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Abstract - Leaf detection is essential for understanding leaf 

behavior, agricultural monitoring, and ecological studies, 

which is necessary for species identification and understanding 

of environmental impacts on leaf growth. Hence a novel 

approach Multi-spectral CapsNet and Relational Prototypical 

LSTM, is proposed to overcome challenges in leaf detection 

from videos. Initially, videos are converted into image frames, 

which are then pre-processed to remove noise and boost 

contrast, followed by a watershed approach for segmentation. 

Existing algorithms struggle to extract essential data from 

secondary vein patterns due to their vein's hierarchical 

structure, which extends beyond local spatial patterns. Hence 

Adaptive Centricity Multi-spectral CapsNet is implemented to 

extract features from the leaf vein patterns. Which utilizes the 

Adaptive Centricity Hough Line Detection (ACHL) Algorithm 

to extract local features like vein spacing and branching angles. 

Multi-spectral Attentional CapsNet (MA-CapsNet) captures 

global features like contextual information by focusing on 

spectral channels containing relevant data for identifying vein 

patterns. Furthermore, in leaf detection, existing methods 

analyze input data sequentially without including relative 

nearby regions information, which limits the network's capacity 

to distinguish between regions with varied depths and to grasp 

the global spatial relations between serrations Hence, 

Bidirectional Relational Prototypical LSTM (Bi-RP LSTM) is 

introduced to capture spatial relationships between serrations 

and analyze under serration depth levels thereby improving leaf 

detection accuracy. Finally, the proposed approach is 

implemented in Python, making it easier and more accurate 

than existing models for leaf detection in terms of accuracy, 

recall, precision, sensitivity, and F1 score. 

Keywords - Leaf detection, Vein spacing, Angle of 

branching, Serration depth, Medial Axis Transform 

I. Introduction 
 

In video analysis, leaf detection is the process of identifying 

and monitoring leaves over a series of frames. This procedure 

is essential for many applications, including environmental 

research, disease detection, and plant growth monitoring. Leaf 

identification methods usually start by segmenting the video 

frames to identify areas that are likely to contain leaves using 

computer vision techniques. Then, characteristics like color, 

texture, and form are used to set leaves apart from the 

surrounding area. To analyze patterns of development and 

identify anomalies, tracking algorithms are used to trace the 

movement of leaves between frames. Deep learning and other 

machine learning techniques showed promise in enhancing the 

precision and resilience of leaf detection systems. 

Researchers and practitioners can more effectively analyze 

plant behavior, evaluate environmental conditions, and support 

agricultural management methods by automating the process of 

leaf detection in films. In addition to form, texture, and color, 

additional characteristics including leaf venation, edge, apex, 

base, and so forth are also important for accurate detection [1-

4]. 

The vein pattern in a leaf that carries carbohydrates, 

nutrients, and water is recognized as leaf venation. It is divided 

into two primary categories: reticulate venation, which forms a 

branching network of veins, and parallel venation, which is 

prevalent in monocots and involves veins running parallel to one 

another (typical in dicots). Veins that run parallel to each other 

through the base to the tip of the leaf are known as parallel 

venation, and these vessels usually do so without creating an 

intricate network. In monocotyledonous plants like grasses and 

lilies, this pattern is common. Reticulate venation, on the other 

hand, shows a branching network of veins that creates a 
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complex pattern all over the leaf surface. Dicotyledonous plants, 

such as roses and maple trees, frequently have this kind of 

venation. Plant physiology research, leaf categorization, and 

plant species identification all depend on feature extraction from 

venation patterns. Venation pattern analysis algorithms 

currently in usage range from straightforward thresholding and 

edge detection approaches to more intricate strategies using 

graph theory and machine learning [5-8].  

However, there are still issues with venation pattern 

analysis, such as managing intricate vein patterns, dealing with 

a range of leaf sizes and shapes, and making the system resilient 

to noise and image artifacts. For real-time applications, 

scalability to enormous datasets and processing performance are 

also essential. To solve these problems, multidisciplinary teams 

with backgrounds in botany, computer vision, and machine 

learning are needed. This will eventually result in algorithms for 

venation pattern analysis that are more precise and effective. 

Furthermore, the leaf margin, or the edge or border of a leaf, is 

another characteristic that is necessary for detection. Leaf edges 

can be whole, serrated, lobed, or toothed, among other 

variations. Analysis of the leaf edge is essential for leaf 

detection because it offers distinguishing characteristics that 

help with leaf identification and categorization. Different plant 

species are distinguished from one another and abnormalities 

including illness or damage are easily identified by differences 

in the form, serration, and curvature of the leaf margin. 

Furthermore, knowing the different forms of leaf margins helps 

with more extensive ecological and taxonomic research [9–11]. 

The term "serration" in leaf margins describes the tiny, 

pointed teeth that are present along the leaf's edge. The size, 

shape, and spacing of these teeth differ, giving important 

information for leaf identification. Analyzing serration patterns 

aids in differentiating between species and identifying 

anomalies in leaf detection. Convolutional Neural Networks 

(CNNs), contour-based techniques such as Active Contour 

Models (Snakes), and edge detection techniques like canny edge 

detection are some of the algorithms used to identify leaves 

based on their margins. However because of differences in leaf 

morphology, texture, and occlusions in the video frames, it is 

still difficult to identify serrations with accuracy. Furthermore, 

these algorithms can act poorly because of the intricacy of 

serration patterns and the existence of noise in video data. 

Furthermore, the problem of robustly recognizing leaves based 

on their margins is further complicated by real-world variables 

including illumination fluctuations and environmental 

influences. To overcome these obstacles, developments in 

multi-modal information integration, algorithmic resilience, and 

feature extraction techniques are needed for improved leaf 

recognition accuracy in video analytic applications [12–15]. 

Therefore, more innovative algorithms need to be developed to 

identify leaves based on a variety of leaf properties, including 

venation and margin.  

The following is the paper's primary contribution. 

• To improve the accuracy of feature extraction from the leaf 

venation patterns, the Adaptive Centricity MA-CapsNet 

technique is utilized, in which Adaptive Centricity Hough 

Line Detection is employed to extract local characteristics 

from leaf vein patterns, and Multi-spectral Attentional 

CapsNet is used to improve the model's capacity to acquire 

contextual information beyond local spatial patterns in leaf 

recognition tasks.  

• To enhance the accuracy of leaf detection under serration 

depth, Bi-RP LSTM is introduced for leaf detection, which 

aims to improve overall detection accuracy by analyzing 

global spatial connections between serrations and 

separating regions with various depth levels.  

 The work is divided into five chapters, the first of 

which is an introduction, and the second of which is a survey 

of the literature. Section 3 provides a description of the 

suggested approach.  

  It also addresses the various research methods used. Section 4 

discusses performance and comparative analysis. Section 5 

discusses the work's conclusion in depth. 

II. Literature survey 

Pankaja et al. [16] suggested classifying and identifying 

plant leaves utilizing the hybridization of the whale optimization 

algorithm (WOA) and the random forest (RF). This research 

made use of the Swedish and Flavia leaf datasets. Pre-

processing was done initially to enhance the data's quality or 

remove noise before feature extraction. To address the 

dimensionality problem, WOA was used. Additionally, the RF 

classifier was used to identify the leaf. The recommended 

approach has a high accuracy of 97.58% with a lower execution 
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time when compared to alternative methods. This work ensured 

improved classification and identification of plant leaves for 

therapeutic purposes. Because they don't naturally undertake 

feature engineering to adequately describe the qualities of plant 

leaves, this method falls short in finding significant features. 

Huixian et al. [17] designed to extract leaf features and 

identify plant species through image analysis. First, a variety of 

methods were used to segment plant leaf images. The texture 

and shape information from leaf sample photographs was then 

extracted using a feature extraction method. Subsequently, the 

comprehensive characteristic information of plant leaves was 

generated using the comprehensive characteristic information. 

Three approaches are examined and contrasted in this study: 

support vector machines (SVM), Kohonen networks based on 

self-organizing feature mapping techniques, and K-Nearest 

Neighbour (KNN)-based classification. Fifty plant leaf 

databases were used as the test and comparative datasets. 

Ginkgo leaves were shown to be easier to identify when seven 

distinct plants' leaves were compared at the same time. For leaf 

pictures with complex backgrounds, a good recognition impact 

has been achieved. Since the segmentation background was 

straightforward, more study is required to identify leaves in their 

natural environment and against a variety of backgrounds in this 

work. 

Yang et al. [18] provided an innovative method that utilized 

tactile and morphological aspects to detect plant leaves. First, 

shape and texture attributes were offered as the basis for the 

recommended plant leaf identification approach. The suggested 

multiscale triangle descriptor (MTD) was used to characterize 

the shape information of a plant leaf, and the local binary 

pattern histogram Fourier (LBP-HF) was used to capture the 

texture feature. Next, the texture and form attributes of an 

image of a leaf were integrated using weighted distance 

measuring. L1 distance was used for form characteristics while 

chi-square distance was used for texture features. The 

suggested method combined the complementing MTD and 

LBP-HF traits to produce a potent descriptor for the plant leaf 

recognition task. 

The proposed method has been extensively evaluated on three 

benchmark leaf datasets. Moreover, this approach lacks 

accuracy for leaf detection since it takes only consideration of 

its shape and texture attributes, disregarding other important 

visual aspects. 

Bisen et al. [19] proposed a plant identification method that 

was automated and used a leaf to identify the species of the 

plant. This challenge was completed using a deep convolutional 

neural network to get higher accuracy. Pre-processing the 

picture, feature extraction, and recognition were the three main 

stages of identification that were taken into evaluation. The 

proposed CNN classifier learned plant characteristics, such as 

leaf categorization, using hidden layers that include 

convolutional, max-pooling, dropout, and fully connected 

layers. The model was used to identify the correct category of 

an unknown plant with the lowest losses and 97% accuracy. It 

learns features using the Swedish leaf dataset, which consists of 

15 tree classes. The segmentation and identification of leaves 

from photos of foliage using different leaf datasets is not 

improved by the proposed method. 

Azadnia et al. [20] developed a modern, reliable automated 

image-processing method to recognize medicinal plants under 

regulated lighting conditions with speed and accuracy. The 

algorithm was applied to extract texture, color, and form 

features from the acquired pictures. Artificial neural networks 

were used to classify a number of the medicinal plants that were 

the subject of the study. The best classifier was selected based 

on factors such as accuracy, correlation, and error. The optimal 

classifier model was generated after feeding the model with the 

effective attributes. To prevent overfitting and ensure that there 

is enough capacity to capture the variety within the plant 

species, this study requires. 

Bao et al. [21] observed that even for seasoned botanists, the 

procedure of recognizing species was difficult. As a result, this 

study proposed two methods for handling the problem of plant 

species identification using leaf patterns. The characteristics of 

a traditional recognition shallow architecture were extracted 

using the Histogram of Oriented Gradients (HOG) vector. The 

SVM algorithm was then applied to categorize based on these 

characteristics. Second, a deep CNN was employed in this study 

to accomplish recognition. To confirm the findings, tests were 

carried out with two leaf data sets: the Swedish leaf data 

collection and the Flavia leaf data set. The key disadvantage of 

this work is that it does not include a comparison review of other 
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detection and identification approaches to assess the benefits 

and drawbacks of the proposed strategy. 

Hajam et al [22] used ensemble learning techniques to improve 

the accuracy of medicinal plant identification. Transfer 

learning was used with pre-trained models like VGG16, 

VGG19, and DenseNet201 to extract useful characteristics 

from medicinal plant leaf photos. To build ensemble models 

using CNNs, compare three popular CNN architectures: 

VGG16, VGG19, and DenseNet201. Transfer learning was 

used to harness three three-component classifiers without their 

upper layers.  

This adaption enabled them to identify critical properties in 

medicinal leaf pictures, which were subsequently merged into 

thick layers trained on a dataset including 30 different classes of 

medicinal leaves using a softmax classifier. Training deep 

neural network models, specifically ensemble models, 

necessitates enormous computing resources and time. 

Salve et al [23] developed a multimodal plant classification 

system using spectral signatures and leaf venation patterns as 

essential elements. The VISLeaf dataset was used to test the 

suggested methodologies. A variety of techniques were used to 

extract features from the dataset, such as vein characteristics, 

morphological features, spectral reflectance for non-imaging 

spectral signatures, and HOG descriptors from scanned leaf 

pictures. Concatenation was used to fuse the retrieved features 

and produce a multimodal feature set. By combining data from 

several feature sets, feature fusion algorithms increase 

classification performance over the use of individual feature sets 

alone. However, the combination of feature sets and the fusion 

of several feature types make the classification system's 

calculation more challenging.  

Zhao et al [24] utilized DoubleGAN, a two-stage generative 

adversarial network (GAN), to produce precise images of 

diseased plant leaves. The intention was to tackle the problem 

of imbalanced datasets in plant disease diagnosis, wherein 

photos of diseased leaves were often less numerous than those 

of healthy leaves. There were two steps in the process: To obtain 

a pre-trained model, a Wasserstein generative adversarial 

network (WGAN) was trained using images of both healthy and 

diseased leaves. Next, 64x64 pixel pictures of sick leaves were 

created by applying the pre-trained model to photographs of the 

leaves. The dataset was expanded by using a super-resolution 

generative adversarial network (SRGAN) to increase the 

resolution of the produced 64x64 pixel pictures to 256x256 

pixel images. Comparable to other GANs, DoubleGANs are 

susceptible to mode collapse, training instability, or poor picture 

quality due to hyper parameters including learning rates, batch 

sizes, and network designs. 

Ashwinkumar et al [25] proposed the use of an optimum mobile 

network-based convolutional neural network (OMNCNN) in 

an automated model for the detection and classification of plant 

leaf diseases. Preprocessing, segmentation, feature extraction, 

and classification were the distinct steps at which the suggested 

OMNCNN model functions. Bilateral filtering (BF) based pre-

processing and Kapur's thresholding-based image 

segmentation were utilised to identify the affected regions of 

the leaf picture. 

Furthermore, the emperor penguin optimizer (EPO) method 

was used to optimize the hyper parameters of the Mobile Net 

model as a feature extraction strategy to improve the rate of 

plant disease identification. Lastly, a classifier based on an 

extreme learning machine (ELM) was used to provide the 

proper class labels to the submitted plant leaf photos. 

However, dependence on manually defined features and 

adjusted parameters limits scalability and flexibility when 

dealing with different datasets. 

The above statement stated that [16] Lacks inherent feature 

engineering, delaying the effective representation of plant leaf 

characteristics. [17] Requires further research to improve leaf 

recognition in natural habitats and against varied backgrounds. 

[18] Only considers shape and texture, disregarding other 

crucial visual features, leading to accuracy limitations. [19] 

Fails to enhance leaf segmentation and identification from 

diverse foliage photographs. [20] Struggles to balance network 

complexity, risking overfitting while capturing plant species 

variability. [21] Omits comparative analysis with alternative 

techniques, hindering assessment of suggested approach 

benefits. [22] Demands significant computational resources and 

time for training, limiting scalability. [23] Faces challenges in 

calculation due to combining multiple feature sets, impacting 

efficiency. [24] Experiences training instability and poor picture 

quality due to hyper parameter tuning issues. [25] Relies on 

manual feature definition and parameter adjustment, restricting 
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scalability and flexibility across datasets. Addressing these 

difficulties through more research and innovation is necessary 

for establishing more robust, efficient, and scalable techniques 

for identifying plant leaves and detecting diseases. 

III. Leaf Detection with Venation and 

Margin using Multi-spectral Caps 

Net and Relational Prototypical 

LSTM 

Leaf detection is an important step in video analysis since it 

allows us to analyze dynamical leaf behavior and helps in 

agricultural observation and ecological studies. To address those 

obstacles and detect leaves in the video, an elusive intelligent 

method called Multi-spectral Caps Net and Relational 

Prototypical LSTM is presented. This innovative approach 

begins with converting the video into image frames, followed 

by noise removal and contrast enhancement through pre-

processing techniques. Subsequently, watershed segmentation 

is employed for accurate leaf segmentation. Each leaf has 

distinct vein patterns, which include parallel and reticulate 

venation. Secondary vein connectivity and branching patterns 

are unique in leaves with reticulate venation, and these 

characteristics are essential for recognizing a species. The 

hierarchical nature of vein networks makes it difficult to extract 

essential data from secondary vein patterns, such as vein 

spacing, branching angles, and connection with higher-order 

veins. Primary veins comprise the basic structure, with 

secondary, tertiary, and higher-order veins branching off of 

them. Existing algorithms failed to capture contextual details 

beyond local spatial patterns, limiting their capacity to analyze 

the long-range. Hence for the feature extraction phase, the 

Adaptive Centricity Multi-spectral Caps Net is introduced, 

which  

Utilizes the Adaptive Centricity Hough Line Detection 

(ACHL) Algorithm to extract local features like vein spacing 

and branching angles. The Adaptive Hough Transform adjusts 

parameters based on local image characteristics to detect 

primary and secondary veins, while the MAT extracts the 

skeleton of the leaf veins by capturing the essential structure of 

the vein network, including the secondary veins and their 

branching patterns. Thus, ACHL identifies the distance between 

the veins, computing vein spacing, then analyses the branching 

points, calculating the angle at which secondary veins branch 

off from primary veins. Multi-spectral Attentional CapsNet 

(MA-CapsNet) extracts global features from leaf vein patterns, 

which incorporates Multi-spectral Channel Attention to 

selectively attend to spectral channels containing useful 

information for distinguishing vein patterns, enhancing 

contextual understanding beyond local spatial patterns. The 

Capsule Network represents vein segments hierarchically, 

capturing orientation, position, and connectivity information to 

handle long-range dependencies and complex spatial 

relationships effectively. Thus, MA-CapsNet provides a robust 

solution for extracting features from leaf vein patterns and 

addressing challenges associated 0with hierarchical 

organization and contextual information capture. 

Moreover, the serration depth in leaf margins is a significant 

feature for identifying plant species. It is quantified as the 

distance between the base of a serration and its tip perpendicular 

to the leaf margin. Serrations fluctuate within a leaf due to 

genetic, developmental, and environmental influences, resulting 

in a gradient that spans regions. Detecting and characterizing 

this gradient requires algorithms that analyze the spatial 

distribution of serrations and differentiate between regions with 

different levels of depth. In leaf detection, existing algorithms 

process input data sequentially, layer by layer, without 

considering relative information from neighboring regions, 

restricting the network's ability to grasp the global spatial 

relationships between serrations and distinguish between 

regions with varying depths. Therefore, Bidirectional Relational 

Prototypical LSTM (Bi-RP LSTM), is implemented for leaf 

detection. Relational prototype networks collect relative 

information between serrations, which improves the clarity of 

global spatial connections. A prototype represents each class or 

degree of serration depth, allowing for more effective separation 

between depth levels. Bi-LSTM analyses serrations sequentially 

along the leaf margin, processing input data in both directions 

to take into account information from neighboring areas. This 

method enhances leaf detection accuracy by providing 

contextual awareness, relative location comprehension, spatial 

connection analysis, and depth level distinction within the leaf 

margin. 
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Fig.1.architecture of the Relational Prototypical LSTM and 

Multi-spectral Caps Net 

Figure 1 illustrates the architecture of the Relational 

Prototypical LSTM and Multi-spectral CapsNet for leaf 

detection with venation and margin. Leaf videos are first 

converted into picture frames and pre-processed for contrast 

improvement and noise reduction. The watershed approach is 

used for segmentation. The Adaptive Centricity Multi-spectral 

CapsNet is used for feature extraction, along with the Medial 

Axis Transform for vein skeletonization and the ACHL 

Algorithm comprises the Adaptive Hough Transform for vein 

spacing and branching angle extraction. MA-CapsNet improves 

contextual knowledge by focusing on certain spectral channels. 

By capturing hierarchical vein organization, the Capsule 

Network makes it easier to recordlong-range dependencies. Leaf 

detection, which follows feature extraction, presents the Bi-RP 

LSTM and uses relational prototype networks to achieve global 

spatial knowledge. Sequential serration configurations are 

analyzed using Bi-LSTM, which considers surrounding areas 

for context awareness. The methodological aspects of the 

proposed leaf detection are discussed in the upcoming sections. 

Fig. 1. Architecture of the Leaf detection with venation and 

margin using Multi-spectral CapsNet and Relational 

Prototypical LSTM. 

Data collection 

The data collection starts with a 20-second leaf video. The 

input leaf video is translated into 611 distinct frames, each 

representing a snapshot of the leaf at a given instant. This step 

ensures that each frame is treated separately during leaf 

detection and analysis. By considering each frame as an 

independent object, the model properly records and analyzes 

the delicate characteristics of the leaf's structure and venation 

patterns at various periods, allowing for robust and dependable 

leaf recognition. This collection contains 488 frames for 

training the model, which provides sufficient information for 

the algorithm to recognize the detailed patterns of leaf features 

such as venation and marginal characteristics. The remaining 

123 frames are put aside for performance testing, which 

provides an entire evaluation set to confirm the model's ability 

to recognize leaves correctly. 

Pre-processing  

After data collection, preprocessing takes place to prepare 

a dataset with valuable information and remove unwanted ones. 

Random changes in pixel values frequently occur in videos due 

to factors such as camera sensor noise and compression 

artifacts. Noise reduction technique, median filtering is used to 

smooth out these variances and generate a clearer image. This 

procedure improves frame quality and removes unnecessary 

distractions in the final analysis. 

Leaves in a video vary in brightness and contrast due to 

lighting conditions, shadows, or camera settings. Increasing 

contrast enhances overall image quality and helps recognize 

details. In this proposed pre-processing stage for boosting the 

contrast of the image a simple method named, linear grayscale 

transformation is used. By mapping the image's original 

intensity values to a new range, this approach stretches or 

compresses the intensity values to raise the overall contrast. 

Using this approach, the contrast is adjusted by linearly 

transforming the image's pixel intensities. The processed 

image, h(x,y), is intended to contain pixel values ranging from 

[e,f]. In contrast, the original image, I(x,y), has pixel intensities 

ranging from [c,d]. The pixel intensities are subjected to a 

linear expansion to achieve this. This compression or stretching 

of the intensity range increases the image's dynamic range and 

sharpens the contrast between its features. The h(x,y) functions 

are expressed in the following equation (1) 

 

ℎ(𝑥, 𝑦) = {

𝑓
𝑓−𝑒

𝑑−𝑐
[𝐼(𝑥, 𝑦) − 𝑐] + 𝑒

𝑒

         

𝐼(𝑥, 𝑦) > 𝑑
𝑐 ≤ 𝐼(𝑥, 𝑦) ≤ 𝑑

𝐼(𝑥, 𝑦) < 𝑐

 (1) 
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Where c and d stand for the original image's grey 

transformation range and e and f for the processed image's grey 

transformation range. Performing this pre-processing process 

on the frames of images taken from the leaf video increases the 

quality of the images and makes it simpler to detect and analyze 

the features of the leaves. After preprocessing, segmentation 

takes place, which is explained in the following section. 

Watershed segmentation method 

By determining the borders between elements of an image, 

the watershed segmentation method is a technique used to 

separate them. The technique is based on the idea of a 

topographic map, in which elevation levels are deduced from 

the intensity values of the images. The grayscale image is 

treated as a topographic surface, and the heights of the surface 

are represented by the intensity values of the image. Next, 

utilizing the surface gradient as a guide, watershed lines are 

employed to divide various areas. The ability to identify 

possible borders between different image sections depends on 

this information. Equation (2) expresses the gradient of the 

proposed model. 

∇𝑓(𝑥, 𝑦) = √(
𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑦
)2   (2) 

Where ∇ is the gradient operator and f(x,y) is the intensity 

function of the image at pixel (x,y). After that, the algorithm 

uses the markers it created as the first seeds for segmentation. 

The markers help identify the regions of interest and direct the 

segmentation process. The gradient image is often modified or 

masked to highlight ROI and reduce unwanted gradients, which 

leads to more efficient image segmentation. The masked 

gradient is the sensible combination of the gradient image and 

the marker function. Based on the image's gradient or intensity 

information, the algorithm divides the low-contrast region into 

distinct sections. After that, visualize the image as a 

topographic surface with gradients or pixel intensities that 

match elevations by using a suggested watershed 

transformation. The watershed transform is applied to the 

gradient or intensity image treating the intensity values as 

elevations. This turns the grayscale image into a segmented 

image with watershed lines separating the various groups. The 

watershed transform W_T, is often stated mathematically as in 

equation (3): 

𝑊𝑇(𝑥, 𝑦) = 𝛻𝑓(𝑥, 𝑦)   (3) 

The image is divided into regions once the watershed transform 

has been calculated. The borders between the areas are 

established by the watershed lines. Equation (4) expresses the 

resulting segmented regions. 

𝑆𝑒(𝑊𝑇) = 𝑠𝑒1, 𝑠𝑒2 , 𝑠𝑒3, … . , 𝑠𝑒𝑛  (4) 

The segmentation process assigns each pixel in the image 

to an expected region based on the watershed lines. The 

watershed segmentation approach, used after pre-processing, 

reliably segments individual leaves in the image, even when the 

borders between leaves are not clearly defined or overlapping 

features. 

Adaptive Centricity Multi-Spectral Capsnet 

The existing algorithms are not able to extract features from 

the hierarchical vein structure of leaves effectively because 

they are unable to capture global contextual information and 

long-range connections. Hence the new algorithm named 

Adaptive Centricity Multi-spectral CapsNet is introduced for 

feature extraction. ACMC algorithm is utilized for feature 

extraction from leaf vein patterns, in this an ACHL Algorithm 

extracts local features like vein spacing and branching angles, 

and MA-Caps Net is primarily used to capture contextual 

information.  

Adaptive Centricity Hough Line Detection (ACHL) 

Algorithm:  

The ACHL Algorithm is an effective method in image 

processing and computer vision for extracting detailed local 

features from images, particularly those seen in natural 

structures such as leaf veins. ACHL functions by methodically 

analyzing a leaf's vein network to extract critical information 

such as vein spacing and the angles at which secondary veins 

branch out from the main veins. Firstly, the AHT, a part of 

ACHL is employed, that adapts its parameters in response to 

local image features. This adaption helps it to accurately 

distinguish primary and secondary veins in leaf images. The 

fundamentals of the AHT, which represent characteristics of 

interest such as veins, are specified with polygons and 

parametrically defined. The approach converts the shapes of 

interest to a parameter space that is accurately analyzed. In the 
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Cartesian system of coordinates (x_l,y_l), a line is defined as in 

equation (5): 

yl = qlxl + bl    (5) 

The intercept with the y-axis is represented by bl, while the 

slope of the line is represented by ql. Every point (xl,yl) in 

Cartesian coordinates corresponds to a line in (ql,rl). This space 

displays all conceivable lines based on their slope and intercept. 

Equation (6) depicts the translation from Cartesian coordinates 

to parameter space or Hough space. 

𝑏𝑙 = −𝑞𝑙𝑥𝑙 + 𝑦𝑙          

    (6) 

The Hough Transform is stated in polar coordinates (θ, ρ), 

where θ is the line's angle with the horizontal axis and ρ is the 

minimum distance from the origin. These parameters are 

connected to bl and ql through Equations (7) and (8): 

𝜌 = 𝑥𝑙 ∙ cos(θ) + 𝑦𝑙 ∙ sin (𝜃)        (7) 

𝜃 = arctan (−
𝑦𝑙

1
)          (8) 

This representation is useful for detecting veins at any 

angle. The AHT adjusts its settings in response to local visual 

properties such as intensity gradients and curvature. This 

adaptation enables the AHT to detect both primary and 

secondary veins by tailoring its parameters to the vein patterns. 

The AHT detects primary and secondary veins in the leaf by 

transforming the image into Hough space. The parameter 

adaption ensures that the AHT is responsive to vein 

characteristics, allowing it to extract vein information more 

effectively. Once the veins are spotted, the Medial Axis 

Transform (MAT) is utilized to extract the skeleton of the leaf 

veins.  The MAT represents the basic structure of the vein 

network, including the secondary veins and their branching 

patterns, as a skeleton.  

The first step is to create a binary picture of the leaf veins, 

with foreground pixels and background pixels. The method 

often starts to compute the distance transform of the binary 

image that contains the leaf veins. This procedure determines 

the distance from each pixel in the picture to the nearest border. 

The output is a distance map, with each pixel value representing 

the distance to the nearest border. The distance transform (DT) 

for a binary image (Im) is mathematically defined as follows in 

equation (9): 

 𝐷𝑇(𝑥, 𝑦) = min
(𝑥,,𝑦 ,)𝜖𝐼𝑚

‖(𝑥, 𝑦) − (𝑥 ,, 𝑦 ,)‖    (9) 

Where the positions of the pixel being processed are 

represented as (𝑥, 𝑦), (𝑥′, 𝑦′) are the positions of border pixels, 

and ∥⋅∥ is the Euclidean distance. After obtaining the distance 

transform, locations along the vein structures where the 

distance function displays local maxima are identified to 

determine the skeleton of the leaf vein network. To do this, the 

binary image is thinned, which is an iterative process that 

involves removing pixels from the boundaries of the object 

while maintaining its general structure and connectivity. The 

vein network's topology is maintained during the thinning 

process, which is usually achieved by morphological operation. The 

leftover pixels create the skeleton, referred to 

 

Fig.2. Multi-spectral Caps Net 

As the Medial Axis, which accurately depicts the 

center vein system of the leaf as the reduction in thickness 

proceeds. The next step is connecting the local maxima points 

obtained during thinning to construct the skeleton. This is 

achieved by tracing paths between neighboring local maxima 

points, ensuring that the lines follow the object's centerline. By 

following these steps, the MAT accurately extracts the skeleton 

of the leaf veins, capturing both the secondary veins and the 

object's branching patterns.  

After getting the leaf vein skeleton, ACHL continues to 

extract local characteristics, such as vein spacing and the angles 

at which primary veins split off into subsidiary veins. Vein 

spacing, which gives important details about the general 

distribution of veins all over the leaf, is calculated by measuring 

the distance between adjacent veins along the skeleton. In the 

meanwhile, the angles generated between the primary and 

secondary veins are calculated by examining the junction 
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locations along the skeleton to identify the angles of branching. 

Mathematically, the computation of vein spacing 𝑆𝑣 is 

represented as in equation (10): 

𝑆𝑣 =
1

𝑀
∑ 𝐷𝑇

𝑀
𝑖=1       (10) 

Where D_(T )is the distance between adjacent vein 

segments and M is the total number of vein segments. Also, 

calculating branching angles requires figuring out the angle that 

forms at a branching point between two adjacent vein 

segments. This is stated as follows in equation (11): 

𝜃𝑗 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑣𝑖.𝑣𝑖+1

‖𝑣𝑖‖‖𝑣𝑖+1‖
)        (11) 

Where the angles between the two adjacent vein segments 

are denoted by 𝜃𝑗, and the unit vectors indicating the directions 

of the two vein segments are represented by 𝑣𝑖  and 𝑣𝑖+1. 

Adaptive Hough Transform and Medial Axis Transform 

together create an excellent basis for extracting specific 

information from leaf vein patterns. When combined, these 

algorithms allow for the calculation of vein spacing, the precise 

position of branching points, and the extraction of the 

skeletonized vein network, which improves the understanding 

of leaf shape and facilitates a range of uses, including the 

identification of species. 

Multi-spectral Attentional CapsNet (MA-CapsNet) 

A novel deep learning architecture called MA-CapsNet is 

used to extract the global features from leaf vein patterns in 

images. To efficiently capture the hierarchical structure and 

contextual data present in vein networks, it combines the 

features of multi-spectral channel attention and CapsNet, each 

offering unique advantages in enhancing the model's 

performance. 

attention mechanism is expressed as follows in equation 

(12): 

𝐶𝑖 = 𝜎(𝑊𝑓 ∗ 𝐹𝑖) ∙ 𝐹𝑖          (12) 

The channel-wise attention weights for the 𝑖𝑡ℎ feature map 

is denoted by 𝐶𝑖, while 𝐹𝑖represents the 𝑖𝑡ℎ feature map and 𝑊𝑓 

denotes the weight of the feature map. Using this attention 

mechanism, Multi-spectral Channel Attention enables the 

model to flexibly attend to spectral channels containing 

significant information, hence improving its capacity to capture 

distinguishing aspects of vein patterns across multiple spectral 

bands. Following the multi-spectral channel attention, MA-

CapsNet employs CapsNet, which excels in capturing the 

hierarchical organization of vein networks.  

Fig. 2. CapsNet structure 

Figure 2 depicts the structure of the proposed CapsNet. The 

CapsNet is made up of three layers: convolutional, primary, and 

digital. The CapsNet enables a hierarchical depiction of venous 

networks. Each vein segment is represented as a capsule, 

containing information about its orientation, location, and 

connection to higher-order veins. CapsNet uses dynamic 

routing to discover the hierarchical connections among various 

venous segments. The dynamic routing method iteratively 

adjusts the weights to more frequently allocate capsule outputs 

from the previous layer to capsules in the following layer. This 

routing makes it easier for the model to represent intricate 

spatial linkages and long-range interdependence between vein 

segments. The dynamic routing process involves three main 

steps, initially, the routing weights are calculated using a 

softmax function. Equation (13) calculates the dynamic routing 

weight 𝐷𝑖𝑗  where 𝑖 indexes capsules in the lower-level layer 

and 𝑗 indexes capsules in the higher-level layer. 

𝐷𝑖𝑗 =
𝑒

𝑏𝑖𝑗

∑ 𝑒𝑏𝑖𝑚𝑚
         (13) 

The outputs of the low-level capsules are weighted and 

summed to obtain the input of the high-level capsule 𝑗: Lower-

level capsules collect the local properties of vein segments, 

whereas higher-level capsules capture more abstract 

representations such as the spatial relationships between vein 

segments, 

𝑅𝑗 = ∑ 𝐷𝑖𝑗𝑢𝑗|𝑖
𝑚
𝑖=1                   (14) 

Equation (14) computes the weighted sum 𝑅𝑗 of inputs from 

lower-level capsules for each higher-level capsule 𝑗. Then the 

weighted sum 𝑅𝑗 is passed through a nonlinear activation 

function to obtain the output of the high-level capsule 𝑧𝑗: 

𝑧𝑗 =
‖𝑅𝑗‖

2

1+‖𝑅𝑗‖
2 ∙

𝑅𝑗

‖𝑅𝑗‖
2             (15) 

Where ‖𝑅𝑗‖ is the Euclidean norm of the 𝑅𝑗. This activation 

function enables the CapsNet to capture complex spatial 

interactions between vein segments and express them 

hierarchically. MA-CapsNet, which combines Multi-spectral 

Channel Attention and CapsNet, provides an effective method 

for feature extraction from leaf vein patterns. This integration 

process involves considering not only the spatial arrangement 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 08 Issue: 11 | Nov - 2024                           SJIF Rating: 8.448                                     ISSN: 2582-3930                

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM39169                                        |        Page 10 

of vein segments but also their relationships across different 

spectral bands, allowing the model to infer richer contextual 

information about the leaf vein patterns. It tackles the 

limitations of vein hierarchical structure and successfully 

maintains contextual information over local spatial patterns. 

Bidirectional Relational Prototypical LSTM 

Once after extracting the features, the unique neural network 

architecture called Bi-RP LSTM is implemented for leaf 

detection. This novel approach combines two essential 

components: RPN and Bi-LSTM networks. Together, these 

transform leaf analysis by improving its understanding of global 

spatial connections and the sequential arrangement of sharp 

edges along the leaf margin. Initially, RPNs utilize prototype 

vectors to represent each class or category. This prototype 

vector serves as a reference point, encapsulating the class's core 

characteristics. In the scenario of leaf detection, each class 

represents a distinct amount of serration depth.  

The main aim of RPNs is to capture the relative information 

between serrations in a leaf by expressing each class (or degree 

of serration depth) with a prototype. The set of serrations on a 

leaf is represented as 𝑆 = {𝑠1, 𝑠2, … … … , 𝑠𝑁}, where 𝑁 is the 

total number of serrations. Each serration 𝑠𝑖  is represented as a 

feature vector 𝑥𝑖. Also have a collection of prototype vectors 

representing different levels of serration depth, represented by 

𝑃 = {𝑝1, 𝑝2, … … , 𝑝𝑘} where 𝐾 is the number of classes or depth 

levels.  The distance between a serration (𝑥𝑖) and a prototype 

(𝑝𝑘) is computed using a distance metric, which is expressed in 

the following equation (16). 

𝑑(𝑥𝑖 , 𝑝𝑘) = ‖𝑥𝑖 − 𝑝𝑘‖2       (16) 

A softmax function is then employed to characterize the 

connection between a serration and a prototype, resulting in a 

probability distribution across the classes, expressed in equation 

(17). 

𝑃(𝑦𝑖 = 𝑘|𝑥𝑖) =
𝑒−𝑑((𝑥𝑖,𝑝𝑘)

∑ 𝑒−𝑑((𝑥𝑖,𝑝𝑘)𝐾
𝑗=1

           (17) 

RPNs capture the relationships between different serrations, 

enabling the network to understand the global spatial 

relationships within the leaf. Furthermore, the Bi-LSTM is 

designed to analyze data sequences, such as analyzing the 

sequential arrangement of serrations along the leaf margin. Each 

serration is considered a data point in the sequence, and because 

Bi-LSTM is sequential, it processes these data points in the 

proper sequence. The input data for leaf margin analysis 

frequently appears as a series of features, with each feature 

representing various aspects of the leaf border, such as serration 

length, angle, or curvature. The input sequence of serration 

characteristics is denoted as  𝑆 = {𝑠1, 𝑠2, … … … , 𝑠𝑁}, where 𝑁 

is the number of serrations. 

 

Fig. 3. Schematic diagram of Bidirectional LSTM 

A schematic diagram of Bidirectional LSTM is shown in 

above Figure 3. Bi-LSTM consists of two LSTM layers they are 

forward and backward.  The forward LSTM processes the 

sequence from left to right, whereas the reverse LSTM processes 

it from right to left. By processing incoming data bi-

directionally, the network takes into account information from 

neighboring areas when evaluating each serration. This enables 

the network to gather contextual information and identify the 

relative locations of serrations along the leaf margin.  

The bidirectional processing of the input sequence allows 

the network to grasp the precise position of serrations inside the 

leaf margin. By considering input from both directions, the 

network infers spatial correlations between serrations, such as 

their distances and structure patterns. Recognizing relative 

placements is essential for correctly detecting and classifying 

serrations with varied depths. The LSTM unit comprises 

multiple components, including an input gate, a forget gate, and 

an output gate. They are determined as follows in equation (18), 

(19) and (20): 

𝐼𝑡 = 𝜎(𝑌𝑡𝑊ℎ𝑖 + ℎ𝑡−1𝑊ℎ𝑖 + 𝑏𝑖)     (18) 

𝐹𝑡 = 𝜎(𝑌𝑡𝑊ℎ𝑓 + ℎ𝑡−1𝑊ℎ𝑓 + 𝑏𝑓)     (19) 

𝑂𝑡 = 𝜎(𝑌𝑡𝑊ℎ𝑜 + ℎ𝑡−1𝑊ℎ𝑜 + 𝑏𝑜)    (20) 

At time step 𝑡, the hidden states of the forward and 

backward LSTMs are designated as ℎ𝑡
𝑓

 and ℎ𝑡
𝑏 , respectively. 
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Forward and reverse processing is expressed as follows in 

equations (21) and (22): 

ht
f = ∅(YtWyh

(f)
+ ht−1

f Wh
(f)

+ bh
(f)

)     (21) 

ht
b = ∅ (YtWyh

(b)
+ ht−1

b Wh
(b)

+ bh
(b)

)    (22) 

These forward and backward hidden states capture 

information from the past and future contexts of each serration. 

The combination of the hidden state is expressed in the following 

equation (23) 

ℎ𝑡 = ℎ𝑡
𝑓

⊕ ℎ𝑡
𝑏       (23) 

Where ⊕ represents the summation by element, which is 

used to sum the elements of the forward and reverse outputs. Bi-

LSTM accurately captures contextual information by integrating 

the outputs of both forward and backward LSTMs. Each hidden 

state comprises information from both the present serration and 

its neighboring serrations in both directions. It allows the 

network to understand the relative positions of serrations within 

the leaf margin, thus enhancing its ability to accurately identify 

and differentiate between different features of the leaf. The final 

output of the Bi-RP LSTM for each serration is obtained by 

combining the outputs of the relational prototypical network and 

the bidirectional LSTM:  

𝑌𝑓𝑖𝑛𝑎𝑙 = {ℎ𝑡
𝑓

, ℎ𝑡
𝑏 , 𝑃(𝑦𝑖 = 𝑘|𝑥𝑖))        (24) 

Bi-RP LSTM provides potential improvements in leaf 

detection tasks by combining the features of RPNs with Bi-

LSTM, allowing for the investigation of spatial connections and 

the distinction between regions of differing depths. The RPN 

component captures the global spatial correlations between 

serrations, even while the Bi-LSTM component examines the 

sequential arrangement of serrations along the leaf margin using 

both local and contextual information. This extensive approach 

improves detection accuracy by using both spatial and sequential 

information obtained from leaf structures.  

Overall, this approach uses advanced image processing, 

deep learning, and sequence modeling approaches to reliably 

recognize and analyze leaf attributes in video frames. It solves 

issues such as noise, vein hierarchy, and spatial interactions at 

the leaf margin, eventually improving leaf identification 

accuracy. 

 

 

Result and discussion 

This section provides a detailed description of the 

implementation results and the performance of the proposed 

system to ensure that the proposed technique performs better and 

provides an accurate detection of leaf from videos with leaf 

venation and margin. 

System configuration 

The proposed system is simulated in Python, and this 

section provides a detailed description of the implementation 

findings and performance of the proposed system, as well as a 

comparison section to ensure that the proposed system works 

properly. 

Software : Python 

OS : Windows 10 (64-bit) 

Processor : Intel i5 

RAM : 8GB RAM 

 

Simulation output of the proposed model 

The simulation modeling strategy of the proposed Multi-

spectral CapsNet and Relational Prototypical LSTM involves 

training the models on a diverse dataset of leaf images with 

annotated vein patterns and serration depths. 

 

Fig. 4. Detected leaf. 
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Figure 4 shows the detected leaf. The original frame has a 

close-up shot of a green plant with multiple leaves. The second 

frame seems to be a modified version of the first. The identical 

leaves are visible, but one of them has a prominent yellow line 

painted across it, following the central vein from base to tip. 

This line appears to highlight or select the leaf, presumably as 

part of an image-processing assignment for identifying and 

isolating healthy leaves. The detected leaf is a close-up image 

of a single leaf from the same plant for further processing. 

 

Fig. 5. Local feature extracted image. 

Figure 5 illustrates the local feature extracted image. The leaf's 

skeleton image, which was obtained using the Medial Axis 

Transform, shows the basic layout of the vein network, 

including the primary and secondary veins. This representation 

of the leaf's vascular system is clear and concise. Vein spacing 

and branching angles are emphasized in the local feature 

extracted image by using the Adaptive Hough Transform to 

better capture the fine details of the leaf's vein patterns. 

depicts the global feature extracted image. Vein networks 

are arranged hierarchically, with principal veins serving as the 

main framework and secondary, tertiary, and higher-order 

veins branching off of them. Multi-spectral channel 

attention ability to extract vein segments reveals intricate 

spatial details that are essential for species identification, such 

as vein spacing and branching angles. MA-CapsNet's vein 

patterns identify spectral channels that hold pertinent 

information, improving contextual awareness beyond local 

spatial patterns. The hierarchical structure of vein networks is 

represented by global features that the Capsule Network 

extracts from leaf images. These features successfully capture 

long-range interdependence by encapsulating orientation, 

location, and connection information. 

 

Fig.6.Global feature extracted image 

Figure 7 demonstrates the spatial relationships within the leaf 

margin. The image of the serration mask displays the unique 

forms and sizes of the serrations along the leaf border 

             

 

Fig.7.Serration 

And also their defined lines. Complex details like vein spacing 

and branching angles are shown in the image with the extracted 

serration features, providing data on the structural properties of 
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serrations. Lastly, a complete perspective of the serrations is 

provided by the serration image, which shows their various 

depths and locations along the leaf margin. In addition to 

providing essential inputs for the Bi-RP LSTM to effectively 

identify and analyze spatial connections within the leaf margin, 

these pictures collectively demonstrate the intricacies of leaf 

serrations. 

Comparative analysis of the proposed model 

This section highlights the proposed Multi-spectral CapsNet 

and Relational Prototypical LSTM leaf detection model with 

the traditional models and the achieved outcome was explained 

in detail in this section by comparing it with DenseNet 121 

[12], MobileNet-v2 [12], and DenseNet 201 [12], InceptionV3 

[26], InceptionResNetV2 [26], MobileNetV2 [26], 

efficientNetB0 [26] NN [27], SVM [27], KNN [27], RNN [27], 

and BILSTM [27] showing their results based on various 

metrics such as accuracy, recall, precision, false positive rate, 

sensitivity, specificity, loss and F1-score. 

Figure 18 shows the accuracy comparison of the proposed 

leaf detection method with the existing methods. The existing 

methods such as DenseNet 121, MobileNet-v2, and DenseNet 

201 achieve an accuracy of 0.93%, 0.96%, and 0.97%. 

Compared with existing models the proposed model attains the 

highest accuracy of 0.9912%. This indicates that the proposed 

method better identifies leaves from images, leading to fewer 

misclassifications. 

Fig.8.Comparison of accuracy 

A comparison of recall of the proposed leaf detection model 

to the existing models is illustrated in the figure 6 Compared 

with existing techniques the proposed technique achieves the 

highest recall value. The existing techniques such as DenseNet 

121, MobileNet-v2, and DenseNet 201 achieve a recall value of 

0.95%, 0.93%, and 0.96% respectively, and the proposed model 

achieves a recall value of 0.9913%.vThis suggests that the 

proposed model is more effective at capturing all relevant 

instances of leaf features, 

   

 

Fig.9.Comparison of recall 

A comparison of the F1-score of the proposed leaf detection 

model to the existing models is illustrated in the figure 20. 

Compared with existing techniques the proposed technique 

achieves the highest F1-score value. The existing techniques 

such as DenseNet 121, MobileNet-v2, and DenseNet 201 

achieve an F1-score value of 0.91%, 0.95%, and 0.97% 

respectively, and the proposed model achieves an F1-score 

value of 0.9823%. This indicates improved accuracy and recall 

balance, demonstrating the suggested method's capacity to 

detect leaves properly while minimizing false positives and 

negatives 

Overall, in the result area, from the proposed methodology 

a comparison is made with the existing methods, and the 

techniques were explained using graphs. This shows that the 

technique that is used in the leaf detection with venation and 

margin using Multi-spectral CapsNet and Relational 

Prototypical LSTM has comparatively higher accuracy, 

precision, recall, and less computation time than the previous 

techniques that are taken for the comparison. 
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Conclusion  

In conclusion, the "Multi-spectral CapsNet and Relational 

Prototypical LSTM" technique that has been suggested offers 

an exhaustive method to address the difficulties associated with 

automated leaf detection. Using the integration of novel 

techniques in pre-processing, feature extraction, and detection, 

this system demonstrated outstanding abilities in precisely 

recognizing leaves from images. While MA-CapsNet improved 

contextual awareness through multi-spectral attention, the 

combination of Adaptive Centricity Multi-spectral CapsNet 

and ACHL Algorithm ensured robust feature extraction by 

collecting minute details of leaf vein patterns. Moreover, Bi-

RP LSTM presented an innovative approach to leaf detection 

by using bi-directional sequential analysis and relational 

prototype networks to identify intricate spatial interactions 

inside leaf margins.  Compared with existing models such as 

DenseNet 121, MobileNet-v2, DenseNet 201, InceptionV3, 

InceptionResNetV2, RNN, and BILSTM the proposed model 

achieves a high specificity value of 0.99%, sensitivity of 

0.98%, precision 0.98%, and accuracy of 0.9912%. The 

proposed model attains a low computation time of 0.015s and 

a loss value of 0.008 a high F1-score of 0.9823%, recall value 

of 0.9913%. This proves that the proposed leaf detection 

approach performed well when compared to other existing 

techniques. Its great precision, resilience, and computing time 

make it promising for a variety of uses in agriculture, and 

environmental monitoring and it make accurate and effective 

leaf analysis possible in a variety of conditions.   
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