

Miniprep Isolation and Restriction Mapping of Plasmid pBR322 Isolated from *Escherichia coli*: Experimental and Bioinformatic Validation

Er. Puneet Kumar Chaturvedi^{1*}, Shiwani Shreya², Er. Vijay Kumar³, Dr. Akash Singh⁴, Dr. Uday Pratap Singh⁵

^{1, 2, 3} Research Associate, Bioverse Technologies Pvt. Ltd., Lucknow.

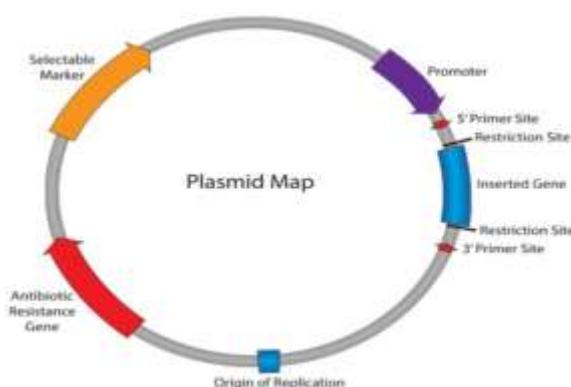
⁴ Research Head, Bioverse Technologies Pvt. Ltd., Lucknow.

⁵ Researcher, Medsource Ozone Biomedicals Pvt. Ltd., Faridabad.

*Corresponding Author: Er. Puneet Kumar Chaturvedi

Mail ID: pkc78058@gmail.com

Abstract


Plasmid DNA isolation and restriction mapping remain foundational techniques in molecular biology, biotechnology, and genetic engineering. Among classical cloning vectors, pBR322 continues to serve as a benchmark plasmid for teaching, method standardization, and comparative molecular analysis due to its well-characterized genetic architecture and antibiotic resistance markers. The present study focuses on the mini-preparation (mini-prep) isolation of plasmid pBR322 from *Escherichia coli*, followed by experimental restriction digestion and bioinformatic validation to generate and confirm its restriction map. Plasmid DNA was isolated using an alkaline lysis-based mini-prep protocol optimized to minimize shearing and ensure high molecular integrity. The purified plasmid was subjected to restriction digestion using the endonucleases HincII and PvuII, individually and in combination, and analyzed through agarose gel electrophoresis. The electrophoretic profiles revealed plasmid bands corresponding to the expected size range of approximately 4.3 kb, confirming successful isolation. Restriction digestion results demonstrated that HincII acts as a double-cutter enzyme on pBR322, while PvuII exhibits single-site or nicking activity, consistent with known sequence data. Experimental observations were further validated using in silico restriction analysis tools, including NCBI databases and NEB Cutter, which corroborated the predicted cleavage sites and fragment sizes. The study highlights the reliability of combining experimental restriction analysis with bioinformatic tools for accurate plasmid characterization. These findings reinforce the continued relevance of pBR322 as a model plasmid and demonstrate a robust, reproducible approach for plasmid mapping applicable in academic teaching laboratories and preliminary molecular cloning workflows.

Keywords: Plasmid DNA, pBR322, Mini-prep, Restriction mapping, Agarose gel electrophoresis, Bioinformatics validation

1. Introduction

Plasmids are extrachromosomal, double-stranded DNA molecules capable of autonomous replication within bacterial and, in some cases, eukaryotic cells. They play a crucial role in microbial adaptability by encoding genes that confer selective advantages, such as antibiotic resistance, virulence traits, and specialized metabolic functions. Owing to these properties, plasmids have been extensively exploited as molecular tools in recombinant DNA technology, genetic engineering, and synthetic biology. The isolation and characterization of plasmid DNA therefore represent essential techniques in molecular biology research and biotechnology education.

Among the wide array of naturally occurring and engineered plasmids, pBR322 occupies a historically significant and experimentally valuable position. Developed in the early 1970s, pBR322 was one of the first plasmid vectors designed specifically for cloning purposes and remains widely used as a reference plasmid. With a size of approximately 4,361 base pairs, pBR322 carries genes conferring resistance to ampicillin and tetracycline, as well as multiple unique restriction enzyme recognition sites. These features make it particularly suitable for restriction mapping, cloning strategy demonstrations, and validation of molecular biology protocols.

Plasmid DNA isolation methods have evolved considerably over time, with alkaline lysis-based mini-prep protocols emerging as the most commonly employed approach for routine laboratory use. This method exploits the differential denaturation and renaturation properties of covalently closed circular plasmid DNA and high-molecular-weight chromosomal DNA under alkaline conditions. When properly optimized, mini-prep techniques yield plasmid DNA of sufficient purity and integrity for downstream applications such as restriction digestion, polymerase chain reaction (PCR), sequencing, and cloning. However, improper handling during isolation—such as excessive vortexing, pipetting-induced shear stress, or irregular thermal exposure—can lead to plasmid degradation or nicking, thereby affecting analytical outcomes.

Restriction enzyme digestion remains a cornerstone technique for plasmid characterization. Restriction endonucleases recognize specific nucleotide sequences and cleave DNA in a predictable manner, generating fragments that can be resolved by agarose gel electrophoresis. Analysis of fragment size and number enables the construction of restriction maps, which are essential for understanding plasmid architecture and for planning genetic manipulations. Although complete restriction maps of pBR322 are well established, experimental restriction analysis continues to be pedagogically and practically relevant, particularly for validating laboratory protocols and correlating empirical data with theoretical predictions.

In recent years, bioinformatics tools have become indispensable for molecular biology research. Databases such as those maintained by the National Centre for Biotechnology Information (NCBI) and analytical platforms like NEB Cutter allow researchers to perform *in silico* restriction digestion, predict enzyme cleavage patterns, and compare experimental results with sequence-based expectations. Integrating experimental and computational approaches enhances the accuracy of plasmid analysis and provides a comprehensive framework for molecular characterization.

The present study aims to experimentally isolate plasmid pBR322 from *Escherichia coli* using a mini-prep protocol, perform restriction digestion using selected endonucleases, and validate the resulting restriction map through bioinformatic analysis. By combining laboratory-based techniques with computational tools, this work demonstrates a reliable and reproducible strategy for plasmid characterization, reinforcing fundamental molecular biology concepts while aligning with contemporary analytical practices.

2. Review of Literature

Plasmids have been extensively studied since their discovery due to their ability to replicate independently of chromosomal DNA and their critical role in horizontal gene transfer. Early studies established plasmids as key genetic elements responsible for traits such as antibiotic resistance, metabolic versatility, and virulence in bacterial populations. These characteristics quickly positioned plasmids as indispensable tools in molecular genetics and biotechnology.

Birnboim and Doly (1979, later refined in 1983) introduced the alkaline lysis method, which revolutionized plasmid DNA isolation by exploiting the topological and chemical differences between plasmid and chromosomal DNA. Under alkaline conditions, linear chromosomal DNA denatures irreversibly, whereas covalently closed circular plasmid DNA can renature upon neutralization. This method provided a rapid, reliable approach for isolating plasmid DNA suitable for restriction digestion and cloning applications. Subsequent improvements in buffer composition and centrifugation strategies enhanced yield and purity, making mini-prep protocols a standard laboratory practice.

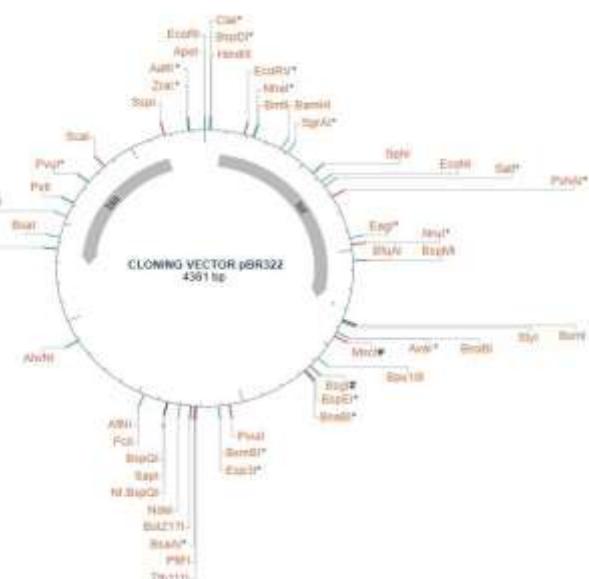
The plasmid pBR322, constructed by Bolivar and Rodriguez, represents one of the earliest rationally designed cloning vectors. Its moderate size, well-defined restriction sites, and dual antibiotic resistance markers enabled efficient selection and manipulation of recombinant clones. Numerous studies have utilized pBR322 to demonstrate restriction enzyme mapping, insertional inactivation, and vector modification. Because its complete nucleotide sequence and restriction map are well established, pBR322 serves as an ideal reference system for validating experimental protocols and restriction digestion outcomes.

Restriction endonucleases have been central to molecular biology since their discovery, enabling precise manipulation of DNA molecules. These enzymes recognize specific palindromic sequences and cleave DNA at defined positions, generating reproducible fragment patterns. Cohen et al. demonstrated the construction of biologically functional plasmids through restriction digestion and ligation, laying the foundation for modern recombinant DNA technology. Subsequent research expanded the catalog of restriction enzymes, allowing increasingly complex mapping and cloning strategies.

Restriction mapping, in particular, has played a pivotal role in plasmid characterization. By digesting plasmid DNA with one or more restriction enzymes and analyzing fragment sizes through agarose gel

electrophoresis, researchers can infer the number and position of restriction sites. Studies by Klein et al. and Tenover et al. demonstrated that microscale plasmid preparations yield DNA of sufficient quality for accurate restriction analysis, provided that handling-induced shearing is minimized. These findings underscore the importance of methodological precision during plasmid isolation.

Agarose gel electrophoresis remains the most widely used technique for resolving restriction fragments. The migration of DNA through an agarose matrix under an electric field is inversely proportional to fragment size, allowing molecular weight estimation using DNA ladders. This technique has been instrumental in plasmid analysis, PCR product verification, and DNA fingerprinting. Despite the advent of advanced sequencing technologies, agarose gel electrophoresis continues to be indispensable due to its simplicity, reliability, and cost-effectiveness.

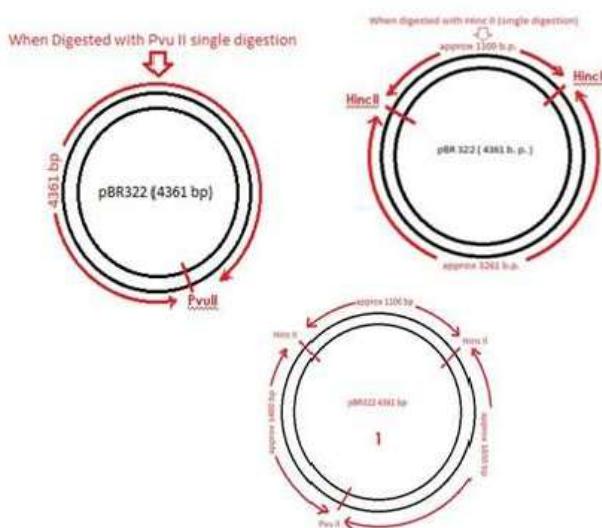

The integration of bioinformatics into molecular biology has further enhanced plasmid analysis. Computational tools such as NEB Cutter and databases maintained by NCBI enable in silico prediction of restriction sites and fragment sizes based on known DNA sequences. These platforms allow researchers to validate experimental results, resolve ambiguities arising from partial digestion or nicking, and design optimized cloning strategies. Several studies have emphasized that combining experimental restriction digestion with bioinformatic validation improves the accuracy and interpretability of plasmid mapping.

accuracy and interpretability of plasmid mapping. Although pBR322 has been extensively characterized, experimental replication of its restriction map remains valuable for educational training, protocol optimization, and troubleshooting in molecular biology laboratories. Variations in enzyme activity, DNA purity, and handling conditions can influence digestion outcomes, making empirical verification essential. The present study builds upon this body of literature by experimentally isolating pBR322, analyzing its restriction pattern using selected endonucleases, and validating the results through computational tools, thereby reinforcing the complementary roles of wet-lab experimentation and bioinformatics.

3. Materials and Methods

3.1 Bacterial Strain and Plasmid

The bacterial host used in this study was *Escherichia coli* harboring the plasmid pBR322. The plasmid is approximately 4.36 kb in size and carries genes conferring resistance to ampicillin and tetracycline, along with multiple restriction enzyme recognition sites. Cultures were maintained under appropriate antibiotic selection to ensure plasmid retention.


3.2 Isolation of Plasmid DNA by Mini-Prep Method

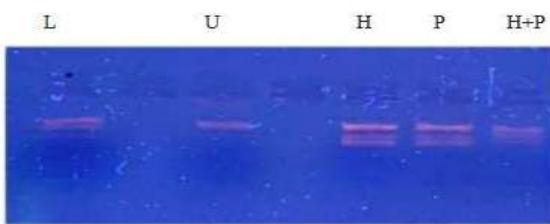
Plasmid DNA was isolated using an alkaline lysis-based mini-prep protocol. Briefly, bacterial cells were harvested by centrifugation and resuspended in a buffered solution containing Tris-HCl and EDTA to destabilize the cell envelope and chelate divalent cations. Cell lysis was achieved using an alkaline SDS solution, leading to denaturation of chromosomal DNA and proteins. Neutralization with potassium acetate facilitated the selective renaturation of plasmid DNA, while precipitating denatured chromosomal DNA and cellular debris.

The lysate was clarified by centrifugation, and the plasmid-containing supernatant was carefully transferred to avoid contamination. Plasmid DNA was precipitated using alcohol, washed to remove residual salts, and finally resuspended in nuclease-free water or buffer. Special care was taken to minimize vortexing and excessive pipetting to prevent mechanical shearing of plasmid DNA.

3.3 Restriction Enzyme Digestion

Purified plasmid DNA was subjected to restriction digestion using the endonucleases HincII and PvuII. Digestion reactions were set up according to manufacturer recommendations, including appropriate reaction buffers and incubation conditions. Single-enzyme digestions were performed to assess individual cleavage patterns, followed by double digestion to analyze combined restriction effects. Control reactions containing undigested plasmid DNA were included for comparison.

3.4 Agarose Gel Electrophoresis

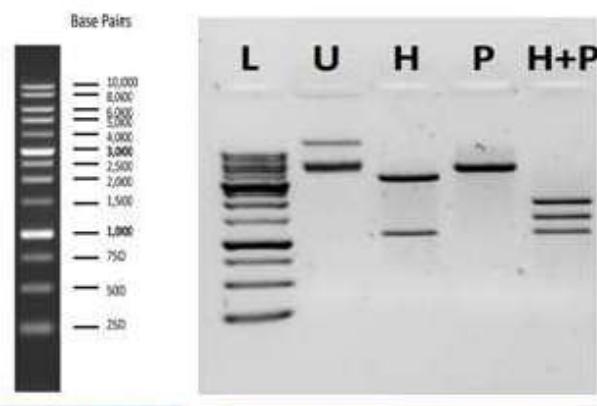

Restriction digestion products were analyzed by agarose gel electrophoresis. Agarose gels were prepared using 1× TAE buffer and stained with ethidium bromide. DNA samples were mixed with loading dye and loaded into the gel wells alongside a standard DNA ladder for size estimation. Electrophoresis was carried out at a constant voltage, after which the gel was visualized under ultraviolet illumination using a transilluminator. Fragment sizes were estimated by comparing migration distances with the molecular weight marker.

3.5 Bioinformatic Analysis

Experimental restriction patterns were validated using bioinformatic tools. The pBR322 sequence was retrieved from the NCBI database, and *in silico* restriction digestion was performed using NEB Cutter. Predicted fragment sizes and cleavage positions were compared with experimental results to confirm enzyme behavior and restriction site distribution.

4. Results

4.1 Isolation and Quality Assessment of Plasmid DNA



Plasmid DNA isolated from *Escherichia coli* using the alkaline lysis-based mini-prep protocol yielded

detectable and well-defined DNA bands upon agarose gel electrophoresis. Initial isolation attempts exhibited partial plasmid shearing, as evidenced by diffuse or smeared bands. This observation was attributed to mechanical stress introduced during pipetting, excessive vortexing, and uneven thermal exposure during centrifugation. Following optimization of handling conditions—including gentle mixing, minimized vortexing duration, and consistent temperature control—subsequent isolation rounds produced intact plasmid DNA with sharp, discrete bands.

The electrophoretic migration of the isolated plasmid DNA corresponded to an apparent molecular size between 4,000 and 5,000 base pairs when compared against a 10 kb DNA ladder. This size range is consistent with the known molecular length of pBR322, confirming successful plasmid isolation and preservation of structural integrity. The presence of distinct supercoiled and relaxed forms further indicated high-quality plasmid preparation suitable for downstream enzymatic analysis.

4.2 Restriction Digestion Analysis

Restriction digestion of the purified plasmid DNA was performed using the endonucleases HincII and PvuII, both individually and in combination. Digestion with HincII resulted in the generation of two distinct DNA fragments, indicating that the enzyme cleaves pBR322 at two specific recognition sites. The observed fragment sizes, as estimated from gel migration patterns, aligned closely with predicted values based on known pBR322 sequence data. In contrast, digestion with PvuII produced a markedly different electrophoretic pattern. The plasmid DNA largely retained its circular or nicked conformation, suggesting either a single cleavage event or nicking without complete linearization. This behavior is characteristic of enzymes that recognize a single site or exhibit limited cleavage efficiency under specific reaction conditions.

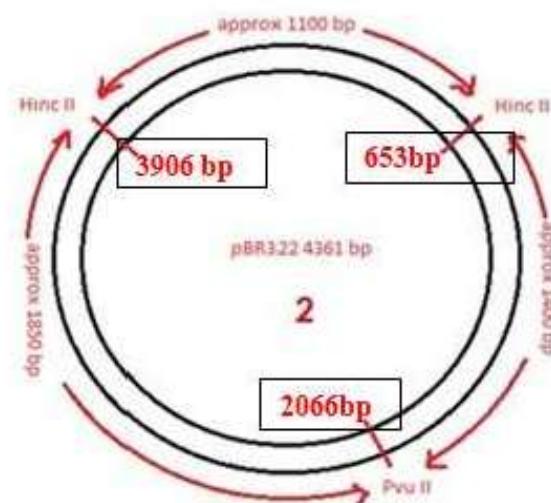
Double digestion with HincII followed by PvuII further clarified enzyme behavior. The resulting fragment pattern demonstrated that HincII functions as a double-cutter enzyme, while PvuII acts as a single-site cutter on pBR322. The combined digestion profile supported the interpretation that PvuII introduces a single cleavage or nick at a defined position, whereas HincII produces two distinct cuts, generating multiple fragments.

4.3 Agarose Gel Electrophoresis Interpretation

Agarose gel electrophoresis provided clear resolution of restriction fragments and facilitated comparative analysis between undigested, singly digested, and doubly digested plasmid samples. Undigested plasmid lanes displayed characteristic conformational variants, including supercoiled and relaxed forms. HincII-digested samples exhibited discrete fragment bands, while PvuII-digested samples showed minimal fragmentation, consistent with single-site cleavage.

The inclusion of a molecular weight ladder enabled approximate size determination and validated fragment distribution. The reproducibility of electrophoretic patterns across replicate experiments demonstrated the reliability of the optimized mini-prep and digestion protocols employed in this study.

4.4 Bioinformatic Validation of Restriction Sites


In silico restriction analysis using NEB Cutter and NCBI sequence data predicted two cleavage sites for HincII and a single cleavage site for PvuII on the pBR322 plasmid. Predicted fragment sizes and cleavage positions closely matched experimental observations. Specifically, cleavage positions identified through bioinformatic analysis corresponded to experimentally inferred nick and cut locations, confirming the accuracy of both the laboratory and computational approaches.

The concordance between experimental gel patterns and in silico predictions reinforced the validity of the restriction mapping results and demonstrated the effectiveness of integrating bioinformatic tools with wet-lab experimentation.

5. Discussion

The successful isolation and restriction mapping of plasmid pBR322 in this study underscores the continued relevance of classical molecular biology techniques when executed with methodological precision. Although pBR322 is one of the most extensively characterized plasmids, experimental replication of its restriction map remains valuable for validating laboratory protocols, training personnel, and reinforcing theoretical concepts through empirical observation.

Initial plasmid shearing observed during early isolation attempts highlights a common challenge associated

with mini-prep protocols. Mechanical stress introduced through vigorous vortexing, excessive pipetting, or inconsistent temperature control can compromise plasmid integrity. The optimization steps implemented in this study emphasize the importance of gentle handling and controlled conditions to preserve the covalently closed circular structure of plasmid DNA, a prerequisite for accurate restriction analysis.

The restriction digestion results provide clear insight into enzyme-specific behavior on pBR322. HincII consistently produced two fragments, confirming its role as a double-cutter enzyme on this plasmid. This finding aligns with previously reported restriction maps and sequence-based predictions. In contrast, PvuII exhibited single-site cleavage or nicking behavior, as evidenced by minimal fragmentation and retention of plasmid conformations. Such behavior may be influenced by enzyme recognition sequence accessibility, local DNA topology, or reaction conditions.

Double digestion experiments further clarified the interaction between HincII and PvuII, allowing precise inference of restriction site distribution. The observed digestion patterns demonstrate how combining

multiple enzymes enhances mapping resolution and reduces ambiguity arising from partial digestion or nicking events. This approach is particularly useful in educational and diagnostic settings where sequencing facilities may not be readily available.

The integration of bioinformatic tools played a critical role in validating experimental findings. *In silico* restriction analysis using NEB Cutter and NCBI databases provided precise predictions of cleavage sites and fragment sizes, which closely matched electrophoretic results. This convergence of experimental and computational data strengthens confidence in the generated restriction map and exemplifies the synergistic relationship between wet-lab experimentation and bioinformatics in modern molecular biology.

Overall, the findings of this study reaffirm that mini-prep isolation combined with restriction digestion and bioinformatic validation constitutes a robust, reproducible framework for plasmid characterization. The methodology and analytical approach demonstrated here are broadly applicable to routine cloning workflows, teaching laboratories, and preliminary plasmid analysis in research environments.

6. Conclusion

The present study successfully demonstrates the isolation, restriction digestion, and mapping of plasmid pBR322 from *Escherichia coli* using a combination of experimental and bioinformatic approaches. The alkaline lysis-based mini-prep protocol, when optimized to minimize mechanical stress and thermal fluctuations, yielded plasmid DNA of sufficient purity and integrity for downstream restriction analysis. Agarose gel electrophoresis confirmed the presence of intact plasmid DNA corresponding to the expected molecular size of approximately 4.36 kb.

Restriction digestion experiments using the endonucleases HincII and PvuII provided clear insights into enzyme-specific cleavage behavior. HincII functioned as a double-cutter enzyme on pBR322, generating distinct fragments consistent with established restriction maps, whereas PvuII exhibited single-site cleavage or nicking activity. Double digestion experiments further clarified restriction site distribution and enhanced the resolution of the generated restriction map. These findings were in strong agreement with *in silico* predictions derived from NEB Cutter and NCBI sequence analysis tools.

The close concordance between experimental results and bioinformatic validation underscores the reliability of integrating wet-lab techniques with computational analysis for plasmid characterization. Despite the availability of advanced sequencing technologies,

restriction mapping remains a valuable analytical approach, particularly in educational laboratories, resource-limited settings, and preliminary cloning workflows. The study reinforces the continued relevance of pBR322 as a model plasmid and highlights the importance of methodological precision in molecular biology experimentation.

7. Future Perspectives

The experimental framework established in this study can be readily extended to the analysis of recombinant plasmids carrying foreign DNA inserts. Restriction mapping remains a rapid and cost-effective approach for confirming insert presence, size, and orientation prior to downstream applications such as gene expression or functional analysis. Applying the optimized mini-prep and digestion strategy to engineered plasmids would enhance early-stage validation and reduce dependency on sequencing at preliminary cloning stages.

Future investigations may also incorporate a broader range of restriction endonucleases and multi-enzyme digestion strategies to generate higher-resolution restriction maps. The use of enzymes producing cohesive ends, coupled with comparative digestion patterns, could provide deeper insight into plasmid architecture and improve cloning efficiency. Such approaches would be particularly valuable for troubleshooting recombinant constructs and for demonstrating advanced cloning principles in laboratory training environments.

Integration of restriction analysis with modern sequencing technologies represents another promising direction. While restriction mapping offers rapid structural assessment, sequencing provides nucleotide-level precision. Combining these methods would allow comprehensive validation of plasmid integrity, detection of point mutations or rearrangements, and long-term monitoring of plasmid stability during propagation, thereby strengthening quality control in both research and applied biotechnology laboratories.

From a broader perspective, the continued relevance of plasmid isolation and restriction mapping lies in their adaptability to educational, research, and industrial contexts. The incorporation of bioinformatic tools alongside classical wet-lab techniques reflects current trends toward integrated molecular workflows. As molecular biology increasingly intersects with automation, synthetic biology, and data-driven analysis, refined and standardized approaches such as those demonstrated in this study will remain foundational to plasmid-based research and biotechnology development.

8. References

1. Birnboim, H. C., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Research*, 7(6), 1513–1523.
2. Birnboim, H. C. (1983). A rapid alkaline extraction method for the isolation of plasmid DNA. *Methods in Enzymology*, 100, 243–255.
3. Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. L., Boyer, H. W., Crosa, J. H., & Falkow, S. (1977). Construction and characterization of new cloning vehicles. *Gene*, 2(2), 95–113.
4. Cohen, S. N., Chang, A. C. Y., Boyer, H. W., & Helling, R. B. (1973). Construction of biologically functional bacterial plasmids in vitro. *Proceedings of the National Academy of Sciences USA*, 70(11), 3240–3244.
5. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). *Molecular Cloning: A Laboratory Manual* (2nd ed.). Cold Spring Harbor Laboratory Press.
6. Sambrook, J., & Russell, D. W. (2001). *Molecular Cloning: A Laboratory Manual* (3rd ed.). Cold Spring Harbor Laboratory Press.
7. Green, M. R., & Sambrook, J. (2012). *Molecular Cloning: A Laboratory Manual* (4th ed.). Cold Spring Harbor Laboratory Press.
8. Brown, T. A. (2016). *Gene Cloning and DNA Analysis: An Introduction* (7th ed.). Wiley-Blackwell.
9. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2014). *Molecular Biology of the Gene* (7th ed.). Pearson.
10. Lodish, H., Berk, A., Kaiser, C. A., et al. (2016). *Molecular Cell Biology* (8th ed.). W. H. Freeman.
11. Roberts, R. J. (2005). How restriction enzymes became the workhorses of molecular biology. *Proceedings of the National Academy of Sciences USA*, 102(17), 5905–5908.
12. Pingoud, A., & Jeltsch, A. (2001). Structure and function of type II restriction endonucleases. *Nucleic Acids Research*, 29(18), 3705–3727.
13. Pingoud, A., Wilson, G. G., & Wende, W. (2014). Type II restriction endonucleases—a historical perspective and more. *Nucleic Acids Research*, 42(12), 7489–7527.
14. Halford, S. E., & Brown, T. (2009). Mechanisms of action of restriction enzymes. *Journal of Biological Chemistry*, 284(25), 16417–16421.
15. Sharp, P. A., Sugden, B., & Sambrook, J. (1973). Detection of two restriction endonuclease activities in *Haemophilus parainfluenzae*. *Biochemistry*, 12(16), 3055–3063.
16. Modrich, P., & Roberts, R. J. (1982). Type II restriction and modification enzymes. *Annual Review of Biochemistry*, 51, 333–364.
17. Lee, P. Y., Costumbrado, J., Hsu, C. Y., & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. *Journal of Visualized Experiments*, 62, e3923.
18. Brody, J. R., & Kern, S. E. (2004). Sodium boric acid: A Tris-free, cooler conductive medium for DNA electrophoresis. *BioTechniques*, 36(2), 214–216.
19. Voytas, D. (2001). Agarose gel electrophoresis. *Current Protocols in Molecular Biology*, 2.5.1–2.5.9.
20. Tenover, F. C., Arbeit, R. D., & Goering, R. V. (1997). How to select and interpret molecular strain typing methods. *Journal of Clinical Microbiology*, 35(9), 2233–2239.
21. Del Solar, G., Giraldo, R., Ruiz-Echevarría, M. J., Espinosa, M., & Díaz-Orejas, R. (1998). Replication and control of circular bacterial plasmids. *Microbiology and Molecular Biology Reviews*, 62(2), 434–464.
22. Summers, D. K. (1996). The biology of plasmids. *Blackwell Science*.
23. Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. *Nature Reviews Microbiology*, 3(9), 711–721.
24. Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P., & de la Cruz, F. (2010). Mobility of plasmids. *Microbiology and Molecular Biology Reviews*, 74(3), 434–452.
25. New England Biolabs. (2023). NEB Cutter v2.0: Restriction enzyme analysis tool.
26. Vincze, T., Posfai, J., & Roberts, R. J. (2003). NEBcutter: A program to cleave DNA with restriction enzymes. *Nucleic Acids Research*, 31(13), 3688–3691.
27. Benson, D. A., Cavanaugh, M., Clark, K., et al. (2018). GenBank. *Nucleic Acids Research*, 46(D1), D41–D47.
28. Sayers, E. W., et al. (2022). Database resources of the National Centre for Biotechnology Information. *Nucleic Acids Research*, 50(D1), D20–D26.
29. Griffiths, A. J. F., Wessler, S. R., Carroll, S. B., & Doebley, J. (2020). *Introduction to Genetic Analysis* (12th ed.). W. H. Freeman.
30. Primrose, S. B., & Twyman, R. M. (2006). *Principles of Gene Manipulation and Genomics* (7th ed.). Blackwell.
31. Kado, C. I., & Liu, S. T. (1981). Rapid procedure for detection and isolation of large and small plasmids. *Journal of Bacteriology*, 145(3), 1365–1373.

32. Anderson, D. G., & McKay, L. L. (1983). Simple and rapid method for isolating large plasmid DNA. *Applied and Environmental Microbiology*, 46(3), 549–552.
33. Ausubel, F. M., Brent, R., Kingston, R. E., et al. (2002). *Short Protocols in Molecular Biology* (5th ed.). Wiley.
34. Wilson, K. (2001). Preparation of genomic DNA from bacteria. *Current Protocols in Molecular Biology*, 2.4.1–2.4.5.
35. Slater, F. R., Bailey, M. J., Tett, A. J., & Turner, S. L. (2008). Progress towards understanding the fate of plasmids in bacterial communities. *FEMS Microbiology Ecology*, 66(1), 3–13.
36. Thomas, C. M. (2012). Plasmid incompatibility. *Plasmid*, 67(1), 1–9.
37. Seidman, C. E., Struhl, K., Sheen, J., & Jessen, T. (2001). *Introduction to Molecular Medicine*. Oxford University Press.
38. Lewin, B. (2008). *Genes IX*. Jones & Bartlett Publishers.
39. Dale, J. W., & von Schantz, M. (2013). *From Genes to Genomes* (3rd ed.). Wiley-Blackwell.
40. Snyder, L., & Champness, W. (2007). *Molecular Genetics of Bacteria* (3rd ed.). ASM Press.
41. Allison, G. E., & Hughes, C. (1991). Closely linked genetic loci involved in the secretion of hemolysin by *Escherichia coli*. *Molecular Microbiology*, 5(10), 2453–2461.
42. Clewell, D. B. (1993). Bacterial conjugation. *Plasmid*, 30(2), 95–111.
43. Frost, L. S., Leplae, R., Summers, A. O., & Toussaint, A. (2005). Mobile genetic elements: the agents of open source evolution. *Nature Reviews Microbiology*, 3(9), 722–732.
44. Goebel, W., & Bonewald, R. (1984). Functions of bacterial plasmids. *Annual Review of Microbiology*, 38, 315–348.
45. Grindley, N. D. F., Whiteson, K. L., & Rice, P. A. (2006). Mechanisms of site-specific recombination. *Annual Review of Biochemistry*, 75, 567–605.
46. Heery, D. M., Gannon, F., & Powell, R. (1990). A simple method for subcloning DNA fragments from gel slices. *Trends in Genetics*, 6(6), 173.