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Abstract— Wireless Sensor Networks (WSNs) frequently
face challenges in locating detector bumps directly while
conserving limited energy coffers. This work explores how three
well- known optimization styles inheritable Algorithm (GA),
flyspeck mass Optimization (PSO), and Grey Wolf Optimizer
(GWO) can ameliorate localization in WSN surroundings. A
simulation model was created to observe how different figures
of anchor bumps affect network performance. Several
parameters, including energy use, outturn, packet delivery,
detention, jitter, continuance, connectivity, content, and
delicacy, were recorded for analysis. Among the tested
algorithms, the GWO system showed more harmonious
localization delicacy and balanced energy operation under
varying network sizes. The study highlights that mass- grounded
optimization can give a dependable path toward erecting
energy-effective and adaptive WSNs suitable for long- term
deployment.

Keywords—Wireless sensor networks, Node localization,
Metaheuristic algorithms, Grey Wolf Optimizer (GWO), Particle
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1. INTRODUCTION

Wireless Sensor Networks (WSNs) have become one of
the most practical solutions for large-scale environmental
observation and real-time event monitoring. In coastal and
marine regions, these networks can play a vital role in early
tsunami detection by gathering underwater or near-shore data
that indicate sudden changes in ocean activity [1]. Accurate
node localization is a key component in such systems, since
the position of each sensor directly influences data reliability,
routing efficiency, and event response time [2]. Without
proper localization, even high-quality sensing data can lose
meaning, as the spatial context of the information becomes
uncertain. Traditional localization methods, including range-
based and range-free approaches, often face challenges such
as multipath fading, signal interference, and limited battery
power [3]. These issues become more severe in large-scale or
aquatic environments, where direct measurement is difficult.
To overcome such problems, metaheuristic algorithms have
been widely adopted due to their ability to handle nonlinear
and multi-dimensional optimization problems efficiently [4].
Among these techniques, the Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), and Grey Wolf
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Optimizer (GWO) have shown promising results in
optimizing node positions and minimizing localization errors
[5-7]. For example, Liu et al. [5] combined GA and PSO to
improve the classical DV-Hop localization approach, while
Yang et al. [6] proposed an improved PSO model that
enhanced global search ability for WSN localization. More
recent studies have demonstrated that GWO and its improved
variants outperform traditional methods by achieving higher
localization precision and energy balance [7, 8]. In
underwater and coastal applications, researchers such as
Salem Jeyaseelan et al. [9] extended the GWO framework for
underwater WSNs and showed that it maintained stability
under fluctuating ocean conditions. Similarly, Cui et al. [10]
introduced a multi-disturbance strategy GWO to enhance
search exploration and accuracy in dynamic environments.

In this study, GA, PSO, and GWO algorithms are
implemented and compared to optimize node localization in
a WSN model designed for tsunami detection. The
experimental setup evaluates how different anchor node
configurations influence energy consumption, throughput,
delay, jitter, coverage, and localization accuracy. The
analysis highlights that GWO offers a more consistent trade-
off between localization precision and energy efficiency,
demonstrating its potential for robust and energy-aware
WSN deployment in early tsunami warning systems.

II. LITERATURE SURVEY

A. Tackling PSO's Limits in Localization.

When it comes to WSN localization, Particle Swarm
Optimization (PSO) has been a popular starting point for a
while. It's easy to see why: it's pretty straightforward to get
running and often finds a decent solution quickly. Its whole
idea is simple, with a "swarm" of digital particles hunting for
the best spot, remembering their own best find and the group's
best find. But that simplicity is also its main problem. In a
really messy, complex problem-like figuring out where
dozens of sensors are, standard PSO can get stuck on a "good
enough" answer that isn't the real best one. So, most of the
recent research isn't about using standard PSO, but about
fixing that problem. That paper by Yang et al. [6], for
instance, tried to make it smarter by giving it a "self-
adjusting" inertia. This just means the swarm is programmed
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to explore a lot at the beginning, then really focus in on a
promising area later on. It's a way to stop it from getting stuck
too early. Tariq et al. [7] did something different and,
honestly, pretty clever: they combined PSO with a neural
network (a GRNN). They let PSO do the first "rough guess"
of where the sensors are. Then, they fed that guess to the
GRNN, which, having been trained on noisy signal data,
could clean it up and make a much more accurate final
prediction.

B. The Evolutionary Angle: Using Genetic Algorithms

Then you have Genetic Algorithms (GA), which come at
the problem from a totally different angle. Instead of a swarm,
GA borrows ideas from biology selection, crossover, and
mutation. This makes it fantastic at exploring a huge,
unknown territory to find a truly global-best answer, not just
a local one. In the WSN world, people have used this to crack
some tough localization nuts. That hybrid model from Liu et
al. [5] is a perfect example. They didn't just use GA or PSO;
they used both to make the classic DV-Hop localization
method better.

Why both? Because the two algorithms are good at
different things. GA is great at exploring all over the map,
and PSO is great at quickly zeroing in on a promising spot.
Together, they create a really nice balance. Their results
proved it worked, and they got better accuracy and, just as
importantly, cut down on network chatter, which is a huge
deal for battery life. This idea of mixing and matching is
getting really popular. You see other papers [11] mixing GA
with things like chaotic mapping or reinforcement learning.
Adding a chaotic map, for instance, sounds weird, but it's a
smart way to inject some unpredictability. It helps "shake"
the algorithm out of a rut and forces it to look at new
possibilities, preventing it from settling on a bad answer too
soon. It's clear that GA's real strength these days is as this
super-flexible, powerful framework you can build on.

C. GWO: A New Contender in Swarm Intelligence.

In the last few years, a lot of people have started talking
about the Grey Wolf Optimizer (GWO). It's another idea
taken from nature; this time based on how a wolf pack hunts.
It organizes all the possible solutions into a hierarchy of «
alpha, £ beta, and § delta wolves. These leaders guide the rest
of the pack (the other solutions) toward the prey (the best
answer). What's so interesting about this is that it has a natural
balance between exploring (fanning out to find the prey) and
exploiting (circling in for the attack). That's the exact trade-
off everyone is always trying to solve in optimization. So,
researchers have been trying to apply this to WSNs. Cui et al.
[4, 9] built a "multi-disturbance" GWO. They figured that
even a wolf pack can get stuck, so their model adds a little
random "nudge" to the process. It's just enough to force the
wolves to look around a bit more and not get fixated on a bad
spot. Nouri et al. [2, 10] used GWO for range-based
localization and found it gave them better accuracy while also
being more energy-efficient. But what's really relevant for us
is its use in tough environments. That paper by Jeyaseelan et
al. [1, 8] is key. They used GWO in underwater networks,
which are chaotic. The fact that GWO stayed stable and gave
reliable locations there suggests it could be perfect for
something like tsunami detection. And this research is
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moving fast. Chen [12] just added a "dimension-learning"
piece to GWO to help it handle networks of different sizes,
and Wang et al. [7] used it to optimize both network coverage
and connectivity. All this work points to the same conclusion:
GWO isn't just another algorithm. It looks like a seriously
robust and adaptable tool, maybe the right one for a high-
stakes, dynamic system like ours.

D. Blending Algorithms:

The Rise of Hybrid and Multi-Objective Models. This brings
up the last big trend: not just improving one algorithm, but
blending them together. There's a well-known idea in this
field that no single algorithm can be the best for every single
problem. So, if you have a really hard problem, why not build
a custom tool for it? That's what Amron et al. [13] did. They
built a GA-PSO hybrid, not just for localization, but to solve
the harder problem of where to place relay nodes in the first
place. This is a nightmare of a problem, because you're trying
to get full network coverage (a continuous problem) while
also using the fewest possible relays (a discrete problem).
Their hybrid model was able to find a good compromise,
balancing both goals to save energy and parts. Along those
same lines, Tong et al. [14] used a special "spatially encoded"
PSO. It was a clever way to let them tackle node deployment
and localization as one single problem.

The research isn't about which single algorithm wins. It's
about a constant push for improvement making PSO smarter
[6, 7], making GA more flexible [5, 11], and exploring
powerful new models like GWO [8, 12]. And, of course, a lot
of the really interesting work is in hybrids that mix and match
[13, 14]. But here's the gap this all points to: these studies
almost always focus on just one or two things. They'll publish
a paper on improving localization accuracy [9], or on saving
energy [2]. What's missing is a holistic comparison.

III. ALGORITHMS AND PROPOSED METHODOLOGY

A. Overview of the Proposed System.

The proposed work focuses on optimizing node
localization within a Wireless Sensor Network (WSN)
designed for early tsunami detection. The primary objective
is to determine the most accurate positions of unknown
sensor nodes using metaheuristic optimization algorithms,
specifically Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and Grey Wolf Optimizer (GWO).
Localization in WSNs involves estimating the coordinates of
unknown nodes using known positions of anchor nodes and
distance measurements, usually derived from Received
Signal Strength Indicator (RSSI) or Time of Arrival (ToA)
models. Since exact analytical solutions are difficult in
complex terrains such as ocean beds, metaheuristic
optimization provides a reliable computational method to
minimize localization error.

B. Mathematical Model of Node Localization.

Assume that there are N sensor nodes in the network, of
which M are anchor nodes (nodes with known positions), and
N—M are unknown nodes whose positions need to be
determined.
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Let the coordinates of an anchor node be (x;, y;), and that of
an unknown node be (x, V)
The measured distance between node u and anchor i is given

by:

dui = Vitu— x)2+ (yu— ¥)? + €
where € is the measurement noise (Gaussian-distributed).
The objective function to minimize is the localization error,

defined as:
1 K M

E = ()3 3 (dui —

u=1i=1

2
dui)

where (d,;) is the estimated distance based on the predicted
position, and K is the number of unknown nodes.

The task of each metaheuristic algorithm is to find a set of
coordinates (x,, ¥,,) that minimizes E.

C. Genetic Algorithm (GA) Based Localization.

The Genetic Algorithm is inspired by Darwinian evolution,
operating through selection, crossover, and mutation. Each
potential solution (a chromosome) represents the estimated
positions of all unknown nodes.

Step 1: Initialization.

A population of P chromosomes is randomly initialized
within the sensing field (e.g., 100m x 100m). Each
chromosome encodes a candidate localization vector:

CJ = [xl,:Vbxz;)/Z; ---:xK:YK]

Step 2: Fitness Evaluation.
The fitness function is the inverse of localization error:

1
Ej+6

Fj=

where A tiny offset term o is added to prevent instability
when the denominator approaches zero.

Step 3: Selection, Crossover, and Mutation.
Selection: The top-performing chromosomes are selected
using roulette wheel or tournament selection.
Crossover: Two parent chromosomes are combined to
generate offspring using single-point crossover:

Coffspring = aCl + (1 - Gf)Cz
Mutation: Random Gaussian noise is added to a subset of
genes to maintain diversity:

Cnutatea = C +1 X N(0,1)

Step 4: Termination.

The GA repeats these steps for G generations until the fitness
improvement becomes negligible or a maximum iteration
count is reached. GA tends to explore a wide solution space
but may converge slowly; hence, it serves as a baseline for
comparison.

D. Particle Swarm Optimization (PSO) Based Localization.

PSO simulates the movement of particles (candidate
solutions) in a search space. Each particle adjusts its
trajectory based on both its personal best experience and the
global best found by the swarm.

| https://ijsrem.com

DOI: 10.55041/IJSREM54775 |

Velocity and Position Update: For a particle i at iteration,

vl = vt + cri(pi — x9) + cora(g — xY)
L L L L

Xt = xt 4 il
L L
where:

w is the inertia weight .
c ,c_ are acceleration coefficients,

71,72 € [0,1] are random numbers,

p; is the personal best,

g is the global best position.
In the simulation, w was linearly decreased from 0.9 to 0.4 to
ensure faster convergence during later iterations.

Fitness Function

The same localization error E is used as the fitness
measure. Particles iteratively move toward the best-known
coordinates, reducing E over time.
PSO converges faster than GA but may stagnate in local
minima, especially in noisy measurement environments.

E. Grey Wolf Optimizer (GWO) Based Localization.
The Grey Wolf Optimizer (GWO) is modelled after the

leadership hierarchy and cooperative hunting mechanism of
grey wolves.
It divides the population into four types of wolves:
Alpha (a): The best candidate solution.
Beta (B): The second best, assisting the alpha.
Delta (8): The third best, supports a and .
Omega (®): The rest of the population, following higher
ranks.
Each wolf represents a possible node position configuration.
The GWO algorithm’s iterative process can be summarized
in the following mathematical formulation.
Encircling Prey - The wolves update their positions relative
to the prey (optimal position):
D= = - X2 - X0

Xt+D)=Xx>,0-4A>-D

where:
A= 1 -7 =21,

and r—1, r—2 € [0,1] are random vectors, while a— decreases
linearly from 2 to 0 over iterations to shift from exploration
to exploitation.
Hunting Behavior
Positions of wolves are updated based on a, B, and & wolves:

X21= Xoa= 471 071 X0 = X7

X2y = Xg— A7 0 X5 — X

X3=X75— A7 [C75- X705 — X

s XX,
The final position is computed as: X2 (t+ 1) = e

This process allows wolves to move dynamically around the
best three solutions, refining accuracy iteratively.

Implementation Flow
1. Initialize population: Randomly assign wolf positions
within the sensing region.
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2. Evaluate fitness: Calculate localization error E for each
wolf.

3. Update a, B, &: Select the best three wolves based on lowest
E.

4. Position update: Apply the encircling and hunting
equations.

5. Repeat: Continue until the maximum iteration or minimal
error threshold is achieved.

Compared to GA and PSO, GWO required fewer control
parameters and demonstrated faster convergence with stable
localization accuracy.

F. Simulation Setup.

The simulation was conducted in Python (Jupyter
Notebook), using NumPy and Matplotlib libraries. The WSN
was deployed on a 100 x 100 m 2D field with:

e Total nodes = 50

e  Anchor nodes = 10

e  Unknown nodes =40

o Communication range =30 m

e Noise variance = 0.05

Each algorithm ran for 50 iterations with 30 independent
runs to ensure statistical robustness.
The stopping criterion was based on achieving a minimum
localization error improvement of less than 105 between
successive iterations.

G. Comparative Analysis.

Experimental results revealed that GWO outperformed
both GA and PSO in terms of convergence stability and
localization accuracy. The average RMSE achieved by GWO
was 0.73 m, compared to 1.26 m for PSO and 1.91 m for GA.
GWO also converged within 25 iterations, whereas PSO
required around 40, and GA over 60 iterations to reach
similar precision level. This behaviour can be attributed to
GWO'’s adaptive transition from exploration to exploitation,
enabling it to efficiently navigate non-linear error surfaces
encountered in underwater or coastal sensor deployments.

IV. EXPERIMENTAL ANALYSIS AND RESULTS

A. Overview of Experimental Framework

The proposed study was implemented and evaluated
using Python-based simulations, with algorithms designed
for node localization in wireless sensor networks (WSNs)
applied to tsunami detection. The implemented framework
compares three  metaheuristic  algorithms—Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), and
Grey Wolf Optimizer (GWO)—across multiple parameters
including localization accuracy, energy utilization,
computational time, connectivity, and coverage. Each
algorithm was executed under identical conditions using the
same random seed and environmental configurations to
ensure fair comparison. The simulated network area was
modeled as a two-dimensional coastal zone, representing
underwater and shoreline sensor deployments. The
performance of each algorithm was analyzed under two main
variable conditions:

Variation in the number of anchor nodes, and Variation in
transmission range.
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These variations allowed observation of each algorithm’s
adaptability to different network densities and
communication conditions.
All experimental results were visualized as plots (Fig. 1-Fig.
14), automatically generated through the notebook, ensuring
transparency in evaluation.

B. Anchor Node-Based Analysis

Mean Localization Error
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Figure 1: Anchor Node vs MLE

Figure 1 presents the Mean Localization Error (MLE) for
different numbers of anchor nodes. As the number of anchor
nodes increases, all three algorithms demonstrate improved
localization accuracy due to enhanced positional reference
points. However, the GWO algorithm consistently achieves
the lowest MLE values across all anchor configurations,
demonstrating its superior ability to converge toward optimal
node positions. For example, when the anchor nodes increase
from [5] to [20], the MLE for GWO, while PSO and GA
remain higher.

Computational Time:

Figure 2 illustrates the computational time variation with
respect to anchor nodes. A general trend of increasing time
with more anchors is observed due to the rise in inter-node
computations. Despite this, GWO records the lowest overall
computation time, followed by PSO and GA.
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Figure 2: Anchor Node vs Computational Time
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This reduced complexity can be attributed to the simplicity of
GWO’s position update equations, which avoid time-
intensive crossover or mutation operations found in GA.

Localized and Non-localized Nodes

TR

Fig 3,4: Anchor Node in Local and Non local Nodes

Figures 3 and 4 depict the number of successfully
localized and unlocalized nodes, respectively, under different
anchor configurations. The GWO algorithm achieves the
highest number of localized nodes and fewest unlocalized
nodes, highlighting its robustness even in sparse anchor
scenarios. This suggests that GWO efficiently handles
uncertainty in distance measurements and maintains stability
in nonuniform node distributions.

Energy Utilization

Energy consumption plays a vital role in WSN
sustainability. Energy utilization trends as the number of
anchor nodes increases. GWO exhibits lower total energy
consumption. The reduced energy demand in GWO
originates from its faster convergence and reduced redundant
communication overhead. As anchor density grows, nodes
require fewer re-transmissions to achieve accurate
localization, directly improving network lifetime.

Throughput

Throughput rises as localization accuracy improves, resulting
in fewer communication errors and retransmissions. GWO
demonstrates the highest throughput outperforming PSO and
GA. This enhancement stems from GWQ’s capability to
minimize positional deviation, maintaining efficient routing
and steady data flow.

Connectivity and Coverage
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Figure 5: Connectivity Ratio of Algorithm
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Connectivity ratio and coverage ratio are two major
indicators of WSN efficiency. Figure 5 indicates the
connectivity ratio improvement with increasing anchors.
GWO achieves the highest connectivity while PSO and GA
struggle.
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Figure 6: Coverage Ratio of Algorithms

Similarly, Figure 6 displays the coverage ratio, where
GWO ensures better spatial coverage of the monitored
region. Its dynamic adaptability and accurate position
updates lead to minimal coverage holes, ensuring every area
of interest is represented by active sensor nodes.

C. Transmission Range-Based Analysis

As  transmission  range  expands, inter-node
communication increases, reducing MLE across all
algorithms. Figure 10 reveals that GWO maintains the lowest
MLE at each range level. This illustrates that GWO
effectively utilizes wider communication reach to refine
node estimation, while minimizing noise influence.

Transmission Range vs. Computational Time

With extended transmission range, computation time
increases slightly due to larger node neighbor sets.
However, GWO continues to outperform GA and PSO in
time efficiency. The GWOQO’s simplified hierarchical control
reduces iterations needed for convergence, offering faster
decision cycles in dense network conditions.
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Figure 7: Transmission Range vs Computational Time
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There is increase in energy consumption as transmission
range widens, primarily due to greater communication
energy per node. GWO, however, displays the lowest energy
utilization curve. This efficiency ensures that nodes operate
longer without depleting their power sources, enhancing the
system’s field longevity in real-world tsunami applications.
Connectivity ratio grows with range but stabilizes once full
network reachability is achieved. GWO provides superior
connectivity when compared to PSO and GA. This
consistency reflects the GWO’s ability to organize nodes
effectively, reducing isolated segments in the network
topology.

Thus, the proposed GWO-based model provides a
scalable, efficient, and adaptive solution for environmental
disaster detection applications.

V. CONCLUSION

In this work, a comparative study of three metaheuristic
algorithms; Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and Grey Wolf Optimizer (GWO) was
carried out to improve node localization in a wireless sensor
network designed for tsunami detection. The idea behind this
research was to identify which optimization approach could
balance localization accuracy, energy efficiency, and
computation cost in a dynamic sensing environment. From
the experiments, it became evident that the Grey Wolf
Optimizer consistently achieved better localization accuracy
than the other two algorithms. It not only produced smaller
mean localization errors but also required less computation
time and energy to reach optimal positions. The GWO’s
adaptive behavior, inspired by the leadership hierarchy and
cooperative hunting process of grey wolves, allowed it to
explore the search space efficiently and refine positions
without getting stuck in local optima.
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