
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 1

Mobile Application Security Assessment

Rayapati Tejasree, Runjhun Mathur, Trupti Sharma

B.E CSE IS

Chandigarh University, Punjab, India

Ms. Sheetal Laroiya Assistant Professor Chandigarh University Gharuan, Punjab, India

sheetal.e15433@cumail.in

Abstract: The growth of smart devices has led to

a rise in security concerns, with flaws in

established applications being exposed and the

dissemination of mobile harmful software. Both

the government and corporations offer a range of

apps to the public. To ensure the dependability

and security of these applications, security

checks are necessary during the development

process. This study focuses on identifying and

analyzing vulnerabilities in the mobile device

environment, specifically in the development of

Android-based applications, in order to

effectively address security risks.

This research study highlights the significance of

mobile application security and offers guidance

on identifying and mitigating security risks

related to mobile applications. It specifically

focuses on concerns. It specifically focuses on

concerns such as insecure data storage, insecure

communication. It is thought that this will

enhance the safety of mobile applications by

doing vulnerability analysis for Android

application security.

Keywords: OWASP, ZAP, PENTESTING,

Privacy, MOBSF

I. INTRODUCTION

Every software system is susceptible to having a

significant portion of bugs when it is released.

These faults are a result of various causes, such

as the widespread and complex nature of the

software, as well as the mounting market

demands to quickly implement new services and

features, which restricts the amount of time

available for testing.

In addition to the potential outcomes of these

faults in terms of reliability and availability,

which have been extensively studied in the

literature, these defects might also result in

software vulnerabilities.

A software vulnerability refers to any

weaknesses or defects in software that can be

exploited by an attacker who possesses the

knowledge and intention to do so. Examples of

frequent software vulnerabilities are buffer

overflows, cross-site scripting (XSS) and SQL

Injection. Developing vulnerability-free software

could be impossible to achieve due to time and

economical limits. However, there exist different

approaches to disclose software vulnerabilities,

such as data flow analysis, taint analysis or fuzzy

testing, for just a few.

present an auditing technique for mobile

applications covering the hazards pointed out by

OWASP. We firstly evaluate, assess, and

http://www.ijsrem.com/
mailto:sheetal.e15433@cumail.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 2

The more vulnerability detection approaches are

used, the higher the possibility that the software

has fewer residual vulnerabilities. However, the

application of these strategies is usually

expensive and burdensome.

Numerous applications are available to carry out

various everyday tasks, such as checking email,

news, social media, or bank accounts, owing to

the rapidly expanding mobile applications

 ecosystems.

Therefore, users rely on these applications

sensitive data. Hence, any vulnerability in mobile

applications can put in risk the user’s privacy.

Besides, mobile applications ecosystem

promotes the first one-of-a-kind application

released. So, mobile applications are usually

released to the market as fast as possible,

castigating essential aspects like security and

reliability. In order to cope with vulnerabilities

and security threats in software products, security

auditing methodologies have been offered to

certify certain security degree of confidence. To

the best of our knowledge, there are neither

recognized consensus nor guidelines about how

to execute a security audit in mobile applications.

However, there are common best practices like

the IEEE standard for software audits. However,

these basic best practices are not Considering the

idiosyncrasy of mobile applications. The most

closed approach to produce some best practices

or recommendations to develop and maintain

secure mobile applications is governed by Open

Web Application Security Project (OWASP).

OWASP offers developers and security teams re-

sources to build and maintain secure mobile

applications, but no formal standard is provided.

However, it is crucial to appreciate the effort

conducted by OWASP in order to highlight the

most representative risks during mobile

application development. In this paper, we

classify the OWASP 2024 Top Ten Mobile Risks

under different analysis blocks. Then, we offer

a methodology that uses these analysis blocks to

audit the security of mobile applications. The

methodology is validated in practice by assessing

the identical functional application produced for

one different mobile platform: Google’s

Android. We focus on these platforms since they

lead the worldwide smartphone market.

I. ANALYSIS BLOCKS TO IDENTIFY

MOBILE RISKS

In this section, we describe the OWASP Top Ten

Mobile Risks for 2024 to indicate where the

common errors are located and how they might

be surfaced during an application security

 auditing.

The OWASP Top Ten Mobile Risks identify the

most common risks according to different aspects

such as threatening agents, attack vectors,

weaknesses, technical impact, and business

effect. OWASP analyzes common mobile

security vulnerabilities and provide assurance

controls to reduce their impact or possibility of

 exploitation. The OWASP

risks are briefly introduced:

M1) Improper Credential Usage

This is specific to the application. Threat agents

may employ automated assaults with freely

accessible or specially created tools to take

advantage of hardcoded credentials and incorrect

credential usage in mobile applications. These

agents might be able to find and take advantage

of hardcoded credentials or exploit flaws brought

about by incorrect credential usage. They can

also abuse credentials by, for example, obtaining

access by using incorrectly stored or validated

credentials, avoiding the requirement for

authorized access.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 3

M2) Inadequate Supply Chain Security

By taking advantage of weaknesses in the supply

chain for mobile apps, an attacker can modify the

functionality of the program. For instance, an

attacker may change the code during the

development process to add backdoors, spyware,

or other malicious code, or they may inject

harmful code directly into the mobile app's

codebase. As a result, the attacker may be able to

manage the mobile device, steal data, or spy on

people. Additionally, an attacker can access the

mobile application or the backend servers by

taking advantage of flaws in third-party software

libraries, SDKs, suppliers, or hardcoded

credentials.

M3) Insecure Authentication/Authorization

Threat actors usually utilize automated attacks

with readily accessible or specially designed

tools to exploit the vulnerabilities in

authorization and authentication.

M4) Insufficient Input/Output Validation

The lack of proper validation and sanitization of

data obtained from external sources, such as user

inputs or network data, in a mobile application

can lead to significant security issues. Mobile

applications that do not adequately validate and

sanitize data are vulnerable to exploitation

through attacks that are specifically targeted

towards mobile environments. These attacks

include SQL injection, Command Injection, and

cross-site scripting (XSS) assaults.

Insufficient output validation can lead to data

corruption or presentation flaws, enabling

malicious individuals to insert malicious code or

change critical information shown to users.

M5) Insecure Communication

Modern mobile applications typically

communicate with one or many remote servers

exchange data. During data transfer, information

usually passes through the carrier network of the

mobile device and the internet. However, if the

data is transmitted in plain text or using an

outdated encryption standard, a malicious

individual listening on the network can intercept

and alter the data. Threat actors may possess

several motivations, including the theft of

sensitive information, engaging in espionage,

and perpetrating identity theft, among others.

M6) Inadequate Privacy Controls

Protecting Personally Identifiable Information

(PII), such as names, addresses, credit card

numbers, email addresses, IP addresses, and

details about one's health, sexual orientation,

religion, and political beliefs, is the goal of

privacy controls.

The aforementioned information holds

significant value to potential attackers due to

various factors. For instance, a malicious

individual could assume the identity of the victim

in order to engage in fraudulent activities, exploit

the victim's financial information, extort the

victim by leveraging sensitive data, or inflict

harm upon the victim by tampering with or

destroying their essential data.

M7) Insufficient Binary Protections

The binaries could contain important

information, such as commercial API keys or

hardcoded cryptographic secrets that an attacker

could misuse. In addition, the code in the binary

could be important on its own, for example,

because it contains critical business logic or pre-

trained AI models. Some attackers might even

not target the app itself but use it to study

potential flaws of the relevant backend to prepare

for an attack. Technologies, and data emulsion

ways employed to prognosticate parking vacuity

directly, easing informed decision- making for

motorists.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 4

M8) Security Misconfiguration

Security misconfiguration in mobile apps refers

to the poor configuration of security settings,

permissions, and controls that can lead to

vulnerabilities and illegal access. Threat agents

who can exploit security misconfigurations are

attackers aiming to acquire unauthorized access

to sensitive data or execute damaging acts Threat

agents can be an attacker with physical access to

the device, a malicious software on the device

that leverages security misconfiguration to

execute unauthorized operations on the target

vulnerable application context.

M9) Insecure Data Storage

A mobile application's insecure data storage can

attract in different threat actors that seek to take

advantage of the weaknesses and obtain

unauthorized access to private data. Competitors

and industrial spies looking to gain a competitive

advantage, activists or hacktivists with

ideological motivations, state-sponsored actors

conducting cyber espionage, cybercriminals

seeking financial gain through ransomware or

data theft, script kiddies using pre-built tools for

simple attacks, data brokers looking to exploit

insecure storage for the sale of personal

information, and skilled adversaries targeting

mobile apps to extract valuable data are some

examples of these threat agents.

These threat agents take advantage of flaws in

data security, inadequate encryption, unsafe data

storage practices, and inappropriate user

credential management.

M10) Insufficient Cryptography

Threat actors have the ability to compromise the

confidentiality, integrity, and authenticity of

sensitive data by taking advantage of weak

cryptography in mobile applications. These

threat actors include cybercriminals who use

weak encryption to steal important data or

commit financial fraud, attackers who target

cryptographic algorithms or implementations to

decrypt sensitive data, malicious insiders who

alter cryptographic procedures or divulge

encryption keys, and state-sponsored actors

involved in cryptanalysis for intelligence

purposes.

II. LITERATURE SURVEY

Existing related work

For the prevention of Mobile attacks, the various

researchers have been implemented. Some major

techniques are given studied below.

A. Penetration Testing: Concepts, Attack

Methods (Mathew et al)

This article delves into various aspects of

penetration testing tools, techniques, and

methodologies. It discusses vulnerabilities

exploitation and hacking of smart devices,

including Bluetooth devices and Wi-Fi Protected

Access (WPA). The paper explains different

types of penetration tests, tools, and techniques.

However, it lacks discussion on how effectively

they can be used for the development of secure

Android applications.

B. Detecting Security Vulnerabilities in Web

Applications Using Dynamic Analysis

The paper proposes a framework employing

dynamic analysis, black box testing, and static

methods together to address weaknesses of

individual methods. It claims to deliver better

results by integrating the functions of the three

methods. The framework effectively discovers

vulnerabilities in applications and services.

However, it does not cover how the proposed

methods can be employed specifically in an

Android environment.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 5

C. Bacudio et al

This paper reviews penetration testing, its

effectiveness, and methodology. It involves a

thorough analysis of the testing methodology

phases: test preparation, test, and test analysis.

The application of the methodology is illustrated

on two web applications. The author discusses

penetration test methodologies and frameworks

but does not delve into specific tools and

techniques for pen-testing.

D. Sicari et al

This study focuses on the security of middleware,

solutions for securing mobile devices, and how

vulnerabilities can be handled. However, it lacks

discussion on penetration test frameworks and

developer- related challenges for Android app

development.

E. Gerry et al

The paper discusses penetration testing and

related factors. It elaborates on various

techniques and tools for employing security.

Additionally, it covers ISO 27000 security

standards, guidelines, and ethics for developers

for secure coding. However, it lacks discussion

on penetration test frameworks and tools that can

help in modeling security vulnerabilities.

F. Using a Protocol Analyzer to Introduce

Communications Protocols (Mosenia et al)

This paper discusses how developers are made

familiar with communication protocols such as

Ethernet, ARP, IP, ICMP, UDP, and TCP.

However, it lacks discussion on penetration test

frameworks and does not cover how proposed

methods can be employed specifically in an

Android environment.

III. Methodology

This section outlines a thorough methodology

that addresses the OWASP Top Ten Mobile

Risks in order to perform a security assessment of

mobile applications. Our approach is intended to

facilitate the identification of security holes, and

the evaluation of the functionality of an

application. Pre-runtime, Runtime, and Post-

runtime are its three primary phases. Each one

consists of several tasks meant to evaluate various

areas of mobile application security in-depth.

A. Pre-runtime

Preliminary Analysis, which incorporates

information collection to obtain both passive data

about the application, is the first step in the Pre-

runtime phase. This contains information on the

build, the Android version, and the description of

the program. The next step is to reverse and

decrypt the application in order to extract the

binary code in a format that can be read by

humans. This is necessary for additional analysis.

Static analysis is performed after the Pre- runtime

stage to examine the application's code and

structure in more detail. To find vulnerabilities

and private data, this entails carefully examining

strings extracted from source code, binary files,

and configuration files.

B. Runtime

As we move to the Runtime stage, our approach

expands on the static analysis to encompass

important elements like intents, internal storage,

and external storage, all of which are essential to

comprehending the behavior of the program and

its security threats.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 6

In runtime static analysis, intents—a crucial

component of inter-component communication

in Android applications—are examined in

detail. Data flow across various services,

activities, and broadcast receivers is made easier

by intentions. We seek to identify intent misuse

issues, such as faulty intent data validation,

unsafe implicit intent processing, and

 unintentional component access, by

closely examining how intentions are declared,

managed, and used inside the application.

Moreover, we also analyze file actions

performed within the application's internal

storage. Private data that is only accessible by the

application itself is kept in internal storage. We

can spot any security problems including

inappropriate permissions on sensitive files,

careless file handling, and the possibility of data

leaking from careless storage procedures by

keeping an eye on file read and write operations

in this storage environment. In a similar vein,

we examine how the program interacts with

external storage, or shared storage that is

available to users and other apps.

C. Post-runtime

We hope to identify vulnerabilities such as

insecure file permissions, the possibility of other

applications gaining unauthorized access to

sensitive data, and possible privacy breaches

brought on by insecure data storage practices by

closely examining how the application interacts

with external storage, including reading and

writing data to shared directories. The results of

the Pre-runtime and Runtime analyses are used

to make conclusions in the post-runtime phase.

The analysis results are

summarized in a comprehensive report. We

hope to offer a thorough analysis of the

application's behavior during runtime by

incorporating these elements into our

methodology. This will make it possible to spot

security flaws and possible areas for

improvement, strengthening the application's

security posture and safeguarding user data from

abuse and unauthorized access.

IV. SYSTEM ARCHITECTURE AND

RESULTS

The Android application package (APK)

scanning and analysis process is made easier by

the APK Scanner system's architecture, which

consists of multiple interrelated components. The

solution is designed to provide thorough

vulnerability scanning for the threats listed in the

OWASP Top 10 Mobile Risks.

Command-Line Interface (CLI):

The APK Scanner system offers a command- line

interface (CLI) as its user interface, permitting

efficient interaction with the instrument through

text-based commands. Through the CLI, users

may upload APK files for scanning and examine

the results smoothly.

Figure 1 Interface

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 7

The CLI commands are designed to be basic,

allowing users to launch scans by entering the

file path of the APK they wish to investigate.

Once the scanning procedure is complete, the

CLI delivers the results right within the interface,

displaying them in an organized way for easy

understanding. Users may move through the

scanning process intuitively, with clear

instructions and prompts directing them through

each step. Overall, the CLI offers as an easy and

accessible mechanism for users to analyze the

security of Android applications, providing a

streamlined experience for conducting scans and

reviewing results within the command-line

environment.

Static analysis:

Static analysis offers detailed information that

provides insights into the security posture of

Android applications. This result is delivered in

a structured way, allowing users to quickly

analyze the findings and take relevant actions to

remedy any discovered vulnerabilities.

The static analysis output often includes a

summary of the scan results, highlighting major

findings and security concerns found inside the

APK file. This summary provides as an overview

of the application's security state, giving users

with an immediate awareness of any potential

threats.

Report Generation:

The system creates extensive reports

summarizing the outcomes of both static

analysis.These reports contain specific

information about permissions, intents, and

storage consumption within the application. The

reports are designed to be useful and actionable,

giving customers with the insights needed to

improve the security of their Android

applications.

Figure 2 Report Sample (Taken from ApkDeeplens)

V. CONCLUSION

In conclusion, the APK Scanner system provides

a great tool for checking the security posture of

Android applications. By static and dynamic

analysis approaches, the system effectively

identifies vulnerabilities, rights misuse, and other

security problems within apps.

The static analysis component of the system

analyzes the application's code and structure to

discover typical security vulnerabilities such as

inappropriate credential usage, unsecured storage

methods, and inadequate privacy measures.

Additionally, dynamic analysis assesses the

application's behavior during runtime to uncover

potential dangers such as network

vulnerabilities and data leakage.

Through the compilation of thorough reports, the

APK Scanner system helps developers and

security professionals to understand the security

implications of their applications and take

suitable measures to prevent risks.

Overall, the APK Scanner system plays a critical

part in the ongoing endeavor to improve the

security of mobile applications and preserve the

privacy and integrity of user data in the ever-

evolving world of mobile technology.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 8

VII. REFERENCES

[1] Botas, Álvaro & García, Juan F. & Alonso Lopez,

Javier & Balsa, Jesús & Lera, Francisco & García,

Christian & Matellán, Vicente & Riesco, Raúl.

(2016). Security Assessment Methodology for

Mobile Applications. K. Ewusi-Mensah, Software

Development Failures. MIT Press, 2003.

[2] Charette, “Why software fails [software failure],”

IEEE Spectrum,

vol. 42, no. 9, pp. 42–49, September 2005.

[3] O. H. Alhazmi, S. Woo, and Y. K. Malaiya, “Security

vulnerability

[4] categories in major software systems,” in Procs.

IASTED 2006,

2006, pp. 138–143. [Online]. Available:

http://www.cs.colostate.edu/

[5] ∼malaiya/pub/CNIS-547-097.pdf

[6] M. Dowd, J. McDonald, and J. Schuh, The Art of

Software Security Assessment: Identifying and

Preventing Software Vulnerabilities. Addison-

Wesley, 2006.

[7] W. Jimenez, A. Mammar, and A. Cavalli, “Software

Vulnerabilities

[8] Prevention and Detection Methods: A Review,” in

Procs. SEC-MDA 2009. CTIT Workshop Procs.

Series, Jun 2009, pp. 6–13.

[9] [Online]Available:http://www.utwente.nl/ewi/ecmda

2009/workshops/

[10] ECMDA2009-SEC-MDA.pdf

[11] IEEE STD 1028-2008, “IEEE Standard for Software

Reviews and

[12] Audits,” IEEE STD 1028-2008, pp. 1–52, 2008.

[13] OWASP, “OWASP 2014 Top Ten Mobile Risks,”

[Online; accessed

[14] at January 28, 2014], January 2014,

https://www.owasp.org/index.php/

[15] OWASP Mobile Security Project.

[16] International Data Corporation, “Smartphone OS

Market Share, Q32014,” [Online; accesed at

November 28, 2014], 2014,

http://www.idc.com/prodserv/smartphone-os-

market-share.jsp.

[17] M. G. Cimino and F. Marcelloni, “An efficient

model-based methodology for developing device-

independent mobile applications,” J. Syst.Architect.,

vol. 58, no. 8

[18] Y.-J. Jeong, J.-H. Lee, and G.-S. Shin, “Development

Process of Mobile Application SW Based on Agile

Methodology,” in Procs. of ICACT

[19] M. Lindorfer, M. Neugschwandtner, L.

Weichselbaum, Y. Fratantonio,V. van der Veen, and

C. Platzer, “ANDRUBIS - 1,000,000 Apps Later:A

View on Current Android Malware Behaviors,” in

Procs. BADGERS.

[20] S. Fahl, M. Harbach, T. Muders, L. Baumg¨artner, B.

Freisleben, and M. Smith, “Why Eve and Mallory

Love Android: An Analysis of Android SSL

(in)Security,” in Procs

http://www.ijsrem.com/

