
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 1

Microservices and Security in E-Commerce

Mr. Sammed Kage

Department of Electronics and Telecommunication SCTR’s Pune Institute of Computer Technology Pune, India

sammedkage@gmail.com

Mr. Vedant Karale
Department of Electronics and Telecommunication SCTR’s Pune Institute of Computer Technology Pune, India

vedantkarale271@gmail.com

Mr. Kaushal Kawade
Department of Electronics and Telecommunication SCTR’s Pune Institute of Computer Technology Pune, India

kawadekaushal183@gmail.com

ABSTRACT

One of the objectives and goals of this project is to under-
stand the various cloud computing paradigms. Other objectives
and goals include contrasting traditional monolithic architecture,
service-oriented architecture, and microservice architecture; learn-
ing Spring and Spring Boot for the implementation of an e-
commerce system; implementing microservice architecture using
Java and Spring; testing and deploying projects on the cloud using
Spring; and communicating our findings.
The study attempts to thoroughly investigate and grasp the differ-
ent cloud computing models. With an emphasis on understanding
their strengths, shortcomings, and applicability for various appli-
cation situations, it entails a detailed examination and comparison
of traditional monolithic design, service-oriented architecture, and
microservice architecture. The study goes into the tenets, ideas, and
best practises connected to each style of architecture, offering use-
ful information for software development decision-making.
The project also places a strong emphasis on learning the Spring
and Spring Boot frameworks.The team will put a lot of work into
learning the features and capabilities of Spring and Spring Boot to
facilitate effective microservice development and maintenance in
the context of an e-commerce system.
A crucial component of the project is the implementation of a mi-
croservices architecture utilising Java and Spring.The system will
include crucial features like order processing, user account man-
agement, and shopping cart functionality, demonstrating the advan-
tages and efficiency of microservices in creating complex applica-
tions. Last but not least, a major goal is to effectively communi-
cate the project’s results. The team will keep a record of its obser-
vations, encounters, and findings throughout the project’s duration
and share them with others. This will entail presenting the project
results, going over the difficulties encountered, and making sugges-
tions based on real-world experience utilising Spring and Spring
Boot to develop microservice architecture.

1. INTRODUCTION

What exactly are microservices?
Using the contemporary software development method known
as microservices, application code is distributed in manageable,
separate, and independent of one another parts.

Why might you design microservices?
They could gain additional advantages from their small size
and relative isolation, including simpler maintenance, increased
productivity, increased fault tolerance, better business alignment,
and more.

Using microservices and Spring Boot You can iterate quickly
and scale up your microservices with Spring Boot. Java has
become the de facto industry standard for microservices as a result.
Use Spring Initializer to quickly launch your project, then package
it as a JAR. The integrated server notion of Spring Boot allows you
to start working right away.
With the help of its library of ready-to-use patterns, Spring Boot
can help with service discovery, load balancing, circuit-breaking,
distributed tracing, and monitoring. It also provides a straightfor-
ward example of how to install Spring, Spring Boot, and Spring
Cloud to create a microservices system.

Microservices enable the construction of large systems from a
large number of interconnected components. At the process level,
it employs loosely linked processes as opposed to loosely coupled
components, exactly as Spring has done at the component level.
Think about a website that offers separate microservices for user
accounts, order processing from a product catalogue, and shopping
carts.
You obviously need to set up and configure a lot of moving pieces
in order to develop such a system. It is unclear how to get them
to collaborate; you must be knowledgeable with Spring Boot
because Spring Cloud and different Netflix or other open source

http://www.ijsrem.com/
mailto:sammedkage@gmail.com
mailto:vedantkarale271@gmail.com
mailto:edantkarale271@gmail.com
mailto:kawadekaushal183@gmail.com
mailto:adekaushal183@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 2

Fig. 1. Microservices Architecture

projects heavily rely on it. Of course, there is also some Spring
configuration ”magic”!

A. RESTful webservices Microservices make it possible to build
complex systems out of numerous interconnected parts. It uses
loosely coupled components rather than loosely coupled pro-
cesses at the process level, just like Spring did at the component
level.Consider a website that provides distinct microservices
for managing user accounts, processing orders from a product
catalogue, and shopping carts. To create such a system, you clearly
need to set up and configure a number of moving parts. It is not
clear how to get them to cooperate; you need to be familiar with
Spring Boot because it is used widely by Spring Cloud and other
Netflix or other open source projects. Of course, there is also some
”magic” in the Spring configuration!

B. Spring cloud and Spring boot Developers can quickly imple-
ment some of the common patterns in distributed systems by
utilising the tools provided by Spring Cloud (such as configura-
tion management, service discovery, circuit breakers, intelligent
routing, micro-proxy, control bus, one-time tokens, global locks,
leadership election, distributed sessions, and cluster state). Using
Spring Cloud, which is used to coordinate distributed systems,
developers may easily set up services and applications that
implement boilerplate patterns. They will function effectively in
any distributed context, including managed platforms like Cloud
Foundry, bare metal data centres, developer laptops, and others.

C. Java
A high-level, class-based, object-oriented programming language
with the least amount of implementation dependencies feasible is
called Java. Java is a general-purpose programming language, thus
code that has been compiled once can run on any platform that sup-
ports Java without needing to be recompiled. The phrase for this is
Writing Once, Running Anywhere (WORA). Regardless of the un-
derlying computer architecture, Java programmes are commonly
compiled to bytecode that can run on any Java virtual machine
(JVM). Java features syntax that is similar to both C and C++, al-
though having less low-level capabilities than those languages. Un-
like the majority of traditional compiled languages, the Java run-
time includes dynamic features (including reflection and runtime
code change). 2019 will see one of the most widely used program-
ming languages.
D. Cloud-based Netflix Eureka service
White Cloud For Spring Boot projects that use autoconfiguration,

Fig. 2. Blocking-request-processing.png

binding to the Spring Environment, and other Spring programming
model idioms, Netflix offers Netflix OSS connectors. You can eas-
ily activate and customise the common patterns inside your ap-
plication with a few short annotations, and you can use Netflix’s
tried-and-true components to create enormous distributed systems.
Eureka’s Service Discovery pattern is one of the ones offered.

2. PROPOSED METHODOLOGY

1. Different blocks of Microservices –

A. Microservices
A microservices architecture is built on microservices. The phrase
describes a technique for breaking down an application into typ-
ically small, independent services that can be written in any lan-
guage and communicate via simple protocols. Software develop-
ment teams can employ autonomous microservices to implement
iterative development processes and dynamically construct and up-
grade capabilities.
B. Containers
Software containers maintain a cohesive unit across development,
test, and production by packaging services and their dependencies.
Microservices and containers are not required for microservice de-
ployment. Comparing containers to other deployment alternatives,
such as virtual machines (VMs), however, may speed up deploy-
ment and increase programme efficiency.
C. Service mesh
The service mesh establishes a dynamic communications layer in
a microservices architecture to streamline communication. Devel-
opers do not have to integrate inter-process communication when
they construct the software because it abstracts the communication
layer.

D. Service discovery
Due to fluctuating workloads, upgrades, or failure mitigation,
the number of microservice instances active in a deployment
fluctuates. It might be difficult to keep track of several services
dispersed throughout the network locations of the application
architecture.

E. API gateway
Another essential component of a microservices design is an
API gateway. API gateways are crucial for communication in
a distributed architecture as they may create the first layer of
abstraction between microservices and the external clients. The
API gateway will mostly handle the communication and adminis-
trative responsibilities that are often performed within a monolithic
application, allowing the microservices to remain their lightweight
nature.

2. RESTful webservices
REST often refers to a machine-to-machine interaction. REST en-

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 3

ables for dynamic content, also known as material that is rendered
at the time of request, in web development. RESTful Dynamic
content generates a website using server-side rendering and sends
it to the user’s web browser, which understands the server’s code
and produces the page. As a set of rules for developing stateless,
dependable online APIs, REST has been widely used in the
software industry. RESTful is an informal term used to denote
a web API that adheres to the REST restrictions. RESTful web
APIs often have a weak foundation in HTTP methods like GET
and POST. Utilising URL-encoded parameters, HTTP requests are
used to retrieve data or resources in the web application. In order
to send the data, responses are often structured as either JSON or
XML.

3. Load Balancing
Cloud load balancing is a technique for splitting workloads
and computing resources in a cloud computing environment.
Businesses can control workload needs or application demands
by distributing resources among a large number of computers,
networks, or servers. One aspect of cloud load balancing is
controlling the flow of workload traffic and requests that come in
over the Internet. The internet is expanding so quickly that traffic
is growing by almost 100 percent annually. As a result of the
steadily rising traffic on servers, servers are being overwhelmed,
particularly popular web servers. There are two straightforward
fixes for the overloaded server problem.An initial single-server
strategy entails updating the server to a more performant model.

4. Distributed Tracing
Distributed tracing is the technique of following application re-
quests as they pass from frontend devices to backend services and
databases. Developers can utilise distributed tracing to examine
requests that have a lot of delay or errors. In this post, we’ll discuss
distributed tracing’s functionality, advantages, and initial tools.

5. Hysterix
Hystrix is a library that controls inter-microservice communication
to provide fault tolerance and latency. A modification in the user
interface (UI) might also make sense to let the user know that
something might not have gone as expected or might take longer.

AES Algorithm

A popular symmetric encryption technique that offers high protec-
tion for sensitive data is called the Advanced Encryption Standard
(AES). It uses fixed-size data blocks that are generally 128 bits in
size and supports keys that are 128, 192, or 256 bits in size.

Here is a high-level explanation of the AES algorithm’s operation:

1. Key Expansion: A series of round keys are created by expanding
the original encryption key. Each round key is created by deriving
it from the one before it and then going through several changes.

2. Initial Round: Blocks of the input data, sometimes referred to
as plaintext, are created. Each block is merged with the first round
key in the initial round using a bitwise XOR operation.

3. Rounds: The number of rounds in AES is fixed and dependent on
the key size. For a 128-bit key, there are 10 rounds; for a 192-bit
key, there are 12 rounds; and for a 256-bit key, there are 14 rounds.
The following actions are taken in each round:

a. Subbytes: Each byte in the block is substituted using the S-box, a
preset substitution box. The non-linear replacement makes the data
more ambiguous.
b. ShiftRows: Each row of the block’s bytes undergoes a cyclical
leftward shift. Diffusion in the data is provided in this stage.
c. MixColumns: Using a mathematical process known as matrix
multiplication over a finite field, each column of the block is
changed. The data is further muddled by this procedure.
d. AddRoundKey: A bitwise XOR operation is used to combine
the block with the current round key.

4. Final Round: There is no MixColumns step in the final round,
but it is otherwise comparable to the rounds previously discussed.

5. Output: Following the last round, the created ciphertext serves
as the plaintext’s encrypted counterpart.

The reverse procedures are used with the same round keys in
reverse order to decode the ciphertext. The following steps are
involved in the decryption process:

1. Key Expansion: As previously, round keys are created.

2. Initial Round: A bitwise XOR technique is used to combine the
ciphertext with the previous round key.

3. Rounds: The following actions are taken throughout the decryp-
tion rounds:

a. InvShiftRows: Each row of the block’s bytes undergoes a cyclical
right shift.
b. InvSubBytes: The inverse S-box is used to substitute each byte
in the block.
c. AddRoundKey: Using a bitwise XOR operation, the block is
joined with the current round key.
d. InvMixColumns: Similar to the MixColumns step in encryption,
each column of the block is altered using a matrix multiplication
over a finite field.

4. Final Round: The InvMixColumns step is not included in the
final round.

5. Output: After the last round, the resultant plaintext—which is
the ciphertext that has been decrypted—is received.

AES is frequently used in many applications that demand data se-
curity since it is universally considered as a safe and effective en-
cryption technique.

3. SECURITY CONSIDERATIONS

When it comes to the deployment and use of microservices in the e-
commerce space, security concerns are of the utmost significance.
It is essential to preserve data, user privacy, and the system’s gen-
eral integrity in today’s linked world where sensitive user informa-
tion and financial transactions are conducted online.
Another crucial component of security in a microservices context
for e-commerce is data encryption. It entails protecting data from
unauthorised access and modification by encrypting it both at rest
and while in transit. Sensitive information including client payment
information, personal information, and authentication credentials
can be protected using encryption methods like the AES (Advanced
Encryption Standard).

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 4

For assuring the security and integrity of data shared between mi-
croservices and external systems, secure communication protocols,
such as HTTPS, are crucial. The danger of eavesdropping, manipu-
lation, and man-in-the-middle attacks may be considerably reduced
by using industry-standard encryption techniques.
To prevent unauthorised access to microservices and the resources
that go with them, access control measures are essential. To im-
pose fine-grained permissions and guarantee that only authorised
entities may carry out particular actions, access control models like
as role-based access control (RBAC), attribute-based access control
(ABAC), and others can be put into place.
For the system to be secure, it is essential to conduct regular secu-
rity audits, vulnerability assessments, and penetration tests. Organ-
isations can keep ahead of new threats and put the right security

Security:

Fig. 3. DevOps Culture

measures in place to thwart assaults by undertaking proactive as-
sessments.
In conclusion, it is crucial to address security issues while using mi-
croservices in the e-commerce space. Organisations can improve
the overall security posture of their e-commerce systems and in-
spire trust in their users by establishing strong authentication and
authorization mechanisms, implementing data encryption, utilising
secure communication protocols, enforcing access control, and per-
forming regular security assessments.

4. CHALLENGES

Challenges while creating micro services

For developers, building microservices architecture might provide
a variety of difficulties. The following are some of the major
difficulties that programmers may encounter when building
microservices:

Complexity:
The classic monolithic design is simpler than the microservices
approach. Multiple services with various features must be designed
and developed by developers, which can make maintenance and
management difficult.

Communication:
It might be difficult for microservices to communicate with one
another, especially in a dispersed context. Developers must make
sure that one service can interact with others in a smooth manner
while maintaining the integrity and consistency of the data.

Testing:

It might be more difficult to test a microservices architecture than
a standard monolithic programme. Developers are required to
thoroughly test every service and guarantee that they all function
in unison.

Deployment:
Microservices architecture deployment can be challenging, espe-
cially in a distributed setting. Multiple services must be deployed
and managed separately by developers, which raises the possibility
of mistakes and inconsistencies.

Data management:

Data management across many providers might be difficult. When
managing data storage and retrieval, developers must make sure
that data is consistent across all services and that data integrity is
upheld.

A major issue with microservices design is security. Developers
are responsible for ensuring that data is safeguarded, that commu-
nication between services is secure, and that each service is secure.

5. RELEVANCE

The gradual and iterative process of implementing microservices
architecture for telephony must be approached with a long-term
strategy. To properly use the MSA paradigm, CSPs must first
establish the framework, then locate, design, and develop relevant
microservices use cases.

Changing the culture
The main problem that DevOps, automated delivery, and MSA
are expected to collectively address is welcome change requests.
To accept change rather than to fight it requires a cultural shift.
The DevOps culture is supportive of ongoing change, including
continuous development, integration, and delivery. The emphasis
on ownership and cooperation in DevOps benefits operators,
designers, developers, and testers alike.

Prefer the PaaS
The second important problem that a microservices architecture
design aims to solve is volatile volume. Dynamic scalability
need an elastic hosting infrastructure and platform, which may
be provided through this. In comparison to hardware virtualized
infrastructure, OS virtualized container technologies provide more
flexibility with substantially reduced virtualization overheads.

Discover the microservices As soon as they have successfully
institutionalised the DevOps culture and come to an agreement
to shift capabilities from static infrastructure to dynamic PaaS,
the CSPs should be ready to scan their application capabilities
landscape and find prospects for microservices applications. The
most well-known domain-driven design method, which employs
noun (thing) based and verb (action) based deconstruction, may be
used to find and create microservices.

6. LITERATURE SURVEY

Microservices, a recent architectural trend that draws influence
from service-oriented computing, are a result of this. Before
describing the present state of the art in the field, this chapter
studies the development of software architecture, including the
circumstances that led to the first distribution of objects and
services and the later expansion of microservices. The remaining
problems are then discussed, along with impending challenges.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 5

This survey primarily addresses newcomers to the discipline
while offering an academic viewpoint on the matter. We also inves-
tigate a few real-world issues and provide some workable solutions.

A large, monolithic programme makes development more difficult
and time-consuming; individual components cannot be scaled; any
module issue has the potential to affect the availability of the entire
application; a change in the framework or language will have an
impact on the entire programme, making updates expensive and
time-consuming; and finally, any module issue has the potential to
affect the availability of the entire application.

New instances of a microservice may be immediately deployed
to the related cluster to assist alleviate pressure if it meets its
load capacity. Exploring and adopting microservices designs
enable small teams that deploy often to embrace agile methods of
working. Now that we are multi-tenant and stateless, our clients
are spread out among several instances. Now that we can handle
much larger instance sizes, our release cycles are quicker and more
frequent. The frequency of our updates has increased from once per
week to as much as two or three times daily. Teams are now free
to experiment with new features and return to older ones if they
don’t work.This expedites the selling of new features and makes
changing code less difficult. Additionally, because microservices
are independent components, they make it straightforward and
rapid to independently deploy certain functionality. They also
make it simple to identify and correct flaws and issues in particular
services.

7. APPLICATIONS

A series of tiny, independent services that work together to deliver
an application’s overall functionality is known as a ”microservice”
in terms of architecture. This strategy has become more well-liked
in the e-commerce sector as a result of its capacity to improve the
application’s agility, scalability, and resilience.
Here are some examples of how security and microservices are
used in e-commerce:

1. Scalability:
E-commerce apps can scale independently thanks to microservices
design, which enables various services to be scaled up or down
depending on demand. For instance, the services managing order
processing, payment processing, and delivery may be scaled up
to manage the additional load during the Christmas season, when
there is a rise in online shopping.

2. Agility:
E-commerce apps may be designed and deployed more quickly
thanks to microservices architecture. Since each service is created
and tested separately, it may be deployed as soon as it is pre-
pared without needing to wait for the full application to be finished.

3. Resilience:
E-commerce apps can be more fault-tolerant thanks to the mi-
croservices design. The failure of one service does not impact
the operation of the entire application since each service is
autonomous. The remaining services can carry running, ensuring
that the entire application continues to run.

4. Security:
A more secure e-commerce application is possible using mi-

croservices architecture. Due to the independence of each service,
security flaws are simpler to identify and contain. Additionally, if
necessary, each service may be secured using a separate security
protocol independently.

5. Faster Updates:
E-commerce apps may be updated more quickly thanks to the
microservices design. It is possible to update a service as soon as
it is ready without having to wait for the entire application to be
updated since each service is built and tested individually.

Overall, the use of microservices and security in e-commerce may
benefit firms by enhancing customer service, boosting agility, and
lowering the chance of security breaches.

8. PROGRESS OF PROJECT AND DISCUSSION

Since its beginnings, the project on microservices and security
in e-commerce has advanced considerably. Our team has been
actively working on putting together a microservice architecture
using Java and Spring, with a focus on making sure that the e-
commerce system has strong security safeguards. We have
successfully planned and created a number of important microser-
vices that make up the e-commerce platform’s framework in
terms of microservice development. User management, inventory
management, order processing, payment handling, and product
catalogue are some of these microservices. Microservices provide
modular development, scalability, and independent deployment
because each is in charge of a particular functionality. We gathered
the essential data about conventional approaches to application
development architecture, including advantages and disadvantages.
To address each of these issues, we did an online study of the
literature utilising many publications from IEEE Conferences.
We looked at different designs that may be utilised to construct
numerous services under microservices utilising Spring Boot after
evaluating the algorithms employed in the current systems.

In order to protect sensitive data, including user passwords,
payment information, and personal information, we have also
deployed strong data encryption techniques. In order to guard
against unauthorised access and data breaches, we make use of
encryption technologies and secure communication protocols.
Along with the technical implementations, we tested the system
thoroughly for security during the whole development period.
For the purpose of identifying and addressing potential security
flaws, this includes vulnerability assessments, penetration testing,
and code reviews. To create a safe and dependable e-commerce
system, we aggressively address security risks at every level of
development. We are constantly evaluating and improving the
security of the microservices architecture as the project moves
forward. This include keeping up with the most recent security best
practises, patching any vulnerabilities found, and doing routine
security audits. We are dedicated to providing our consumers’
sensitive data with the utmost security for our e-commerce system.
(i) Review and analysis of the problem statement
(ii) Gathering of research papers
(iii) Survey of the literature
(iv) Choosing the appropriate implementation strategies for the
project
(v) Regular communication with the project’s internal guide
(vi) Estimating new methods and techniques

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 6

9. FUTURE PLAN

Real benefits of using microservices include improved scalability,
adaptability, and agility. Using microservices, each component
can be scaled independently. The entire procedure is consequently
quicker and less expensive than monoliths, where the entire
programme must be scaled even when it is not necessary. Each
monolith has scalability limitations as well, therefore the more
users you add, the more problems your monolith encounters. Many
companies are forced to rebuild their monolithic structures as a
result.
First off, because each service may be independently installed and
improved, there is more flexibility. Second, rather of affecting the
entire programme, a bug in one microservice simply impacts that
particular microservice. Additionally, microservice applications
allow adding new functionality much easier than monolithic ones
do. In conclusion, this project may be revised to take into account a
variety of other E-commerce-related services or services as needed
over time or in response to customer input.
For a more successful gradual migration approach away from
large, monolithic systems. Most modern object-relational mapping
and web application frameworks give the ability to use databases
concurrently by several services without interfering with business
operations. As a result, employing many databases to extend the
implementation of a project like this might lead to more productive
behaviour for the project.
The easiest method to avoid the problems of a database-per-service
model is to provide a single database from which various services
may pull the appropriate resources. For instance, using a common
database makes it simpler to integrate several set data structures.
As long as all required tables are present in a single database,
distributed transactions may be reliably executed through the use
of atomic guarantees and database primitives.

10. CONCLUSION

The project on e-commerce microservices and security has made
substantial progress towards developing a solid microservice archi-
tecture while giving strong security measures a priority. We have
successfully designed, implemented, and integrated important mi-
croservices that are in charge of a number of e-commerce platform
operations, such as user management, inventory management, or-
der processing, payment handling, and product catalogue, during
the course of the project. To find and fix any security flaws, exten-
sive security testing has been carried out, including vulnerability
assessments, penetration testing, and code reviews. We have made
an effort to create a safe and robust e-commerce system by proac-
tively addressing security risks at each level of development.

By allowing for modular development, scalability, and independent
service deployment, the project has shown the advantages of a mi-
croservice architecture for e-commerce. This design encourages
flexibility and enables effective system development and main-
tenance. Additionally, by including robust security measures, we
sought to give users a safe and secure buying experience, fostering
confidence in the e-commerce platform.
The integrity of the microservices architecture and the protection
of user data will require ongoing monitoring, improvement, and
adherence to security best practises. To address new threats and
provide continued protection against potential vulnerabilities, reg-
ular security assessments and upgrades will be carried out.
In conclusion, the project on microservices and security in e-
commerce has advanced significantly in terms of putting a mi-

croservice architecture into place and making sure that there are
reliable security precautions. A scalable, versatile, and secure e-
commerce platform is built on the effective integration of microser-
vices and sound security procedures. This project makes a signifi-
cant contribution to the field of microservices and e-commerce se-
curity by solving the issues related to the development and security
of e-commerce systems.

11. REFERENCES

Books: Microservices Patterns: With Examples in Java

Hai Dinh-Tuan, Maria Mora-Martinez, Felix Beierle, Sandro Ro-
driguez Garzon “Development Frameworks for Microservice-
based Applications: Evaluation and Comparison”
[2] Kapil Bakshi, “Microservices-Based Software Architecture and
Approaches”, Cisco Systems, Inc., 13635 Dulles Technology Drive
Herndon, VA 20171 703 484 2057 kabakshi@cisco.com
[3] Hatma Suryotrisongko*, Dedy Puji Jayanto, Aris Tjahyanto In-
stitut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, 4th In-
formation Systems International Conference 2017, ISICO 2017,
6-8 November 2017, Bali, Indonesia “Design and Development
of Backend Application for Public Complaint Systems Using Mi-
croservice Spring Boot” -Surabaya 60111, Indonesia
[4] Michael Simons, jax LONDON presents “SPRING BOOT”
[5] Arne Koschel Irina Astrova Jeremias Dötterl, International
Conference on Information Society (i-Society 2017), “Making the
Move to Microservice Architecture”, Faculty IV Department of
Computer Science Department of Software Science School of IT
Faculty IV Department of Computer Science University of Applied
Sciences and Arts Tallinn University of Technology University of
Applied Sciences and Arts Hannover, Germany Tallinn, Estonia
Hannover, Germany akoschel@acm.org irina@cs.ioc.ee
[6] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James
Lewis, Stefan Tilkov, “Microservices: The Journey So Far and
Challenges Ahead”, IEEE Software (Volume: 35, Issue: 3,
May/June 2018)
[7] Baiqiang Gan, Chi Zhan, “Research on Application of Dis-
tributed Server Architecture for Virtual Reality Scenarios in Big
Data Environment”, Date of Conference: 17-19 April 2020, Date
Added to IEEE Xplore: 27 July 2020, INSPEC Accession Number:
19854151, DOI: 10.1109/CIBDA50819.2020.00020, Publisher:
IEEE, Conference Location: Guiyang, China

Website: Spring Boot Reference Docu-
mentation : https://docs.spring.io/spring-
boot/docs/current/reference/htmlsingle/

http://www.ijsrem.com/
mailto:kabakshi@cisco.com
mailto:akoschel@acm.org
mailto:irina@cs.ioc.ee

