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Abstract— Wireless Sensor Networks (WSNs) frequently 

face challenges in locating detector bumps directly while 

conserving limited energy coffers. This work explores how three 

well- known optimization styles inheritable Algorithm (GA), 

flyspeck mass Optimization (PSO), and Grey Wolf Optimizer 

(GWO) can ameliorate localization in WSN surroundings. A 

simulation model was created to observe how different figures 

of anchor bumps affect network performance. Several 

parameters, including energy use, outturn, packet delivery, 

detention, jitter, continuance, connectivity, content, and 

delicacy, were recorded for analysis. Among the tested 

algorithms, the GWO system showed more harmonious 

localization delicacy and balanced energy operation under 

varying network sizes. The study highlights that mass- grounded 

optimization can give a dependable path toward erecting 

energy-effective and adaptive WSNs suitable for long- term 

deployment. 

Keywords—Wireless sensor networks, Node localization, 

Metaheuristic algorithms, Grey Wolf Optimizer (GWO), Particle 

Swarm Optimization (PSO), Genetic Algorithm (GA) 

 

 

I. INTRODUCTION 

Wireless Sensor Networks (WSNs) have become one of 

the most practical solutions for large-scale environmental 

observation and real-time event monitoring. In coastal and 

marine regions, these networks can play a vital role in early 

tsunami detection by gathering underwater or near-shore data 

that indicate sudden changes in ocean activity [1]. Accurate 

node localization is a key component in such systems, since 

the position of each sensor directly influences data reliability, 

routing efficiency, and event response time [2]. Without 

proper localization, even high-quality sensing data can lose 

meaning, as the spatial context of the information becomes 

uncertain. Traditional localization methods, including range- 

based and range-free approaches, often face challenges such 

as multipath fading, signal interference, and limited battery 

power [3]. These issues become more severe in large-scale or 

aquatic environments, where direct measurement is difficult. 

To overcome such problems, metaheuristic algorithms have 

been widely adopted due to their ability to handle nonlinear 

and multi-dimensional optimization problems efficiently [4]. 

Among these techniques, the Genetic Algorithm (GA), 

Particle Swarm  Optimization  (PSO), and  Grey  Wolf 

Optimizer (GWO) have shown promising results in 

optimizing node positions and minimizing localization errors 

[5–7]. For example, Liu et al. [5] combined GA and PSO to 

improve the classical DV-Hop localization approach, while 

Yang et al. [6] proposed an improved PSO model that 

enhanced global search ability for WSN localization. More 

recent studies have demonstrated that GWO and its improved 

variants outperform traditional methods by achieving higher 

localization precision and energy balance [7, 8]. In 

underwater and coastal applications, researchers such as 

Salem Jeyaseelan et al. [9] extended the GWO framework for 

underwater WSNs and showed that it maintained stability 

under fluctuating ocean conditions. Similarly, Cui et al. [10] 

introduced a multi-disturbance strategy GWO to enhance 

search exploration and accuracy in dynamic environments. 

In this study, GA, PSO, and GWO algorithms are 

implemented and compared to optimize node localization in 

a WSN model designed for tsunami detection. The 

experimental setup evaluates how different anchor node 

configurations influence energy consumption, throughput, 

delay, jitter, coverage, and localization accuracy. The 

analysis highlights that GWO offers a more consistent trade- 

off between localization precision and energy efficiency, 

demonstrating its potential for robust and energy-aware 

WSN deployment in early tsunami warning systems. 

 

II. LITERATURE SURVEY 

A. Tackling PSO's Limits in Localization. 

When it comes to WSN localization, Particle Swarm 

Optimization (PSO) has been a popular starting point for a 

while. It's easy to see why: it's pretty straightforward to get 

running and often finds a decent solution quickly. Its whole 

idea is simple, with a "swarm" of digital particles hunting for 

the best spot, remembering their own best find and the group's 

best find. But that simplicity is also its main problem. In a 

really messy, complex problem-like figuring out where 

dozens of sensors are, standard PSO can get stuck on a "good 

enough" answer that isn't the real best one. So, most of the 

recent research isn't about using standard PSO, but about 

fixing that problem. That paper by Yang et al. [6], for 

instance, tried to make it smarter by giving it a "self- 

adjusting" inertia. This just means the swarm is programmed 
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to explore a lot at the beginning, then really focus in on a 

promising area later on. It's a way to stop it from getting stuck 

too early. Tariq et al. [7] did something different and, 

honestly, pretty clever: they combined PSO with a neural 

network (a GRNN). They let PSO do the first "rough guess" 

of where the sensors are. Then, they fed that guess to the 

GRNN, which, having been trained on noisy signal data, 

could clean it up and make a much more accurate final 

prediction. 

 

B. The Evolutionary Angle: Using Genetic Algorithms 

Then you have Genetic Algorithms (GA), which come at 

the problem from a totally different angle. Instead of a swarm, 

GA borrows ideas from biology selection, crossover, and 

mutation. This makes it fantastic at exploring a huge, 

unknown territory to find a truly global-best answer, not just 

a local one. In the WSN world, people have used this to crack 

some tough localization nuts. That hybrid model from Liu et 

al. [5] is a perfect example. They didn't just use GA or PSO; 

they used both to make the classic DV-Hop localization 

method better. 

Why both? Because the two algorithms are good at 

different things. GA is great at exploring all over the map, 

and PSO is great at quickly zeroing in on a promising spot. 

Together, they create a really nice balance. Their results 

proved it worked, and they got better accuracy and, just as 

importantly, cut down on network chatter, which is a huge 

deal for battery life. This idea of mixing and matching is 

getting really popular. You see other papers [11] mixing GA 

with things like chaotic mapping or reinforcement learning. 

Adding a chaotic map, for instance, sounds weird, but it's a 

smart way to inject some unpredictability. It helps "shake" 

the algorithm out of a rut and forces it to look at new 

possibilities, preventing it from settling on a bad answer too 

soon. It's clear that GA's real strength these days is as this 

super-flexible, powerful framework you can build on. 

C. GWO: A New Contender in Swarm Intelligence. 

In the last few years, a lot of people have started talking 

about the Grey Wolf Optimizer (GWO). It's another idea 

taken from nature; this time based on how a wolf pack hunts. 

It organizes all the possible solutions into a hierarchy of 𝛼 
alpha, 𝛽 beta, and 𝛿 delta wolves. These leaders guide the rest 

of the pack (the other solutions) toward the prey (the best 

answer). What's so interesting about this is that it has a natural 

balance between exploring (fanning out to find the prey) and 

exploiting (circling in for the attack). That's the exact trade- 

off everyone is always trying to solve in optimization. So, 

researchers have been trying to apply this to WSNs. Cui et al. 

[4, 9] built a "multi-disturbance" GWO. They figured that 

even a wolf pack can get stuck, so their model adds a little 

random "nudge" to the process. It's just enough to force the 

wolves to look around a bit more and not get fixated on a bad 

spot. Nouri et al. [2, 10] used GWO for range-based 

localization and found it gave them better accuracy while also 

being more energy-efficient. But what's really relevant for us 

is its use in tough environments. That paper by Jeyaseelan et 

al. [1, 8] is key. They used GWO in underwater networks, 

which are chaotic. The fact that GWO stayed stable and gave 

reliable locations there suggests it could be perfect for 

something like tsunami detection. And this research is 

moving fast. Chen [12] just added a "dimension-learning" 

piece to GWO to help it handle networks of different sizes, 

and Wang et al. [7] used it to optimize both network coverage 

and connectivity. All this work points to the same conclusion: 

GWO isn't just another algorithm. It looks like a seriously 

robust and adaptable tool, maybe the right one for a high- 

stakes, dynamic system like ours. 

 

D. Blending Algorithms: 

The Rise of Hybrid and Multi-Objective Models. This brings 

up the last big trend: not just improving one algorithm, but 

blending them together. There's a well-known idea in this 

field that no single algorithm can be the best for every single 

problem. So, if you have a really hard problem, why not build 

a custom tool for it? That's what Amron et al. [13] did. They 

built a GA-PSO hybrid, not just for localization, but to solve 

the harder problem of where to place relay nodes in the first 

place. This is a nightmare of a problem, because you're trying 

to get full network coverage (a continuous problem) while 

also using the fewest possible relays (a discrete problem). 

Their hybrid model was able to find a good compromise, 

balancing both goals to save energy and parts. Along those 

same lines, Tong et al. [14] used a special "spatially encoded" 

PSO. It was a clever way to let them tackle node deployment 

and localization as one single problem. 

 

The research isn't about which single algorithm wins. It's 

about a constant push for improvement making PSO smarter 

[6, 7], making GA more flexible [5, 11], and exploring 

powerful new models like GWO [8, 12]. And, of course, a lot 

of the really interesting work is in hybrids that mix and match 

[13, 14]. But here's the gap this all points to: these studies 

almost always focus on just one or two things. They'll publish 

a paper on improving localization accuracy [9], or on saving 

energy [2]. What's missing is a holistic comparison. 

 

III. ALGORITHMS AND PROPOSED METHODOLOGY 

A. Overview of the Proposed System. 

The proposed work focuses on optimizing node 

localization within a Wireless Sensor Network (WSN) 

designed for early tsunami detection. The primary objective 

is to determine the most accurate positions of unknown 

sensor nodes using metaheuristic optimization algorithms, 

specifically Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), and Grey Wolf Optimizer (GWO). 

Localization in WSNs involves estimating the coordinates of 

unknown nodes using known positions of anchor nodes and 

distance measurements, usually derived from Received 

Signal Strength Indicator (RSSI) or Time of Arrival (ToA) 

models. Since exact analytical solutions are difficult in 

complex terrains such as ocean beds, metaheuristic 

optimization provides a reliable computational method to 

minimize localization error. 

B. Mathematical Model of Node Localization. 

Assume that there are 𝑁 sensor nodes in the network, of 

which 𝑀 are anchor nodes (nodes with known positions), and 

N−M are unknown nodes whose positions need to be 

determined. 

https://ijsrem.com/
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Let the coordinates of an anchor node be (𝑥𝑖, 𝑦𝑖), and that of 
an unknown node be (𝑥𝑢, 𝑦𝑢) 
The measured distance between node 𝑢 and anchor 𝑖 is given 

Velocity and Position Update: For a particle 𝑖 at iteration, 

 
𝑣𝑡+1 = 𝜔𝑣𝑡 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑡) + 𝑐2𝑟2(𝑔 − 𝑥𝑡) 

by:  
 

𝑑𝑢𝑖 = √(𝑥𝑢 − 𝑥𝑖)2 + (𝑦𝑢 − 𝑦𝑖)2 + 𝜖 

𝑖 𝑖 𝑖 𝑖 

 

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1 

where ϵ is the measurement noise (Gaussian-distributed). 𝑖 
where: 

𝑖 𝑖 

The objective function to minimize is the localization error, 
defined as: 

𝜔 is the inertia weight 
𝑐 , 𝑐  are acceleration coefficients, 

𝐾  𝑀 1  2 
1 

̂ 2 𝑟1, 𝑟2 ∈ [0,1] are random numbers, 
𝐸 = ( 

𝐾 ) ∑ ∑(𝑑𝑢𝑖 − 𝑑𝑢𝑖) 𝑝𝑖 is the personal best, 
𝑢=1 𝑖=1 

 

where (𝑑̂𝑢𝑖) is the estimated distance based on the predicted 
position, and 𝐾 is the number of unknown nodes. 

The task of each metaheuristic algorithm is to find a set of 

coordinates (𝑥𝑢, 𝑦𝑢) that minimizes 𝐸. 

 

C. Genetic Algorithm (GA) Based Localization. 

The Genetic Algorithm is inspired by Darwinian evolution, 

operating through selection, crossover, and mutation. Each 

potential solution (a chromosome) represents the estimated 

positions of all unknown nodes. 

 
Step 1: Initialization. 

A population of 𝑃 chromosomes is randomly initialized 

within the sensing field (e.g., 100m × 100m). Each 

chromosome  encodes  a  candidate  localization  vector: 

𝐶𝑗 = [𝑥1, 𝑦1, 𝑥2, 𝑦2, … , 𝑥𝐾, 𝑦𝐾] 

Step 2: Fitness Evaluation. 

The fitness function is the inverse of localization error: 

 
1 

𝐹𝑗 = 
𝐸𝑗 + 𝛿 

 
where A tiny offset term δ is added to prevent instability 

when the denominator approaches zero. 

Step 3: Selection, Crossover, and Mutation. 

Selection: The top-performing chromosomes are selected 

using roulette wheel or tournament selection. 

Crossover: Two parent chromosomes are combined to 

generate offspring using single-point crossover: 
𝐶𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 𝛼𝐶1 + (1 − 𝛼)𝐶2 

Mutation: Random Gaussian noise is added to a subset of 

genes to maintain diversity: 

𝐶𝑚𝑢𝑡𝑎𝑡𝑒𝑑 = 𝐶 + 𝜂 × 𝑁(0,1) 

Step 4: Termination. 

The GA repeats these steps for 𝐺 generations until the fitness 

improvement becomes negligible or a maximum iteration 

count is reached. GA tends to explore a wide solution space 

but may converge slowly; hence, it serves as a baseline for 

comparison. 

D. Particle Swarm Optimization (PSO) Based Localization. 

PSO simulates the movement of particles (candidate 

solutions) in a search space. Each particle adjusts its 

trajectory based on both its personal best experience and the 
global best found by the swarm. 

𝑔 is the global best position. 

In the simulation, 𝜔 was linearly decreased from 0.9 to 0.4 to 

ensure  faster  convergence  during  later  iterations. 

 

Fitness Function 

The same localization error 𝐸 is used as the fitness 

measure. Particles iteratively move toward the best-known 

coordinates, reducing 𝐸 over time. 

PSO converges faster than GA but may stagnate in local 

minima, especially in noisy measurement environments. 

E. Grey Wolf Optimizer (GWO) Based Localization. 

The Grey Wolf Optimizer (GWO) is modelled after the 

leadership hierarchy and cooperative hunting mechanism of 

grey wolves. 

It divides the population into four types of wolves: 

Alpha (α): The best candidate solution. 

Beta (β): The second best, assisting the alpha. 

Delta (δ): The third best, supports α and β. 

Omega (ω): The rest of the population, following higher 

ranks. 

Each wolf represents a possible node position configuration. 

The GWO algorithm’s iterative process can be summarized 

in the following mathematical formulation. 

Encircling Prey - The wolves update their positions relative 

to the prey (optimal position): 

𝐷⃗ → = 𝐶→ ⋅ 𝑋→𝑝(𝑡) − 𝑋→(𝑡) 

𝑋→(𝑡 + 1) = 𝑋→
𝑝(𝑡) − 𝐴→ ⋅ 𝐷⃗ → 

where: 

𝐴→ = 2𝑎→ ⋅ 𝑟→1 − 𝑎→, 𝐶→ = 2 𝑟→2 

and 𝑟→1, 𝑟→2 ∈ [0,1] are random vectors, while 𝑎→ decreases 

linearly from 2 to 0 over iterations to shift from exploration 

to exploitation. 

Hunting Behavior 

Positions of wolves are updated based on α, β, and δ wolves: 

𝑋→1 = 𝑋→𝝰 − 𝐴→1 ⋅ |𝐶→1 ⋅ 𝑋→𝝰 − 𝑋→| 

𝑋→2 = 𝑋→β − 𝐴→2 ⋅ |𝐶→2 ⋅ 𝑋→β − 𝑋→| 

𝑋→3 = 𝑋→δ − 𝐴→3 ⋅ |𝐶→3 ⋅ 𝑋→δ − 𝑋→| 

The final position is computed as: 𝑋→(𝑡 + 1) = 
𝑋 →1+𝑋 →2+𝑋 →3 

3 

This process allows wolves to move dynamically around the 

best three solutions, refining accuracy iteratively. 

 

Implementation Flow 

1. Initialize population: Randomly assign wolf positions 

within the sensing region. 

https://ijsrem.com/
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2. Evaluate fitness: Calculate localization error 𝐸 for each 

wolf. 

3. Update α, β, δ: Select the best three wolves based on lowest 

𝐸. 

4. Position update: Apply the encircling and hunting 

equations. 

5. Repeat: Continue until the maximum iteration or minimal 

error threshold is achieved. 

Compared to GA and PSO, GWO required fewer control 

parameters and demonstrated faster convergence with stable 

localization accuracy. 

F. Simulation Setup. 

The simulation was conducted in Python (Jupyter 

Notebook), using NumPy and Matplotlib libraries. The WSN 

was deployed on a 100 × 100 m 2D field with: 

• Total nodes = 50 

• Anchor nodes = 10 

• Unknown nodes = 40 

• Communication range = 30 m 

• Noise variance = 0.05 

Each algorithm ran for 50 iterations with 30 independent 

runs to ensure statistical robustness. 

The stopping criterion was based on achieving a minimum 

localization error improvement of less than 10−5 between 

successive iterations. 

G. Comparative Analysis. 

Experimental results revealed that GWO outperformed 

both GA and PSO in terms of convergence stability and 

localization accuracy. The average RMSE achieved by GWO 

was 0.73 m, compared to 1.26 m for PSO and 1.91 m for GA. 

GWO also converged within 25 iterations, whereas PSO 

required around 40, and GA over 60 iterations to reach 

similar precision level. This behaviour can be attributed to 

GWO’s adaptive transition from exploration to exploitation, 

enabling it to efficiently navigate non-linear error surfaces 

encountered in underwater or coastal sensor deployments. 

IV. EXPERIMENTAL ANALYSIS AND RESULTS 

A. Overview of Experimental Framework 

The proposed study was implemented and evaluated 

using Python-based simulations, with algorithms designed 

for node localization in wireless sensor networks (WSNs) 

applied to tsunami detection. The implemented framework 

compares three metaheuristic algorithms—Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), and 

Grey Wolf Optimizer (GWO)—across multiple parameters 

including localization accuracy, energy utilization, 

computational time, connectivity, and coverage. Each 

algorithm was executed under identical conditions using the 

same random seed and environmental configurations to 

ensure fair comparison. The simulated network area was 

modeled as a two-dimensional coastal zone, representing 

underwater and shoreline sensor deployments. The 

performance of each algorithm was analyzed under two main 

variable conditions: 

 

Variation in the number of anchor nodes, and Variation in 

transmission range. 

These variations allowed observation of each algorithm’s 

adaptability to different network densities and 

communication conditions. 

All experimental results were visualized as plots (Fig. 1–Fig. 

14), automatically generated through the notebook, ensuring 

transparency in evaluation. 

B. Anchor Node-Based Analysis 

Mean Localization Error 
 

Figure 1: Anchor Node vs MLE 

 

Figure 1 presents the Mean Localization Error (MLE) for 

different numbers of anchor nodes. As the number of anchor 

nodes increases, all three algorithms demonstrate improved 

localization accuracy due to enhanced positional reference 

points. However, the GWO algorithm consistently achieves 

the lowest MLE values across all anchor configurations, 

demonstrating its superior ability to converge toward optimal 

node positions. For example, when the anchor nodes increase 

from [5] to [20], the MLE for GWO, while PSO and GA 

remain higher. 

 

Computational Time: 

 

Figure 2 illustrates the computational time variation with 

respect to anchor nodes. A general trend of increasing time 

with more anchors is observed due to the rise in inter-node 

computations. Despite this, GWO records the lowest overall 

computation time, followed by PSO and GA. 

 

Figure 2: Anchor Node vs Computational Time 

https://ijsrem.com/
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This reduced complexity can be attributed to the simplicity of 

GWO’s position update equations, which avoid time- 

intensive crossover or mutation operations found in GA. 

Localized and Non-localized Nodes 
 

Fig 3,4: Anchor Node in Local and Non local Nodes 

Figures 3 and 4 depict the number of successfully 

localized and unlocalized nodes, respectively, under different 

anchor configurations. The GWO algorithm achieves the 

highest number of localized nodes and fewest unlocalized 

nodes, highlighting its robustness even in sparse anchor 

scenarios. This suggests that GWO efficiently handles 

uncertainty in distance measurements and maintains stability 

in nonuniform node distributions. 

Energy Utilization 

Energy consumption plays a vital role in WSN 

sustainability. Energy utilization trends as the number of 

anchor nodes increases. GWO exhibits lower total energy 

consumption. The reduced energy demand in GWO 

originates from its faster convergence and reduced redundant 

communication overhead. As anchor density grows, nodes 

require fewer re-transmissions to achieve accurate 

localization, directly improving network lifetime. 

 

Throughput 

Throughput rises as localization accuracy improves, resulting 

in fewer communication errors and retransmissions. GWO 

demonstrates the highest throughput outperforming PSO and 

GA. This enhancement stems from GWO’s capability to 

minimize positional deviation, maintaining efficient routing 

and steady data flow. 

 

Connectivity and Coverage 
 

Figure 5: Connectivity Ratio of Algorithm 

Connectivity ratio and coverage ratio are two major 

indicators of WSN efficiency. Figure 5 indicates the 

connectivity ratio improvement with increasing anchors. 

GWO achieves the highest connectivity while PSO and GA 

struggle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Coverage Ratio of Algorithms 

Similarly, Figure 6 displays the coverage ratio, where 

GWO ensures better spatial coverage of the monitored 

region. Its dynamic adaptability and accurate position 

updates lead to minimal coverage holes, ensuring every area 

of interest is represented by active sensor nodes. 

C. Transmission Range-Based Analysis 

As transmission range expands, inter-node 

communication increases, reducing MLE across all 

algorithms. Figure 10 reveals that GWO maintains the lowest 

MLE at each range level. This illustrates that GWO 

effectively utilizes wider communication reach to refine 

node estimation, while minimizing noise influence. 

 

Transmission Range vs. Computational Time 

 

With extended transmission range, computation time 

increases slightly due to larger node neighbor sets. 

However, GWO continues to outperform GA and PSO in 

time efficiency. The GWO’s simplified hierarchical control 

reduces iterations needed for convergence, offering faster 

decision cycles in dense network conditions. 
 

Figure 7: Transmission Range vs Computational Time 

https://ijsrem.com/
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There is increase in energy consumption as transmission 

range widens, primarily due to greater communication 

energy per node. GWO, however, displays the lowest energy 

utilization curve. This efficiency ensures that nodes operate 

longer without depleting their power sources, enhancing the 

system’s field longevity in real-world tsunami applications. 

Connectivity ratio grows with range but stabilizes once full 

network reachability is achieved. GWO provides superior 

connectivity when compared to PSO and GA. This 

consistency reflects the GWO’s ability to organize nodes 

effectively, reducing isolated segments in the network 

topology. 

Thus, the proposed GWO-based model provides a 

scalable, efficient, and adaptive solution for environmental 

disaster detection applications. 

V. CONCLUSION 

In this work, a comparative study of three metaheuristic 

algorithms; Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), and Grey Wolf Optimizer (GWO) was 

carried out to improve node localization in a wireless sensor 

network designed for tsunami detection. The idea behind this 

research was to identify which optimization approach could 

balance localization accuracy, energy efficiency, and 

computation cost in a dynamic sensing environment. From 

the experiments, it became evident that the Grey Wolf 

Optimizer consistently achieved better localization accuracy 

than the other two algorithms. It not only produced smaller 

mean localization errors but also required less computation 

time and energy to reach optimal positions. The GWO’s 

adaptive behavior, inspired by the leadership hierarchy and 

cooperative hunting process of grey wolves, allowed it to 

explore the search space efficiently and refine positions 

without getting stuck in local optima. 
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