis of Challenges: While the system performed

effectively, several challenges were encountered:

• Handling Dynamic Data: Certain operations, such

as applicant tracking, required dynamic values like job

IDs, employer IDs, and application statuses, making test

consistency challenging.

• Incomplete API Documentation: Some endpoints

lacked detailed schema definitions, making it difficult

to infer required parameters and responses.

• Error Variability: The system encountered inconsis-

tent error messages that required custom handling to

refine test cases.

• Performance Bottlenecks: Heavy database queries and

authentication checks led to minor delays in response

times, affecting real-time data retrieval.

3) Potential Enhancements: To improve efficiency and

accuracy, the following enhancements are proposed:

• Caching System: Implementing a caching mechanism

to store frequently accessed job listings and reduce

redundant database queries.

• Schema Validation Mechanism: Enhancing API vali-

dation to detect missing parameters and auto-fill default

values where applicable.

• Optimized Error Handling: Introducing rule-based

validation alongside AI-driven test modifications to

cover a broader range of failure cases.

• Reducing API Latency: Optimizing database queries

and improving server-side processing to enhance re-

sponse times.

Overall, the Job Portal using MERN Stack successfully

demonstrated its scalability, security, and efficiency in

managing job listings, applications, and user authentication.

Despite the challenges encountered, the structured approach

provided a reliable and user-friendly solution for job seekers

and employers.

V. CHALLENGES AND LIMITATIONS

During the development and testing of the Job Portal

using MERN Stack, several challenges were encountered that

impacted efficiency, accuracy, and system scalability. These

limitations highlight areas for future improvements.

1) Handling Reference Parameters: One major chal-

lenge was dealing with reference parameters in API requests,

such as dynamic IDs (e.g., user IDs, job IDs, application

IDs). Generating valid test cases was difficult due to:

• The dynamic nature of reference values, requiring real-

time generation.

• Dependencies between API calls, where job applica-

tions required valid job IDs.

• Frequent 4XX errors due to missing or invalid reference

values.

2) Incomplete API Documentation: The framework re-

lied on OpenAPI schemas for API interactions, but incom-

plete documentation led to:

• Unclear definitions of required and optional fields.

• Undefined constraints for input values (e.g., salary

ranges, job categories).

• Ambiguities in response formats, making integration

with frontend components challenging.

3) Limitations of AI-Generated Test Cases: The use

of AI for automated test case generation presented some

challenges:

• AI-generated test cases were sometimes redundant or

did not align with real-world job portal workflows.

• Complex business logic, such as employer verification

and job application tracking, was difficult for AI to

handle.

• Manually created test cases were often more reliable for

business-critical API endpoints.

4) Performance and Scalability Issues: Testing large API

schemas led to performance bottlenecks due to:

• High request volume within short intervals, affecting

backend processing speed.

• Increased execution time for APIs handling large

amounts of job listings and applications.

• Log file sizes growing significantly, requiring better log

management and storage optimization.

VI. CONCLUSION

This study presented the development and testing of a Job

Portal using the MERN Stack, focusing on job listings, user

authentication, and application management while ensuring

robust API validation.

The implementation demonstrated that automated API testing

significantly improves efficiency by reducing manual effort,

increasing test coverage, and identifying potential issues

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42962 | Page 5

early in development. Despite challenges such as handling

reference parameters, incomplete API documentation, and

response variability, the system successfully provided a scal-

able, structured, and user-friendly platform for job seekers

and employers.

Overall, this project demonstrated the effectiveness of full-

stack development and API automation in creating a secure,

scalable, and efficient job portal while minimizing manual

intervention.

VII. FUTURE WORK

The future work of our project is to continue to develop the

project and add new features to make it more user-friendly.

The future work for the job portal are as mentioned below:-

• Advanced Reference Handling: Automating depen-

dency tracking for linked data, ensuring smooth job

application and user authentication workflows.

• Schema Auto-Completion: Implementing AI-based

suggestions to detect and complete missing fields in API

documentation.

• Performance Optimization:: Integrating caching tech-

niques and optimizing database queries to reduce API

response times.

• Expanded API Support: Adding PATCH and

DELETE endpoints to improve API flexibility and sup-

port for partial updates.

• CI/CD Integration: Implementing real-time API test-

ing into development pipelines to enable continuous

validation and faster deployment cycles.

By implementing these enhancements, the Job Portal can

achieve greater efficiency, reliability, and scalability, making

it a more robust platform for both job seekers and recruiters.

VIII. APPENDICES

The appendix includes supplementary materials such as

Folder Structure from the job Portal and screenshots demon-

strating key functionalities.

A. Appendix A: Folder Structure

Fig. 4. Job Portal: Folder Structure

B. Appendix B: Screenshots of Functionalities

Fig. 5. Listed Jobs Page

Fig. 6. Job Creation Page

REFERENCES

[1] Arora, A. and Gupta, R. (2023) ’Building Scalable Web Applications
with MERN Stack,’ in International Journal of Computer Science
Research, vol. 18, no. 4, pp. 45–62.

[2] Arcuri, A. (2018) ’Evomaster: Evolutionary multi-context automated
system test generation,’ in 2018 IEEE 11th International Conference
on Software Testing, Verification, and Validation (ICST), Va¨stera˚s,
Sweden, pp. 394–397.

[3] Brown, E. (2020) Web Development with Node and Express: Lever-
aging the JavaScript Stack, O’Reilly Media.

[4] Ferreira, A., Martins, J., and Ribeiro, M. (2022) ’Optimizing Mon-
goDB Query Performance for Large-Scale Applications,’ in ACM
Transactions on Database Systems, vol. 47, no. 3, pp. 1 23.

[5] Kim, H. and Park, S. (2023) ’Performance Optimization in React
Applications Using Virtual DOM and State Management Techniques,’
IEEE Software Engineering Journal, vol. 30, no. 6, pp. 199–215.

[6] Richards, M. (2015) Software Architecture Patterns. O’Reilly Media.
[7] PlantText Team. Planttext: A free online plantuml editor.

https://www.planttext.com, 2024.
[8] Arcuri, A. (2017) ’RESTful API automated test case generation,’ in

2017 IEEE International Conference on Software Quality, Reliability,
and Security (QRS), Prague, Czech Republic, pp.

[9] Express.js Documentation (2024) ’Express.js Overview’. Available at:
https://expressjs.com/.

[10] Subramanian, V. (2017) Pro MERN Stack: Full Stack Web App
Development with Mongo, Express, React, and Node. Apress.

[11] Panda, S. (2021) Building Web Applications with MERN Stack. BPB
Publications.

[12] Katz, M. (2020) Node.js Design Patterns: Design and implement
production-grade Node.js applications using proven patterns and tech-
niques, 3rd edn. Packt Publishing.

http://www.ijsrem.com/
http://www.planttext.com/

