
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10701 | Page 1

MLIR: A Panacea for ML Compiler Challenges?

Vishakha Agrawal vishakha.research.id@gmail.com

Abstract—MLIR (Multi-Level Intermediate Representation)
has emerged as a promising solution to address many of
the challenges faced in AI/ML compiler development. By
providing a flexible and extensible intermediate representa-
tion, MLIR enables the decoupling of frontend and back-
end compiler components, facilitating greater modularity and
reusability. However, while MLIR offers significant advantages,
it is not a panacea for all compiler-related issues in the
AI/ML domain. Several challenges persist, including the need
for efficient memory management, optimal kernel fusion etc.
MLIR’s ability to integrate with existing compiler frameworks
and support diverse AI/ML workloads also remains an open
question. This paper critically examines MLIR’s strengths and
limitations in addressing AI/ML compiler challenges, providing
a comprehensive analysis of its potential.

Keywords - MLIR, LLVM, memory management, kernel

fusion, GPU, accelerators, code generation, XLA, ODS

I. INTRODUCTION

The ML compiler landscape is characterized by a

multitude of frameworks (e.g., TensorFlow, PyTorch, ONNX),

compilers (e.g., TensorFlow XLA, Nvidia TensorRT),

and hardware platforms (e.g., CPUs, GPUs, TPUs).

This diversity leads to several challenges. Compilation

complexity is a significant issue, as each framework and

hardware platform requires customized compilation, resulting

in duplicated effort and increased maintenance costs.

Additionally, performance optimization challenges

arise when optimizing AI/ML models for diverse

hardware platforms, often requiring manual tuning

and expertise. Furthermore, limited portability is a

concern, as AI/ML models are often tightly coupled

with specific frameworks and hardware platforms, making

it difficult to deploy them on different environments.

Inefficient resource utilization is also a problem, as

the lack of standardized compilation and optimization

techniques can lead to suboptimal resource utilization,

resulting in wasted computational resources and energy.

Finally, integrating new hardware platforms or architectures

can be cumbersome, requiring significant modifications

to existing compilation and optimization pipelines. These

challenges underscore the need for a unified and flexible

compilation framework that can efficiently target diverse

AI/ML workloads and hardware platforms, ultimately

enabling more widespread adoption and innovation in the

field. While MLIR offers a promising solution to these

challenges, its adoption is not without complexities.

A deeper exploration of MLIR reveals additional

considerations that must be carefully navigated to fully

harness its potential.

II. MLIR: A UNIFIED INTERMEDIATE REPRESENTATION

MLIR (Multi-Level Intermediate Representation) offers a

flexible and extensible framework for representing computa-

tions at multiple levels of abstraction[7]. This unified approach

addresses the fragmentation prevalent in AI/ML compiler

stacks, where proprietary solutions hinder interoperability.

MLIR shares similarities with LLVM[5] as a compiler

infrastructure, but whereas LLVM excels in scalar opti-

mizations and homogeneous compilation, MLIR expands

its focus to incorporate a broader range of data struc-

tures and algorithms. Specifically, MLIR treats tensor

algebra, graph representations, and heterogeneous com-

pilation as first-class citizens, enabling a more com-

prehensive and flexible approach to compiler design.

Additionally, MLIR’s modular architecture is designed to

seamlessly integrate with existing frameworks, such as the

polyhedral framework ([4], [1]) which provides a powerful

basis for analyzing and optimizing complex loop structures.

While MLIR aims to provide a unified infrastructure for ML

compilers, other approaches like Tensor Comprehensions fo-

cus on domain-specific languages and polyhedral compilation

to automatically generate optimized GPU kernels for tensor

operations[8].

A. Key Features: MLIR’s key features as decribed in [6]

1) Multi-level Design : At its core, MLIR’s most distinctive

feature is its multi-level design, which supports multiple

abstraction levels within the same IR. This unique ap-

proach enables seamless representation from high-level

operations down to low-level instructions, allowing for

gradual and selective lowering of operations as needed

and solves the problem highlighted in [2] of transparent

multi-level view.

2) Strong Type System : This flexibility is complemented

by MLIR’s strong type system, which provides robust

and extensible support for both primitive and complex

data types. The type system enables compile-time check-

ing and verification, while also accommodating dialect-

specific custom types.

3) SSA-based Representation : MLIR employs a Static Sin-

gle Assignment (SSA)[3] based representation, where

each value is defined exactly once. This design choice

simplifies data flow analysis and optimizations while

maintaining explicit def-use relationships throughout the

code.

4) Dialect Framework : The dialect framework is corner-

stone of MLIR’s architecture, providing mechanisms to

define custom operations and types. This framework

enables domain-specific optimizations and allows differ-

ent levels of abstraction to coexist harmoniously, with

http://www.ijsrem.com/
mailto:vishakha.research.id@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10701 | Page 2

examples including the Standard dialect, LLVM dialect,

and GPU dialect.

5) Operation Definition Specification (ODS) : The Oper-

ation Definition Specification (ODS) system in MLIR

offers declarative specification of operations with auto-

mated code generation. This reduces boilerplate code

and potential errors while providing built-in verification

of operation properties.

6) Region and Block Structure : The region and block struc-

ture of MLIR supports nested regions within operations,

enabling natural representation of control flow, both

structured and unstructured, and facilitating complex

nested computations.

7) Generic Optimization Framework : MLIR’s generic op-

timization framework includes a pattern-based rewriting

infrastructure, dialect conversion framework, and com-

mon optimization passes, all managed by an extensible

pass management system.

8) Integration capabilities : MLIR is designed to work

seamlessly with existing compilers, bridging different

compilation systems and supporting various frontend

and backend technologies, particularly through its in-

tegration with LLVM.

9) Open Source and Community-Driven : The open-source

nature of MLIR, being part of the LLVM project,

has fostered an active development community and a

growing ecosystem of tools and dialects. This is sup-

ported by comprehensive documentation and continuous

community contributions.

10) Analysis and Transformation Tools : The analysis and

transformation tools include built-in debugging capa-

bilities, visualization tools for IR inspection, and an

extensive testing framework.

B. Strength: MLIR’s strengths includes

1) Unification: Providing a unified representation for

AI/ML models, simplifying compilation and optimiza-

tion.

2) Modularity: Enabling the development of specialized

dialects for specific AI/ML domains.

3) Community: Boasting a growing community of devel-

opers and users.

4) Heterogeneity: While various attempts have been made

for to address hardware heterogeneity, MLIR allows

high-level languages to harness heterogeneity through

extensible operations and types, while providing a

shared infrastructure for transforming these constructs

into optimized, target-specific code.

III. LIMITATIONS AND CHALLENGES: A DEEP TECHNICAL

ANALYSIS

The Multi-Level Intermediate Representation (MLIR)

framework, while powerful and innovative, faces several sig-

nificant challenges and limitations that impact its adoption and

effectiveness. This analysis explores these challenges in depth,

examining their technical implications and potential impact on

the broader compiler ecosystem.

1) Fundamental Architectural Challenges:

• One of the most pressing challenges in

MLIR centers around dialect interoperability.

The framework’s ability to support multiple

dialects, while powerful, has led to what

many practitioners call ”dialect explosion.”

This phenomenon occurs when projects create

numerous custom dialects, leading to a complex

web of translations and interactions. The

maintenance overhead becomes substantial as

teams must manage compatibility between these

dialects, often requiring intricate conversion

patterns and careful consideration of semantic

preservation.

• The translation complexity between dialects

presents another significant challenge. When

converting between different abstraction levels,

developers must carefully manage information

preservation while maintaining performance.

This becomes particularly challenging when

dealing with dialects that operate at significantly

different abstraction levels or have fundamentally

different semantic models. The complexity of these

translations can lead to performance bottlenecks

and potential loss of important program information

during the conversion process.

2) Type System and Operation Semantics:

• MLIR’s type system, while flexible, faces limi-

tations in expressing complex type relationships

across dialects. Developers often struggle to repre-

sent sophisticated type constraints that span multiple

dialects or involve complex interactions between

different levels of abstraction. This becomes partic-

ularly evident when working with domain-specific

types that don’t map cleanly to standard MLIR

types.

• Operation semantics present another significant

challenge. The framework struggles to fully capture

and preserve complex operation semantics during

transformations, particularly when dealing with side

effects or intricate control flow patterns. This limi-

tation can make it difficult to implement certain op-

timizations or ensure behavioral consistency across

transformations.

3) Implementation and Performance Challenges:

• The compilation pipeline in MLIR faces several

significant technical challenges. Pass management

becomes increasingly complex as projects grow,

with developers struggling to maintain optimal pass

ordering while ensuring all necessary transforma-

tions are applied correctly. The inter-dependencies

between passes can create subtle bugs and per-

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10701 | Page 3

formance issues that are difficult to diagnose and

resolve.

• Memory usage represents another critical chal-

lenge. MLIR’s intermediate representation can con-

sume significant memory, particularly when deal-

ing with large programs or complex transformation

sequences. This becomes especially problematic

during dialect conversion and optimization passes,

where multiple versions of the IR might need to be

maintained simultaneously. The memory overhead

can become a bottleneck in large-scale applications.

4) Development and Tooling Ecosystem:

• The development experience with MLIR presents its

own set of challenges. The learning curve is steep,

with developers needing to understand not only the

core concepts but also the intricacies of dialect

design and transformation implementation. The API

for defining new operations and transformations

often requires significant boilerplate code, which

can be error-prone and time-consuming to maintain.

• Debugging support in MLIR, while improving, re-

mains limited compared to more mature compiler

frameworks. Developers often struggle to track the

effects of transformations and understand error mes-

sages, particularly when dealing with complex trans-

formation sequences or dialect conversions. The

lack of sophisticated debugging tools can signif-

icantly slow down development and optimization

efforts.

5) Tool Integration and Production Readiness:

• Integration with existing compiler frameworks and

tools presents significant challenges. While MLIR

is designed to be flexible, incorporating it into

established compilation pipelines can require sub-

stantial engineering effort. Performance overhead in

framework bridges and version compatibility issues

can make integration particularly challenging for

production environments.

• Production readiness remains a concern for many

potential adopters. API stability issues can make it

difficult to maintain long-term compatibility, while

performance monitoring and profiling tools are still

maturing. The lack of standardized benchmarks

makes it challenging to assess the impact of changes

and optimizations reliably.

6) Future Challenges and Scaling Concerns:

• As machine learning models continue to grow in

size and complexity, MLIR faces increasing chal-

lenges in handling very large IR representations

efficiently. The framework must evolve to support

distributed compilation scenarios and manage mem-

ory more efficiently for big models. These scaling

challenges become particularly acute when dealing

with modern transformer architectures and their

billions of parameters.

• Support for emerging hardware architectures

presents another ongoing challenge. As new

accelerators and specialized processors emerge,

MLIR must adapt to effectively target these

platforms while maintaining performance

portability. This requires continuous evolution of

the framework’s hardware abstraction capabilities

and optimization strategies.

By acknowledging both the benefits and limitations of MLIR,

researchers and developers can better understand its potential

as a unified compiler infrastructure for AI/ML and work

towards addressing its challenges.

IV. POTENTIAL SOLUTIONS

While MLIR faces significant challenges in various areas,

many potential solutions exist or are being developed. This

analysis presents practical and theoretical solutions to the ma-

jor challenges identified in MLIR implementation and usage,

along with potential road maps for future improvements.

• The challenge of dialect explosion and interoperability

can be addressed through several systematic approaches.

Implementing a standardized dialect interface framework

would allow different dialects to communicate through

well-defined protocols. This could be achieved by devel-

oping a common abstraction layer that serves as a bridge

between dialects.

• The development experience can be improved through

better tooling, implementing stability frameworks and

performance monitoring system.

• To address scaling challenges, distributed compilation

systems can be implemented.

• There is also room for AI-Assisted Optimization within

the MLIR framework to enable more advanced and au-

tomated optimizations, essentially creating an AI-assisted

optimization capability within the compiler infrastructure.

This will allow for better analysis of complex operations

and generation of highly optimized code for diverse

hardware platforms.

V. CONCLUSION

MLIR has the potential to address many of the AI/ML

compiler issues by providing a unified, modular, and extensible

intermediate representation. However, its adoption and matu-

rity are still ongoing processes. While MLIR is not a silver

bullet that solves all AI/ML compiler issues, it is a significant

step towards unifying the compilation process and improving

performance optimization.

REFERENCES

[1] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. Tiramisu: A polyhedral compiler
for expressing fast and portable code. In 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 193–
205. IEEE, 2019.

[2] Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you see is not
what you execute. ACM Transactions on Programming Languages and
Systems (TOPLAS), 32(6):1–84, 2010.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10701 | Page 4

[3] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and
F Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(4):451–490, 1991.

[4] Tobias Grosser, Armin Groesslinger, and Christian Lengauer.
Polly—performing polyhedral optimizations on a low-level intermediate
representation. Parallel Processing Letters, 22(04):1250010, 2012.

[5] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In International symposium
on code generation and optimization, 2004. CGO 2004., pages 75–86.
IEEE, 2004.

[6] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. Mlir: A compiler infrastructure for the
end of moore’s law. arXiv preprint arXiv:2002.11054, 2020.

[7] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Arnaud Pienaar, River Riddle, Tatiana Shpeisman, Nicolas
Vasilache, and Oleksandr Zinenko. Mlir: Scaling compiler infrastructure
for domain specific computation. In CGO 2021, 2021.

[8] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary Devito, William S Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. The next 700 accelerated layers: From
mathematical expressions of network computation graphs to accelerated
gpu kernels, automatically. ACM Transactions on Architecture and Code
Optimization (TACO), 16(4):1–26, 2019.

http://www.ijsrem.com/

